123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318 |
- Introduction
- ============
- The IBM Power architecture provides support for CAPI (Coherent
- Accelerator Power Interface), which is available to certain PCIe slots
- on Power 8 systems. CAPI can be thought of as a special tunneling
- protocol through PCIe that allow PCIe adapters to look like special
- purpose co-processors which can read or write an application's
- memory and generate page faults. As a result, the host interface to
- an adapter running in CAPI mode does not require the data buffers to
- be mapped to the device's memory (IOMMU bypass) nor does it require
- memory to be pinned.
- On Linux, Coherent Accelerator (CXL) kernel services present CAPI
- devices as a PCI device by implementing a virtual PCI host bridge.
- This abstraction simplifies the infrastructure and programming
- model, allowing for drivers to look similar to other native PCI
- device drivers.
- CXL provides a mechanism by which user space applications can
- directly talk to a device (network or storage) bypassing the typical
- kernel/device driver stack. The CXL Flash Adapter Driver enables a
- user space application direct access to Flash storage.
- The CXL Flash Adapter Driver is a kernel module that sits in the
- SCSI stack as a low level device driver (below the SCSI disk and
- protocol drivers) for the IBM CXL Flash Adapter. This driver is
- responsible for the initialization of the adapter, setting up the
- special path for user space access, and performing error recovery. It
- communicates directly the Flash Accelerator Functional Unit (AFU)
- as described in Documentation/powerpc/cxl.txt.
- The cxlflash driver supports two, mutually exclusive, modes of
- operation at the device (LUN) level:
- - Any flash device (LUN) can be configured to be accessed as a
- regular disk device (i.e.: /dev/sdc). This is the default mode.
- - Any flash device (LUN) can be configured to be accessed from
- user space with a special block library. This mode further
- specifies the means of accessing the device and provides for
- either raw access to the entire LUN (referred to as direct
- or physical LUN access) or access to a kernel/AFU-mediated
- partition of the LUN (referred to as virtual LUN access). The
- segmentation of a disk device into virtual LUNs is assisted
- by special translation services provided by the Flash AFU.
- Overview
- ========
- The Coherent Accelerator Interface Architecture (CAIA) introduces a
- concept of a master context. A master typically has special privileges
- granted to it by the kernel or hypervisor allowing it to perform AFU
- wide management and control. The master may or may not be involved
- directly in each user I/O, but at the minimum is involved in the
- initial setup before the user application is allowed to send requests
- directly to the AFU.
- The CXL Flash Adapter Driver establishes a master context with the
- AFU. It uses memory mapped I/O (MMIO) for this control and setup. The
- Adapter Problem Space Memory Map looks like this:
- +-------------------------------+
- | 512 * 64 KB User MMIO |
- | (per context) |
- | User Accessible |
- +-------------------------------+
- | 512 * 128 B per context |
- | Provisioning and Control |
- | Trusted Process accessible |
- +-------------------------------+
- | 64 KB Global |
- | Trusted Process accessible |
- +-------------------------------+
- This driver configures itself into the SCSI software stack as an
- adapter driver. The driver is the only entity that is considered a
- Trusted Process to program the Provisioning and Control and Global
- areas in the MMIO Space shown above. The master context driver
- discovers all LUNs attached to the CXL Flash adapter and instantiates
- scsi block devices (/dev/sdb, /dev/sdc etc.) for each unique LUN
- seen from each path.
- Once these scsi block devices are instantiated, an application
- written to a specification provided by the block library may get
- access to the Flash from user space (without requiring a system call).
- This master context driver also provides a series of ioctls for this
- block library to enable this user space access. The driver supports
- two modes for accessing the block device.
- The first mode is called a virtual mode. In this mode a single scsi
- block device (/dev/sdb) may be carved up into any number of distinct
- virtual LUNs. The virtual LUNs may be resized as long as the sum of
- the sizes of all the virtual LUNs, along with the meta-data associated
- with it does not exceed the physical capacity.
- The second mode is called the physical mode. In this mode a single
- block device (/dev/sdb) may be opened directly by the block library
- and the entire space for the LUN is available to the application.
- Only the physical mode provides persistence of the data. i.e. The
- data written to the block device will survive application exit and
- restart and also reboot. The virtual LUNs do not persist (i.e. do
- not survive after the application terminates or the system reboots).
- Block library API
- =================
- Applications intending to get access to the CXL Flash from user
- space should use the block library, as it abstracts the details of
- interfacing directly with the cxlflash driver that are necessary for
- performing administrative actions (i.e.: setup, tear down, resize).
- The block library can be thought of as a 'user' of services,
- implemented as IOCTLs, that are provided by the cxlflash driver
- specifically for devices (LUNs) operating in user space access
- mode. While it is not a requirement that applications understand
- the interface between the block library and the cxlflash driver,
- a high-level overview of each supported service (IOCTL) is provided
- below.
- The block library can be found on GitHub:
- http://www.github.com/mikehollinger/ibmcapikv
- CXL Flash Driver IOCTLs
- =======================
- Users, such as the block library, that wish to interface with a flash
- device (LUN) via user space access need to use the services provided
- by the cxlflash driver. As these services are implemented as ioctls,
- a file descriptor handle must first be obtained in order to establish
- the communication channel between a user and the kernel. This file
- descriptor is obtained by opening the device special file associated
- with the scsi disk device (/dev/sdb) that was created during LUN
- discovery. As per the location of the cxlflash driver within the
- SCSI protocol stack, this open is actually not seen by the cxlflash
- driver. Upon successful open, the user receives a file descriptor
- (herein referred to as fd1) that should be used for issuing the
- subsequent ioctls listed below.
- The structure definitions for these IOCTLs are available in:
- uapi/scsi/cxlflash_ioctl.h
- DK_CXLFLASH_ATTACH
- ------------------
- This ioctl obtains, initializes, and starts a context using the CXL
- kernel services. These services specify a context id (u16) by which
- to uniquely identify the context and its allocated resources. The
- services additionally provide a second file descriptor (herein
- referred to as fd2) that is used by the block library to initiate
- memory mapped I/O (via mmap()) to the CXL flash device and poll for
- completion events. This file descriptor is intentionally installed by
- this driver and not the CXL kernel services to allow for intermediary
- notification and access in the event of a non-user-initiated close(),
- such as a killed process. This design point is described in further
- detail in the description for the DK_CXLFLASH_DETACH ioctl.
- There are a few important aspects regarding the "tokens" (context id
- and fd2) that are provided back to the user:
- - These tokens are only valid for the process under which they
- were created. The child of a forked process cannot continue
- to use the context id or file descriptor created by its parent
- (see DK_CXLFLASH_VLUN_CLONE for further details).
- - These tokens are only valid for the lifetime of the context and
- the process under which they were created. Once either is
- destroyed, the tokens are to be considered stale and subsequent
- usage will result in errors.
- - When a context is no longer needed, the user shall detach from
- the context via the DK_CXLFLASH_DETACH ioctl.
- - A close on fd2 will invalidate the tokens. This operation is not
- required by the user.
- DK_CXLFLASH_USER_DIRECT
- -----------------------
- This ioctl is responsible for transitioning the LUN to direct
- (physical) mode access and configuring the AFU for direct access from
- user space on a per-context basis. Additionally, the block size and
- last logical block address (LBA) are returned to the user.
- As mentioned previously, when operating in user space access mode,
- LUNs may be accessed in whole or in part. Only one mode is allowed
- at a time and if one mode is active (outstanding references exist),
- requests to use the LUN in a different mode are denied.
- The AFU is configured for direct access from user space by adding an
- entry to the AFU's resource handle table. The index of the entry is
- treated as a resource handle that is returned to the user. The user
- is then able to use the handle to reference the LUN during I/O.
- DK_CXLFLASH_USER_VIRTUAL
- ------------------------
- This ioctl is responsible for transitioning the LUN to virtual mode
- of access and configuring the AFU for virtual access from user space
- on a per-context basis. Additionally, the block size and last logical
- block address (LBA) are returned to the user.
- As mentioned previously, when operating in user space access mode,
- LUNs may be accessed in whole or in part. Only one mode is allowed
- at a time and if one mode is active (outstanding references exist),
- requests to use the LUN in a different mode are denied.
- The AFU is configured for virtual access from user space by adding
- an entry to the AFU's resource handle table. The index of the entry
- is treated as a resource handle that is returned to the user. The
- user is then able to use the handle to reference the LUN during I/O.
- By default, the virtual LUN is created with a size of 0. The user
- would need to use the DK_CXLFLASH_VLUN_RESIZE ioctl to adjust the grow
- the virtual LUN to a desired size. To avoid having to perform this
- resize for the initial creation of the virtual LUN, the user has the
- option of specifying a size as part of the DK_CXLFLASH_USER_VIRTUAL
- ioctl, such that when success is returned to the user, the
- resource handle that is provided is already referencing provisioned
- storage. This is reflected by the last LBA being a non-zero value.
- DK_CXLFLASH_VLUN_RESIZE
- -----------------------
- This ioctl is responsible for resizing a previously created virtual
- LUN and will fail if invoked upon a LUN that is not in virtual
- mode. Upon success, an updated last LBA is returned to the user
- indicating the new size of the virtual LUN associated with the
- resource handle.
- The partitioning of virtual LUNs is jointly mediated by the cxlflash
- driver and the AFU. An allocation table is kept for each LUN that is
- operating in the virtual mode and used to program a LUN translation
- table that the AFU references when provided with a resource handle.
- DK_CXLFLASH_RELEASE
- -------------------
- This ioctl is responsible for releasing a previously obtained
- reference to either a physical or virtual LUN. This can be
- thought of as the inverse of the DK_CXLFLASH_USER_DIRECT or
- DK_CXLFLASH_USER_VIRTUAL ioctls. Upon success, the resource handle
- is no longer valid and the entry in the resource handle table is
- made available to be used again.
- As part of the release process for virtual LUNs, the virtual LUN
- is first resized to 0 to clear out and free the translation tables
- associated with the virtual LUN reference.
- DK_CXLFLASH_DETACH
- ------------------
- This ioctl is responsible for unregistering a context with the
- cxlflash driver and release outstanding resources that were
- not explicitly released via the DK_CXLFLASH_RELEASE ioctl. Upon
- success, all "tokens" which had been provided to the user from the
- DK_CXLFLASH_ATTACH onward are no longer valid.
- DK_CXLFLASH_VLUN_CLONE
- ----------------------
- This ioctl is responsible for cloning a previously created
- context to a more recently created context. It exists solely to
- support maintaining user space access to storage after a process
- forks. Upon success, the child process (which invoked the ioctl)
- will have access to the same LUNs via the same resource handle(s)
- and fd2 as the parent, but under a different context.
- Context sharing across processes is not supported with CXL and
- therefore each fork must be met with establishing a new context
- for the child process. This ioctl simplifies the state management
- and playback required by a user in such a scenario. When a process
- forks, child process can clone the parents context by first creating
- a context (via DK_CXLFLASH_ATTACH) and then using this ioctl to
- perform the clone from the parent to the child.
- The clone itself is fairly simple. The resource handle and lun
- translation tables are copied from the parent context to the child's
- and then synced with the AFU.
- DK_CXLFLASH_VERIFY
- ------------------
- This ioctl is used to detect various changes such as the capacity of
- the disk changing, the number of LUNs visible changing, etc. In cases
- where the changes affect the application (such as a LUN resize), the
- cxlflash driver will report the changed state to the application.
- The user calls in when they want to validate that a LUN hasn't been
- changed in response to a check condition. As the user is operating out
- of band from the kernel, they will see these types of events without
- the kernel's knowledge. When encountered, the user's architected
- behavior is to call in to this ioctl, indicating what they want to
- verify and passing along any appropriate information. For now, only
- verifying a LUN change (ie: size different) with sense data is
- supported.
- DK_CXLFLASH_RECOVER_AFU
- -----------------------
- This ioctl is used to drive recovery (if such an action is warranted)
- of a specified user context. Any state associated with the user context
- is re-established upon successful recovery.
- User contexts are put into an error condition when the device needs to
- be reset or is terminating. Users are notified of this error condition
- by seeing all 0xF's on an MMIO read. Upon encountering this, the
- architected behavior for a user is to call into this ioctl to recover
- their context. A user may also call into this ioctl at any time to
- check if the device is operating normally. If a failure is returned
- from this ioctl, the user is expected to gracefully clean up their
- context via release/detach ioctls. Until they do, the context they
- hold is not relinquished. The user may also optionally exit the process
- at which time the context/resources they held will be freed as part of
- the release fop.
- DK_CXLFLASH_MANAGE_LUN
- ----------------------
- This ioctl is used to switch a LUN from a mode where it is available
- for file-system access (legacy), to a mode where it is set aside for
- exclusive user space access (superpipe). In case a LUN is visible
- across multiple ports and adapters, this ioctl is used to uniquely
- identify each LUN by its World Wide Node Name (WWNN).
|