queue.h 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539
  1. /*
  2. * Copyright (c) 1991, 1993
  3. * The Regents of the University of California. All rights reserved.
  4. *
  5. * Redistribution and use in source and binary forms, with or without
  6. * modification, are permitted provided that the following conditions
  7. * are met:
  8. * 1. Redistributions of source code must retain the above copyright
  9. * notice, this list of conditions and the following disclaimer.
  10. * 2. Redistributions in binary form must reproduce the above copyright
  11. * notice, this list of conditions and the following disclaimer in the
  12. * documentation and/or other materials provided with the distribution.
  13. * 3. All advertising materials mentioning features or use of this software
  14. * must display the following acknowledgement:
  15. * This product includes software developed by the University of
  16. * California, Berkeley and its contributors.
  17. * 4. Neither the name of the University nor the names of its contributors
  18. * may be used to endorse or promote products derived from this software
  19. * without specific prior written permission.
  20. *
  21. * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
  22. * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  23. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  24. * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
  25. * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  26. * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  27. * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  28. * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  29. * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  30. * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  31. * SUCH DAMAGE.
  32. *
  33. * @(#)queue.h 8.5 (Berkeley) 8/20/94
  34. * $FreeBSD: src/sys/sys/queue.h,v 1.24.2.4 2000/05/05 01:41:41 archie Exp $
  35. */
  36. #ifndef _SYS_QUEUE_H_
  37. #define _SYS_QUEUE_H_
  38. /*
  39. * This file defines five types of data structures: singly-linked lists,
  40. * singly-linked tail queues, lists, tail queues, and circular queues.
  41. *
  42. * A singly-linked list is headed by a single forward pointer. The elements
  43. * are singly linked for minimum space and pointer manipulation overhead at
  44. * the expense of O(n) removal for arbitrary elements. New elements can be
  45. * added to the list after an existing element or at the head of the list.
  46. * Elements being removed from the head of the list should use the explicit
  47. * macro for this purpose for optimum efficiency. A singly-linked list may
  48. * only be traversed in the forward direction. Singly-linked lists are ideal
  49. * for applications with large datasets and few or no removals or for
  50. * implementing a LIFO queue.
  51. *
  52. * A singly-linked tail queue is headed by a pair of pointers, one to the
  53. * head of the list and the other to the tail of the list. The elements are
  54. * singly linked for minimum space and pointer manipulation overhead at the
  55. * expense of O(n) removal for arbitrary elements. New elements can be added
  56. * to the list after an existing element, at the head of the list, or at the
  57. * end of the list. Elements being removed from the head of the tail queue
  58. * should use the explicit macro for this purpose for optimum efficiency.
  59. * A singly-linked tail queue may only be traversed in the forward direction.
  60. * Singly-linked tail queues are ideal for applications with large datasets
  61. * and few or no removals or for implementing a FIFO queue.
  62. *
  63. * A list is headed by a single forward pointer (or an array of forward
  64. * pointers for a hash table header). The elements are doubly linked
  65. * so that an arbitrary element can be removed without a need to
  66. * traverse the list. New elements can be added to the list before
  67. * or after an existing element or at the head of the list. A list
  68. * may only be traversed in the forward direction.
  69. *
  70. * A tail queue is headed by a pair of pointers, one to the head of the
  71. * list and the other to the tail of the list. The elements are doubly
  72. * linked so that an arbitrary element can be removed without a need to
  73. * traverse the list. New elements can be added to the list before or
  74. * after an existing element, at the head of the list, or at the end of
  75. * the list. A tail queue may be traversed in either direction.
  76. *
  77. * A circle queue is headed by a pair of pointers, one to the head of the
  78. * list and the other to the tail of the list. The elements are doubly
  79. * linked so that an arbitrary element can be removed without a need to
  80. * traverse the list. New elements can be added to the list before or after
  81. * an existing element, at the head of the list, or at the end of the list.
  82. * A circle queue may be traversed in either direction, but has a more
  83. * complex end of list detection.
  84. *
  85. * For details on the use of these macros, see the queue(3) manual page.
  86. *
  87. *
  88. * SLIST LIST STAILQ TAILQ CIRCLEQ
  89. * _HEAD + + + + +
  90. * _ENTRY + + + + +
  91. * _INIT + + + + +
  92. * _EMPTY + + + + +
  93. * _FIRST + + + + +
  94. * _NEXT + + + + +
  95. * _PREV - - - + +
  96. * _LAST - - + + +
  97. * _FOREACH + + + + +
  98. * _FOREACH_REVERSE - - - + +
  99. * _INSERT_HEAD + + + + +
  100. * _INSERT_BEFORE - + - + +
  101. * _INSERT_AFTER + + + + +
  102. * _INSERT_TAIL - - + + +
  103. * _REMOVE_HEAD + - + - -
  104. * _REMOVE + + + + +
  105. *
  106. */
  107. /*
  108. * Singly-linked List definitions.
  109. */
  110. #define SLIST_HEAD(name, type) \
  111. struct name { \
  112. struct type *slh_first; /* first element */ \
  113. }
  114. #define SLIST_HEAD_INITIALIZER(head) \
  115. { NULL }
  116. #define SLIST_ENTRY(type) \
  117. struct { \
  118. struct type *sle_next; /* next element */ \
  119. }
  120. /*
  121. * Singly-linked List functions.
  122. */
  123. #define SLIST_EMPTY(head) ((head)->slh_first == NULL)
  124. #define SLIST_FIRST(head) ((head)->slh_first)
  125. #define SLIST_FOREACH(var, head, field) \
  126. for((var) = (head)->slh_first; (var); (var) = (var)->field.sle_next)
  127. #define SLIST_INIT(head) { \
  128. (head)->slh_first = NULL; \
  129. }
  130. #define SLIST_INSERT_AFTER(slistelm, elm, field) do { \
  131. (elm)->field.sle_next = (slistelm)->field.sle_next; \
  132. (slistelm)->field.sle_next = (elm); \
  133. } while (0)
  134. #define SLIST_INSERT_HEAD(head, elm, field) do { \
  135. (elm)->field.sle_next = (head)->slh_first; \
  136. (head)->slh_first = (elm); \
  137. } while (0)
  138. #define SLIST_NEXT(elm, field) ((elm)->field.sle_next)
  139. #define SLIST_REMOVE_HEAD(head, field) do { \
  140. (head)->slh_first = (head)->slh_first->field.sle_next; \
  141. } while (0)
  142. #define SLIST_REMOVE(head, elm, type, field) do { \
  143. if ((head)->slh_first == (elm)) { \
  144. SLIST_REMOVE_HEAD((head), field); \
  145. } \
  146. else { \
  147. struct type *curelm = (head)->slh_first; \
  148. while( curelm->field.sle_next != (elm) ) \
  149. curelm = curelm->field.sle_next; \
  150. curelm->field.sle_next = \
  151. curelm->field.sle_next->field.sle_next; \
  152. } \
  153. } while (0)
  154. /*
  155. * Singly-linked Tail queue definitions.
  156. */
  157. #define STAILQ_HEAD(name, type) \
  158. struct name { \
  159. struct type *stqh_first;/* first element */ \
  160. struct type **stqh_last;/* addr of last next element */ \
  161. }
  162. #define STAILQ_HEAD_INITIALIZER(head) \
  163. { NULL, &(head).stqh_first }
  164. #define STAILQ_ENTRY(type) \
  165. struct { \
  166. struct type *stqe_next; /* next element */ \
  167. }
  168. /*
  169. * Singly-linked Tail queue functions.
  170. */
  171. #define STAILQ_EMPTY(head) ((head)->stqh_first == NULL)
  172. #define STAILQ_INIT(head) do { \
  173. (head)->stqh_first = NULL; \
  174. (head)->stqh_last = &(head)->stqh_first; \
  175. } while (0)
  176. #define STAILQ_FIRST(head) ((head)->stqh_first)
  177. #define STAILQ_LAST(head) (*(head)->stqh_last)
  178. #define STAILQ_FOREACH(var, head, field) \
  179. for((var) = (head)->stqh_first; (var); (var) = (var)->field.stqe_next)
  180. #define STAILQ_INSERT_HEAD(head, elm, field) do { \
  181. if (((elm)->field.stqe_next = (head)->stqh_first) == NULL) \
  182. (head)->stqh_last = &(elm)->field.stqe_next; \
  183. (head)->stqh_first = (elm); \
  184. } while (0)
  185. #define STAILQ_INSERT_TAIL(head, elm, field) do { \
  186. (elm)->field.stqe_next = NULL; \
  187. *(head)->stqh_last = (elm); \
  188. (head)->stqh_last = &(elm)->field.stqe_next; \
  189. } while (0)
  190. #define STAILQ_INSERT_AFTER(head, tqelm, elm, field) do { \
  191. if (((elm)->field.stqe_next = (tqelm)->field.stqe_next) == NULL)\
  192. (head)->stqh_last = &(elm)->field.stqe_next; \
  193. (tqelm)->field.stqe_next = (elm); \
  194. } while (0)
  195. #define STAILQ_NEXT(elm, field) ((elm)->field.stqe_next)
  196. #define STAILQ_REMOVE_HEAD(head, field) do { \
  197. if (((head)->stqh_first = \
  198. (head)->stqh_first->field.stqe_next) == NULL) \
  199. (head)->stqh_last = &(head)->stqh_first; \
  200. } while (0)
  201. #define STAILQ_REMOVE_HEAD_UNTIL(head, elm, field) do { \
  202. if (((head)->stqh_first = (elm)->field.stqe_next) == NULL) \
  203. (head)->stqh_last = &(head)->stqh_first; \
  204. } while (0)
  205. #define STAILQ_REMOVE(head, elm, type, field) do { \
  206. if ((head)->stqh_first == (elm)) { \
  207. STAILQ_REMOVE_HEAD(head, field); \
  208. } \
  209. else { \
  210. struct type *curelm = (head)->stqh_first; \
  211. while( curelm->field.stqe_next != (elm) ) \
  212. curelm = curelm->field.stqe_next; \
  213. if((curelm->field.stqe_next = \
  214. curelm->field.stqe_next->field.stqe_next) == NULL) \
  215. (head)->stqh_last = &(curelm)->field.stqe_next; \
  216. } \
  217. } while (0)
  218. /*
  219. * List definitions.
  220. */
  221. #define LIST_HEAD(name, type) \
  222. struct name { \
  223. struct type *lh_first; /* first element */ \
  224. }
  225. #define LIST_HEAD_INITIALIZER(head) \
  226. { NULL }
  227. #define LIST_ENTRY(type) \
  228. struct { \
  229. struct type *le_next; /* next element */ \
  230. struct type **le_prev; /* address of previous next element */ \
  231. }
  232. /*
  233. * List functions.
  234. */
  235. #define LIST_EMPTY(head) ((head)->lh_first == NULL)
  236. #define LIST_FIRST(head) ((head)->lh_first)
  237. #define LIST_FOREACH(var, head, field) \
  238. for((var) = (head)->lh_first; (var); (var) = (var)->field.le_next)
  239. #define LIST_INIT(head) do { \
  240. (head)->lh_first = NULL; \
  241. } while (0)
  242. #define LIST_INSERT_AFTER(listelm, elm, field) do { \
  243. if (((elm)->field.le_next = (listelm)->field.le_next) != NULL) \
  244. (listelm)->field.le_next->field.le_prev = \
  245. &(elm)->field.le_next; \
  246. (listelm)->field.le_next = (elm); \
  247. (elm)->field.le_prev = &(listelm)->field.le_next; \
  248. } while (0)
  249. #define LIST_INSERT_BEFORE(listelm, elm, field) do { \
  250. (elm)->field.le_prev = (listelm)->field.le_prev; \
  251. (elm)->field.le_next = (listelm); \
  252. *(listelm)->field.le_prev = (elm); \
  253. (listelm)->field.le_prev = &(elm)->field.le_next; \
  254. } while (0)
  255. #define LIST_INSERT_HEAD(head, elm, field) do { \
  256. if (((elm)->field.le_next = (head)->lh_first) != NULL) \
  257. (head)->lh_first->field.le_prev = &(elm)->field.le_next;\
  258. (head)->lh_first = (elm); \
  259. (elm)->field.le_prev = &(head)->lh_first; \
  260. } while (0)
  261. #define LIST_NEXT(elm, field) ((elm)->field.le_next)
  262. #define LIST_REMOVE(elm, field) do { \
  263. if ((elm)->field.le_next != NULL) \
  264. (elm)->field.le_next->field.le_prev = \
  265. (elm)->field.le_prev; \
  266. *(elm)->field.le_prev = (elm)->field.le_next; \
  267. } while (0)
  268. /*
  269. * Tail queue definitions.
  270. */
  271. #define TAILQ_HEAD(name, type) \
  272. struct name { \
  273. struct type *tqh_first; /* first element */ \
  274. struct type **tqh_last; /* addr of last next element */ \
  275. }
  276. #define TAILQ_HEAD_INITIALIZER(head) \
  277. { NULL, &(head).tqh_first }
  278. #define TAILQ_ENTRY(type) \
  279. struct { \
  280. struct type *tqe_next; /* next element */ \
  281. struct type **tqe_prev; /* address of previous next element */ \
  282. }
  283. /*
  284. * Tail queue functions.
  285. */
  286. #define TAILQ_EMPTY(head) ((head)->tqh_first == NULL)
  287. #define TAILQ_FOREACH(var, head, field) \
  288. for (var = TAILQ_FIRST(head); var; var = TAILQ_NEXT(var, field))
  289. #define TAILQ_FOREACH_REVERSE(var, head, headname, field) \
  290. for ((var) = TAILQ_LAST((head), headname); \
  291. (var); \
  292. (var) = TAILQ_PREV((var), headname, field))
  293. #define TAILQ_FIRST(head) ((head)->tqh_first)
  294. #define TAILQ_LAST(head, headname) \
  295. (*(((struct headname *)((head)->tqh_last))->tqh_last))
  296. #define TAILQ_NEXT(elm, field) ((elm)->field.tqe_next)
  297. #define TAILQ_PREV(elm, headname, field) \
  298. (*(((struct headname *)((elm)->field.tqe_prev))->tqh_last))
  299. #define TAILQ_INIT(head) do { \
  300. (head)->tqh_first = NULL; \
  301. (head)->tqh_last = &(head)->tqh_first; \
  302. } while (0)
  303. #define TAILQ_INSERT_HEAD(head, elm, field) do { \
  304. if (((elm)->field.tqe_next = (head)->tqh_first) != NULL) \
  305. (head)->tqh_first->field.tqe_prev = \
  306. &(elm)->field.tqe_next; \
  307. else \
  308. (head)->tqh_last = &(elm)->field.tqe_next; \
  309. (head)->tqh_first = (elm); \
  310. (elm)->field.tqe_prev = &(head)->tqh_first; \
  311. } while (0)
  312. #define TAILQ_INSERT_TAIL(head, elm, field) do { \
  313. (elm)->field.tqe_next = NULL; \
  314. (elm)->field.tqe_prev = (head)->tqh_last; \
  315. *(head)->tqh_last = (elm); \
  316. (head)->tqh_last = &(elm)->field.tqe_next; \
  317. } while (0)
  318. #define TAILQ_INSERT_AFTER(head, listelm, elm, field) do { \
  319. if (((elm)->field.tqe_next = (listelm)->field.tqe_next) != NULL)\
  320. (elm)->field.tqe_next->field.tqe_prev = \
  321. &(elm)->field.tqe_next; \
  322. else \
  323. (head)->tqh_last = &(elm)->field.tqe_next; \
  324. (listelm)->field.tqe_next = (elm); \
  325. (elm)->field.tqe_prev = &(listelm)->field.tqe_next; \
  326. } while (0)
  327. #define TAILQ_INSERT_BEFORE(listelm, elm, field) do { \
  328. (elm)->field.tqe_prev = (listelm)->field.tqe_prev; \
  329. (elm)->field.tqe_next = (listelm); \
  330. *(listelm)->field.tqe_prev = (elm); \
  331. (listelm)->field.tqe_prev = &(elm)->field.tqe_next; \
  332. } while (0)
  333. #define TAILQ_REMOVE(head, elm, field) do { \
  334. if (((elm)->field.tqe_next) != NULL) \
  335. (elm)->field.tqe_next->field.tqe_prev = \
  336. (elm)->field.tqe_prev; \
  337. else \
  338. (head)->tqh_last = (elm)->field.tqe_prev; \
  339. *(elm)->field.tqe_prev = (elm)->field.tqe_next; \
  340. } while (0)
  341. /*
  342. * Circular queue definitions.
  343. */
  344. #define CIRCLEQ_HEAD(name, type) \
  345. struct name { \
  346. struct type *cqh_first; /* first element */ \
  347. struct type *cqh_last; /* last element */ \
  348. }
  349. #define CIRCLEQ_ENTRY(type) \
  350. struct { \
  351. struct type *cqe_next; /* next element */ \
  352. struct type *cqe_prev; /* previous element */ \
  353. }
  354. /*
  355. * Circular queue functions.
  356. */
  357. #define CIRCLEQ_EMPTY(head) ((head)->cqh_first == (void *)(head))
  358. #define CIRCLEQ_FIRST(head) ((head)->cqh_first)
  359. #define CIRCLEQ_FOREACH(var, head, field) \
  360. for((var) = (head)->cqh_first; \
  361. (var) != (void *)(head); \
  362. (var) = (var)->field.cqe_next)
  363. #define CIRCLEQ_FOREACH_REVERSE(var, head, field) \
  364. for((var) = (head)->cqh_last; \
  365. (var) != (void *)(head); \
  366. (var) = (var)->field.cqe_prev)
  367. #define CIRCLEQ_INIT(head) do { \
  368. (head)->cqh_first = (void *)(head); \
  369. (head)->cqh_last = (void *)(head); \
  370. } while (0)
  371. #define CIRCLEQ_INSERT_AFTER(head, listelm, elm, field) do { \
  372. (elm)->field.cqe_next = (listelm)->field.cqe_next; \
  373. (elm)->field.cqe_prev = (listelm); \
  374. if ((listelm)->field.cqe_next == (void *)(head)) \
  375. (head)->cqh_last = (elm); \
  376. else \
  377. (listelm)->field.cqe_next->field.cqe_prev = (elm); \
  378. (listelm)->field.cqe_next = (elm); \
  379. } while (0)
  380. #define CIRCLEQ_INSERT_BEFORE(head, listelm, elm, field) do { \
  381. (elm)->field.cqe_next = (listelm); \
  382. (elm)->field.cqe_prev = (listelm)->field.cqe_prev; \
  383. if ((listelm)->field.cqe_prev == (void *)(head)) \
  384. (head)->cqh_first = (elm); \
  385. else \
  386. (listelm)->field.cqe_prev->field.cqe_next = (elm); \
  387. (listelm)->field.cqe_prev = (elm); \
  388. } while (0)
  389. #define CIRCLEQ_INSERT_HEAD(head, elm, field) do { \
  390. (elm)->field.cqe_next = (head)->cqh_first; \
  391. (elm)->field.cqe_prev = (void *)(head); \
  392. if ((head)->cqh_last == (void *)(head)) \
  393. (head)->cqh_last = (elm); \
  394. else \
  395. (head)->cqh_first->field.cqe_prev = (elm); \
  396. (head)->cqh_first = (elm); \
  397. } while (0)
  398. #define CIRCLEQ_INSERT_TAIL(head, elm, field) do { \
  399. (elm)->field.cqe_next = (void *)(head); \
  400. (elm)->field.cqe_prev = (head)->cqh_last; \
  401. if ((head)->cqh_first == (void *)(head)) \
  402. (head)->cqh_first = (elm); \
  403. else \
  404. (head)->cqh_last->field.cqe_next = (elm); \
  405. (head)->cqh_last = (elm); \
  406. } while (0)
  407. #define CIRCLEQ_LAST(head) ((head)->cqh_last)
  408. #define CIRCLEQ_NEXT(elm,field) ((elm)->field.cqe_next)
  409. #define CIRCLEQ_PREV(elm,field) ((elm)->field.cqe_prev)
  410. #define CIRCLEQ_REMOVE(head, elm, field) do { \
  411. if ((elm)->field.cqe_next == (void *)(head)) \
  412. (head)->cqh_last = (elm)->field.cqe_prev; \
  413. else \
  414. (elm)->field.cqe_next->field.cqe_prev = \
  415. (elm)->field.cqe_prev; \
  416. if ((elm)->field.cqe_prev == (void *)(head)) \
  417. (head)->cqh_first = (elm)->field.cqe_next; \
  418. else \
  419. (elm)->field.cqe_prev->field.cqe_next = \
  420. (elm)->field.cqe_next; \
  421. } while (0)
  422. #ifdef KERNEL
  423. /*
  424. * XXX insque() and remque() are an old way of handling certain queues.
  425. * They bogusly assumes that all queue heads look alike.
  426. */
  427. struct quehead {
  428. struct quehead *qh_link;
  429. struct quehead *qh_rlink;
  430. };
  431. #ifdef __GNUC__
  432. static __inline void
  433. insque(void *a, void *b)
  434. {
  435. struct quehead *element = a, *head = b;
  436. element->qh_link = head->qh_link;
  437. element->qh_rlink = head;
  438. head->qh_link = element;
  439. element->qh_link->qh_rlink = element;
  440. }
  441. static __inline void
  442. remque(void *a)
  443. {
  444. struct quehead *element = a;
  445. element->qh_link->qh_rlink = element->qh_rlink;
  446. element->qh_rlink->qh_link = element->qh_link;
  447. element->qh_rlink = 0;
  448. }
  449. #else /* !__GNUC__ */
  450. void insque __P((void *a, void *b));
  451. void remque __P((void *a));
  452. #endif /* __GNUC__ */
  453. #endif /* KERNEL */
  454. #endif /* !_SYS_QUEUE_H_ */