123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172 |
- Using hlist_nulls to protect read-mostly linked lists and
- objects using SLAB_DESTROY_BY_RCU allocations.
- Please read the basics in Documentation/RCU/listRCU.txt
- Using special makers (called 'nulls') is a convenient way
- to solve following problem :
- A typical RCU linked list managing objects which are
- allocated with SLAB_DESTROY_BY_RCU kmem_cache can
- use following algos :
- 1) Lookup algo
- --------------
- rcu_read_lock()
- begin:
- obj = lockless_lookup(key);
- if (obj) {
- if (!try_get_ref(obj)) // might fail for free objects
- goto begin;
- /*
- * Because a writer could delete object, and a writer could
- * reuse these object before the RCU grace period, we
- * must check key after getting the reference on object
- */
- if (obj->key != key) { // not the object we expected
- put_ref(obj);
- goto begin;
- }
- }
- rcu_read_unlock();
- Beware that lockless_lookup(key) cannot use traditional hlist_for_each_entry_rcu()
- but a version with an additional memory barrier (smp_rmb())
- lockless_lookup(key)
- {
- struct hlist_node *node, *next;
- for (pos = rcu_dereference((head)->first);
- pos && ({ next = pos->next; smp_rmb(); prefetch(next); 1; }) &&
- ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1; });
- pos = rcu_dereference(next))
- if (obj->key == key)
- return obj;
- return NULL;
- And note the traditional hlist_for_each_entry_rcu() misses this smp_rmb() :
- struct hlist_node *node;
- for (pos = rcu_dereference((head)->first);
- pos && ({ prefetch(pos->next); 1; }) &&
- ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1; });
- pos = rcu_dereference(pos->next))
- if (obj->key == key)
- return obj;
- return NULL;
- }
- Quoting Corey Minyard :
- "If the object is moved from one list to another list in-between the
- time the hash is calculated and the next field is accessed, and the
- object has moved to the end of a new list, the traversal will not
- complete properly on the list it should have, since the object will
- be on the end of the new list and there's not a way to tell it's on a
- new list and restart the list traversal. I think that this can be
- solved by pre-fetching the "next" field (with proper barriers) before
- checking the key."
- 2) Insert algo :
- ----------------
- We need to make sure a reader cannot read the new 'obj->obj_next' value
- and previous value of 'obj->key'. Or else, an item could be deleted
- from a chain, and inserted into another chain. If new chain was empty
- before the move, 'next' pointer is NULL, and lockless reader can
- not detect it missed following items in original chain.
- /*
- * Please note that new inserts are done at the head of list,
- * not in the middle or end.
- */
- obj = kmem_cache_alloc(...);
- lock_chain(); // typically a spin_lock()
- obj->key = key;
- /*
- * we need to make sure obj->key is updated before obj->next
- * or obj->refcnt
- */
- smp_wmb();
- atomic_set(&obj->refcnt, 1);
- hlist_add_head_rcu(&obj->obj_node, list);
- unlock_chain(); // typically a spin_unlock()
- 3) Remove algo
- --------------
- Nothing special here, we can use a standard RCU hlist deletion.
- But thanks to SLAB_DESTROY_BY_RCU, beware a deleted object can be reused
- very very fast (before the end of RCU grace period)
- if (put_last_reference_on(obj) {
- lock_chain(); // typically a spin_lock()
- hlist_del_init_rcu(&obj->obj_node);
- unlock_chain(); // typically a spin_unlock()
- kmem_cache_free(cachep, obj);
- }
- --------------------------------------------------------------------------
- With hlist_nulls we can avoid extra smp_rmb() in lockless_lookup()
- and extra smp_wmb() in insert function.
- For example, if we choose to store the slot number as the 'nulls'
- end-of-list marker for each slot of the hash table, we can detect
- a race (some writer did a delete and/or a move of an object
- to another chain) checking the final 'nulls' value if
- the lookup met the end of chain. If final 'nulls' value
- is not the slot number, then we must restart the lookup at
- the beginning. If the object was moved to the same chain,
- then the reader doesn't care : It might eventually
- scan the list again without harm.
- 1) lookup algo
- head = &table[slot];
- rcu_read_lock();
- begin:
- hlist_nulls_for_each_entry_rcu(obj, node, head, member) {
- if (obj->key == key) {
- if (!try_get_ref(obj)) // might fail for free objects
- goto begin;
- if (obj->key != key) { // not the object we expected
- put_ref(obj);
- goto begin;
- }
- goto out;
- }
- /*
- * if the nulls value we got at the end of this lookup is
- * not the expected one, we must restart lookup.
- * We probably met an item that was moved to another chain.
- */
- if (get_nulls_value(node) != slot)
- goto begin;
- obj = NULL;
- out:
- rcu_read_unlock();
- 2) Insert function :
- --------------------
- /*
- * Please note that new inserts are done at the head of list,
- * not in the middle or end.
- */
- obj = kmem_cache_alloc(cachep);
- lock_chain(); // typically a spin_lock()
- obj->key = key;
- /*
- * changes to obj->key must be visible before refcnt one
- */
- smp_wmb();
- atomic_set(&obj->refcnt, 1);
- /*
- * insert obj in RCU way (readers might be traversing chain)
- */
- hlist_nulls_add_head_rcu(&obj->obj_node, list);
- unlock_chain(); // typically a spin_unlock()
|