dma.h 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376
  1. /*
  2. * include/asm-alpha/dma.h
  3. *
  4. * This is essentially the same as the i386 DMA stuff, as the AlphaPCs
  5. * use ISA-compatible dma. The only extension is support for high-page
  6. * registers that allow to set the top 8 bits of a 32-bit DMA address.
  7. * This register should be written last when setting up a DMA address
  8. * as this will also enable DMA across 64 KB boundaries.
  9. */
  10. /* $Id: dma.h,v 1.7 1992/12/14 00:29:34 root Exp root $
  11. * linux/include/asm/dma.h: Defines for using and allocating dma channels.
  12. * Written by Hennus Bergman, 1992.
  13. * High DMA channel support & info by Hannu Savolainen
  14. * and John Boyd, Nov. 1992.
  15. */
  16. #ifndef _ASM_DMA_H
  17. #define _ASM_DMA_H
  18. #include <linux/spinlock.h>
  19. #include <asm/io.h>
  20. #define dma_outb outb
  21. #define dma_inb inb
  22. /*
  23. * NOTES about DMA transfers:
  24. *
  25. * controller 1: channels 0-3, byte operations, ports 00-1F
  26. * controller 2: channels 4-7, word operations, ports C0-DF
  27. *
  28. * - ALL registers are 8 bits only, regardless of transfer size
  29. * - channel 4 is not used - cascades 1 into 2.
  30. * - channels 0-3 are byte - addresses/counts are for physical bytes
  31. * - channels 5-7 are word - addresses/counts are for physical words
  32. * - transfers must not cross physical 64K (0-3) or 128K (5-7) boundaries
  33. * - transfer count loaded to registers is 1 less than actual count
  34. * - controller 2 offsets are all even (2x offsets for controller 1)
  35. * - page registers for 5-7 don't use data bit 0, represent 128K pages
  36. * - page registers for 0-3 use bit 0, represent 64K pages
  37. *
  38. * DMA transfers are limited to the lower 16MB of _physical_ memory.
  39. * Note that addresses loaded into registers must be _physical_ addresses,
  40. * not logical addresses (which may differ if paging is active).
  41. *
  42. * Address mapping for channels 0-3:
  43. *
  44. * A23 ... A16 A15 ... A8 A7 ... A0 (Physical addresses)
  45. * | ... | | ... | | ... |
  46. * | ... | | ... | | ... |
  47. * | ... | | ... | | ... |
  48. * P7 ... P0 A7 ... A0 A7 ... A0
  49. * | Page | Addr MSB | Addr LSB | (DMA registers)
  50. *
  51. * Address mapping for channels 5-7:
  52. *
  53. * A23 ... A17 A16 A15 ... A9 A8 A7 ... A1 A0 (Physical addresses)
  54. * | ... | \ \ ... \ \ \ ... \ \
  55. * | ... | \ \ ... \ \ \ ... \ (not used)
  56. * | ... | \ \ ... \ \ \ ... \
  57. * P7 ... P1 (0) A7 A6 ... A0 A7 A6 ... A0
  58. * | Page | Addr MSB | Addr LSB | (DMA registers)
  59. *
  60. * Again, channels 5-7 transfer _physical_ words (16 bits), so addresses
  61. * and counts _must_ be word-aligned (the lowest address bit is _ignored_ at
  62. * the hardware level, so odd-byte transfers aren't possible).
  63. *
  64. * Transfer count (_not # bytes_) is limited to 64K, represented as actual
  65. * count - 1 : 64K => 0xFFFF, 1 => 0x0000. Thus, count is always 1 or more,
  66. * and up to 128K bytes may be transferred on channels 5-7 in one operation.
  67. *
  68. */
  69. #define MAX_DMA_CHANNELS 8
  70. /*
  71. ISA DMA limitations on Alpha platforms,
  72. These may be due to SIO (PCI<->ISA bridge) chipset limitation, or
  73. just a wiring limit.
  74. */
  75. /* The maximum address for ISA DMA transfer on Alpha XL, due to an
  76. hardware SIO limitation, is 64MB.
  77. */
  78. #define ALPHA_XL_MAX_ISA_DMA_ADDRESS 0x04000000UL
  79. /* The maximum address for ISA DMA transfer on RUFFIAN,
  80. due to an hardware SIO limitation, is 16MB.
  81. */
  82. #define ALPHA_RUFFIAN_MAX_ISA_DMA_ADDRESS 0x01000000UL
  83. /* The maximum address for ISA DMA transfer on SABLE, and some ALCORs,
  84. due to an hardware SIO chip limitation, is 2GB.
  85. */
  86. #define ALPHA_SABLE_MAX_ISA_DMA_ADDRESS 0x80000000UL
  87. #define ALPHA_ALCOR_MAX_ISA_DMA_ADDRESS 0x80000000UL
  88. /*
  89. Maximum address for all the others is the complete 32-bit bus
  90. address space.
  91. */
  92. #define ALPHA_MAX_ISA_DMA_ADDRESS 0x100000000UL
  93. #ifdef CONFIG_ALPHA_GENERIC
  94. # define MAX_ISA_DMA_ADDRESS (alpha_mv.max_isa_dma_address)
  95. #else
  96. # if defined(CONFIG_ALPHA_XL)
  97. # define MAX_ISA_DMA_ADDRESS ALPHA_XL_MAX_ISA_DMA_ADDRESS
  98. # elif defined(CONFIG_ALPHA_RUFFIAN)
  99. # define MAX_ISA_DMA_ADDRESS ALPHA_RUFFIAN_MAX_ISA_DMA_ADDRESS
  100. # elif defined(CONFIG_ALPHA_SABLE)
  101. # define MAX_ISA_DMA_ADDRESS ALPHA_SABLE_MAX_ISA_DMA_ADDRESS
  102. # elif defined(CONFIG_ALPHA_ALCOR)
  103. # define MAX_ISA_DMA_ADDRESS ALPHA_ALCOR_MAX_ISA_DMA_ADDRESS
  104. # else
  105. # define MAX_ISA_DMA_ADDRESS ALPHA_MAX_ISA_DMA_ADDRESS
  106. # endif
  107. #endif
  108. /* If we have the iommu, we don't have any address limitations on DMA.
  109. Otherwise (Nautilus, RX164), we have to have 0-16 Mb DMA zone
  110. like i386. */
  111. #define MAX_DMA_ADDRESS (alpha_mv.mv_pci_tbi ? \
  112. ~0UL : IDENT_ADDR + 0x01000000)
  113. /* 8237 DMA controllers */
  114. #define IO_DMA1_BASE 0x00 /* 8 bit slave DMA, channels 0..3 */
  115. #define IO_DMA2_BASE 0xC0 /* 16 bit master DMA, ch 4(=slave input)..7 */
  116. /* DMA controller registers */
  117. #define DMA1_CMD_REG 0x08 /* command register (w) */
  118. #define DMA1_STAT_REG 0x08 /* status register (r) */
  119. #define DMA1_REQ_REG 0x09 /* request register (w) */
  120. #define DMA1_MASK_REG 0x0A /* single-channel mask (w) */
  121. #define DMA1_MODE_REG 0x0B /* mode register (w) */
  122. #define DMA1_CLEAR_FF_REG 0x0C /* clear pointer flip-flop (w) */
  123. #define DMA1_TEMP_REG 0x0D /* Temporary Register (r) */
  124. #define DMA1_RESET_REG 0x0D /* Master Clear (w) */
  125. #define DMA1_CLR_MASK_REG 0x0E /* Clear Mask */
  126. #define DMA1_MASK_ALL_REG 0x0F /* all-channels mask (w) */
  127. #define DMA1_EXT_MODE_REG (0x400 | DMA1_MODE_REG)
  128. #define DMA2_CMD_REG 0xD0 /* command register (w) */
  129. #define DMA2_STAT_REG 0xD0 /* status register (r) */
  130. #define DMA2_REQ_REG 0xD2 /* request register (w) */
  131. #define DMA2_MASK_REG 0xD4 /* single-channel mask (w) */
  132. #define DMA2_MODE_REG 0xD6 /* mode register (w) */
  133. #define DMA2_CLEAR_FF_REG 0xD8 /* clear pointer flip-flop (w) */
  134. #define DMA2_TEMP_REG 0xDA /* Temporary Register (r) */
  135. #define DMA2_RESET_REG 0xDA /* Master Clear (w) */
  136. #define DMA2_CLR_MASK_REG 0xDC /* Clear Mask */
  137. #define DMA2_MASK_ALL_REG 0xDE /* all-channels mask (w) */
  138. #define DMA2_EXT_MODE_REG (0x400 | DMA2_MODE_REG)
  139. #define DMA_ADDR_0 0x00 /* DMA address registers */
  140. #define DMA_ADDR_1 0x02
  141. #define DMA_ADDR_2 0x04
  142. #define DMA_ADDR_3 0x06
  143. #define DMA_ADDR_4 0xC0
  144. #define DMA_ADDR_5 0xC4
  145. #define DMA_ADDR_6 0xC8
  146. #define DMA_ADDR_7 0xCC
  147. #define DMA_CNT_0 0x01 /* DMA count registers */
  148. #define DMA_CNT_1 0x03
  149. #define DMA_CNT_2 0x05
  150. #define DMA_CNT_3 0x07
  151. #define DMA_CNT_4 0xC2
  152. #define DMA_CNT_5 0xC6
  153. #define DMA_CNT_6 0xCA
  154. #define DMA_CNT_7 0xCE
  155. #define DMA_PAGE_0 0x87 /* DMA page registers */
  156. #define DMA_PAGE_1 0x83
  157. #define DMA_PAGE_2 0x81
  158. #define DMA_PAGE_3 0x82
  159. #define DMA_PAGE_5 0x8B
  160. #define DMA_PAGE_6 0x89
  161. #define DMA_PAGE_7 0x8A
  162. #define DMA_HIPAGE_0 (0x400 | DMA_PAGE_0)
  163. #define DMA_HIPAGE_1 (0x400 | DMA_PAGE_1)
  164. #define DMA_HIPAGE_2 (0x400 | DMA_PAGE_2)
  165. #define DMA_HIPAGE_3 (0x400 | DMA_PAGE_3)
  166. #define DMA_HIPAGE_4 (0x400 | DMA_PAGE_4)
  167. #define DMA_HIPAGE_5 (0x400 | DMA_PAGE_5)
  168. #define DMA_HIPAGE_6 (0x400 | DMA_PAGE_6)
  169. #define DMA_HIPAGE_7 (0x400 | DMA_PAGE_7)
  170. #define DMA_MODE_READ 0x44 /* I/O to memory, no autoinit, increment, single mode */
  171. #define DMA_MODE_WRITE 0x48 /* memory to I/O, no autoinit, increment, single mode */
  172. #define DMA_MODE_CASCADE 0xC0 /* pass thru DREQ->HRQ, DACK<-HLDA only */
  173. #define DMA_AUTOINIT 0x10
  174. extern spinlock_t dma_spin_lock;
  175. static __inline__ unsigned long claim_dma_lock(void)
  176. {
  177. unsigned long flags;
  178. spin_lock_irqsave(&dma_spin_lock, flags);
  179. return flags;
  180. }
  181. static __inline__ void release_dma_lock(unsigned long flags)
  182. {
  183. spin_unlock_irqrestore(&dma_spin_lock, flags);
  184. }
  185. /* enable/disable a specific DMA channel */
  186. static __inline__ void enable_dma(unsigned int dmanr)
  187. {
  188. if (dmanr<=3)
  189. dma_outb(dmanr, DMA1_MASK_REG);
  190. else
  191. dma_outb(dmanr & 3, DMA2_MASK_REG);
  192. }
  193. static __inline__ void disable_dma(unsigned int dmanr)
  194. {
  195. if (dmanr<=3)
  196. dma_outb(dmanr | 4, DMA1_MASK_REG);
  197. else
  198. dma_outb((dmanr & 3) | 4, DMA2_MASK_REG);
  199. }
  200. /* Clear the 'DMA Pointer Flip Flop'.
  201. * Write 0 for LSB/MSB, 1 for MSB/LSB access.
  202. * Use this once to initialize the FF to a known state.
  203. * After that, keep track of it. :-)
  204. * --- In order to do that, the DMA routines below should ---
  205. * --- only be used while interrupts are disabled! ---
  206. */
  207. static __inline__ void clear_dma_ff(unsigned int dmanr)
  208. {
  209. if (dmanr<=3)
  210. dma_outb(0, DMA1_CLEAR_FF_REG);
  211. else
  212. dma_outb(0, DMA2_CLEAR_FF_REG);
  213. }
  214. /* set mode (above) for a specific DMA channel */
  215. static __inline__ void set_dma_mode(unsigned int dmanr, char mode)
  216. {
  217. if (dmanr<=3)
  218. dma_outb(mode | dmanr, DMA1_MODE_REG);
  219. else
  220. dma_outb(mode | (dmanr&3), DMA2_MODE_REG);
  221. }
  222. /* set extended mode for a specific DMA channel */
  223. static __inline__ void set_dma_ext_mode(unsigned int dmanr, char ext_mode)
  224. {
  225. if (dmanr<=3)
  226. dma_outb(ext_mode | dmanr, DMA1_EXT_MODE_REG);
  227. else
  228. dma_outb(ext_mode | (dmanr&3), DMA2_EXT_MODE_REG);
  229. }
  230. /* Set only the page register bits of the transfer address.
  231. * This is used for successive transfers when we know the contents of
  232. * the lower 16 bits of the DMA current address register.
  233. */
  234. static __inline__ void set_dma_page(unsigned int dmanr, unsigned int pagenr)
  235. {
  236. switch(dmanr) {
  237. case 0:
  238. dma_outb(pagenr, DMA_PAGE_0);
  239. dma_outb((pagenr >> 8), DMA_HIPAGE_0);
  240. break;
  241. case 1:
  242. dma_outb(pagenr, DMA_PAGE_1);
  243. dma_outb((pagenr >> 8), DMA_HIPAGE_1);
  244. break;
  245. case 2:
  246. dma_outb(pagenr, DMA_PAGE_2);
  247. dma_outb((pagenr >> 8), DMA_HIPAGE_2);
  248. break;
  249. case 3:
  250. dma_outb(pagenr, DMA_PAGE_3);
  251. dma_outb((pagenr >> 8), DMA_HIPAGE_3);
  252. break;
  253. case 5:
  254. dma_outb(pagenr & 0xfe, DMA_PAGE_5);
  255. dma_outb((pagenr >> 8), DMA_HIPAGE_5);
  256. break;
  257. case 6:
  258. dma_outb(pagenr & 0xfe, DMA_PAGE_6);
  259. dma_outb((pagenr >> 8), DMA_HIPAGE_6);
  260. break;
  261. case 7:
  262. dma_outb(pagenr & 0xfe, DMA_PAGE_7);
  263. dma_outb((pagenr >> 8), DMA_HIPAGE_7);
  264. break;
  265. }
  266. }
  267. /* Set transfer address & page bits for specific DMA channel.
  268. * Assumes dma flipflop is clear.
  269. */
  270. static __inline__ void set_dma_addr(unsigned int dmanr, unsigned int a)
  271. {
  272. if (dmanr <= 3) {
  273. dma_outb( a & 0xff, ((dmanr&3)<<1) + IO_DMA1_BASE );
  274. dma_outb( (a>>8) & 0xff, ((dmanr&3)<<1) + IO_DMA1_BASE );
  275. } else {
  276. dma_outb( (a>>1) & 0xff, ((dmanr&3)<<2) + IO_DMA2_BASE );
  277. dma_outb( (a>>9) & 0xff, ((dmanr&3)<<2) + IO_DMA2_BASE );
  278. }
  279. set_dma_page(dmanr, a>>16); /* set hipage last to enable 32-bit mode */
  280. }
  281. /* Set transfer size (max 64k for DMA1..3, 128k for DMA5..7) for
  282. * a specific DMA channel.
  283. * You must ensure the parameters are valid.
  284. * NOTE: from a manual: "the number of transfers is one more
  285. * than the initial word count"! This is taken into account.
  286. * Assumes dma flip-flop is clear.
  287. * NOTE 2: "count" represents _bytes_ and must be even for channels 5-7.
  288. */
  289. static __inline__ void set_dma_count(unsigned int dmanr, unsigned int count)
  290. {
  291. count--;
  292. if (dmanr <= 3) {
  293. dma_outb( count & 0xff, ((dmanr&3)<<1) + 1 + IO_DMA1_BASE );
  294. dma_outb( (count>>8) & 0xff, ((dmanr&3)<<1) + 1 + IO_DMA1_BASE );
  295. } else {
  296. dma_outb( (count>>1) & 0xff, ((dmanr&3)<<2) + 2 + IO_DMA2_BASE );
  297. dma_outb( (count>>9) & 0xff, ((dmanr&3)<<2) + 2 + IO_DMA2_BASE );
  298. }
  299. }
  300. /* Get DMA residue count. After a DMA transfer, this
  301. * should return zero. Reading this while a DMA transfer is
  302. * still in progress will return unpredictable results.
  303. * If called before the channel has been used, it may return 1.
  304. * Otherwise, it returns the number of _bytes_ left to transfer.
  305. *
  306. * Assumes DMA flip-flop is clear.
  307. */
  308. static __inline__ int get_dma_residue(unsigned int dmanr)
  309. {
  310. unsigned int io_port = (dmanr<=3)? ((dmanr&3)<<1) + 1 + IO_DMA1_BASE
  311. : ((dmanr&3)<<2) + 2 + IO_DMA2_BASE;
  312. /* using short to get 16-bit wrap around */
  313. unsigned short count;
  314. count = 1 + dma_inb(io_port);
  315. count += dma_inb(io_port) << 8;
  316. return (dmanr<=3)? count : (count<<1);
  317. }
  318. /* These are in kernel/dma.c: */
  319. extern int request_dma(unsigned int dmanr, const char * device_id); /* reserve a DMA channel */
  320. extern void free_dma(unsigned int dmanr); /* release it again */
  321. #define KERNEL_HAVE_CHECK_DMA
  322. extern int check_dma(unsigned int dmanr);
  323. /* From PCI */
  324. #ifdef CONFIG_PCI
  325. extern int isa_dma_bridge_buggy;
  326. #else
  327. #define isa_dma_bridge_buggy (0)
  328. #endif
  329. #endif /* _ASM_DMA_H */