ev6-csum_ipv6_magic.S 5.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150
  1. /*
  2. * arch/alpha/lib/ev6-csum_ipv6_magic.S
  3. * 21264 version contributed by Rick Gorton <rick.gorton@alpha-processor.com>
  4. *
  5. * unsigned short csum_ipv6_magic(struct in6_addr *saddr,
  6. * struct in6_addr *daddr,
  7. * __u32 len,
  8. * unsigned short proto,
  9. * unsigned int csum);
  10. *
  11. * Much of the information about 21264 scheduling/coding comes from:
  12. * Compiler Writer's Guide for the Alpha 21264
  13. * abbreviated as 'CWG' in other comments here
  14. * ftp.digital.com/pub/Digital/info/semiconductor/literature/dsc-library.html
  15. * Scheduling notation:
  16. * E - either cluster
  17. * U - upper subcluster; U0 - subcluster U0; U1 - subcluster U1
  18. * L - lower subcluster; L0 - subcluster L0; L1 - subcluster L1
  19. * Try not to change the actual algorithm if possible for consistency.
  20. * Determining actual stalls (other than slotting) doesn't appear to be easy to do.
  21. *
  22. * unsigned short csum_ipv6_magic(struct in6_addr *saddr,
  23. * struct in6_addr *daddr,
  24. * __u32 len,
  25. * unsigned short proto,
  26. * unsigned int csum);
  27. *
  28. * Swap <proto> (takes form 0xaabb)
  29. * Then shift it left by 48, so result is:
  30. * 0xbbaa0000 00000000
  31. * Then turn it back into a sign extended 32-bit item
  32. * 0xbbaa0000
  33. *
  34. * Swap <len> (an unsigned int) using Mike Burrows' 7-instruction sequence
  35. * (we can't hide the 3-cycle latency of the unpkbw in the 6-instruction sequence)
  36. * Assume input takes form 0xAABBCCDD
  37. *
  38. * Finally, original 'folding' approach is to split the long into 4 unsigned shorts
  39. * add 4 ushorts, resulting in ushort/carry
  40. * add carry bits + ushort --> ushort
  41. * add carry bits + ushort --> ushort (in case the carry results in an overflow)
  42. * Truncate to a ushort. (took 13 instructions)
  43. * From doing some testing, using the approach in checksum.c:from64to16()
  44. * results in the same outcome:
  45. * split into 2 uints, add those, generating a ulong
  46. * add the 3 low ushorts together, generating a uint
  47. * a final add of the 2 lower ushorts
  48. * truncating the result.
  49. *
  50. * Misalignment handling added by Ivan Kokshaysky <ink@jurassic.park.msu.ru>
  51. * The cost is 16 instructions (~8 cycles), including two extra loads which
  52. * may cause additional delay in rare cases (load-load replay traps).
  53. */
  54. .globl csum_ipv6_magic
  55. .align 4
  56. .ent csum_ipv6_magic
  57. .frame $30,0,$26,0
  58. csum_ipv6_magic:
  59. .prologue 0
  60. ldq_u $0,0($16) # L : Latency: 3
  61. inslh $18,7,$4 # U : 0000000000AABBCC
  62. ldq_u $1,8($16) # L : Latency: 3
  63. sll $19,8,$7 # U : U L U L : 0x00000000 00aabb00
  64. and $16,7,$6 # E : src misalignment
  65. ldq_u $5,15($16) # L : Latency: 3
  66. zapnot $20,15,$20 # U : zero extend incoming csum
  67. ldq_u $2,0($17) # L : U L U L : Latency: 3
  68. extql $0,$6,$0 # U :
  69. extqh $1,$6,$22 # U :
  70. ldq_u $3,8($17) # L : Latency: 3
  71. sll $19,24,$19 # U : U U L U : 0x000000aa bb000000
  72. cmoveq $6,$31,$22 # E : src aligned?
  73. ldq_u $23,15($17) # L : Latency: 3
  74. inswl $18,3,$18 # U : 000000CCDD000000
  75. addl $19,$7,$19 # E : U L U L : <sign bits>bbaabb00
  76. or $0,$22,$0 # E : 1st src word complete
  77. extql $1,$6,$1 # U :
  78. or $18,$4,$18 # E : 000000CCDDAABBCC
  79. extqh $5,$6,$5 # U : L U L U
  80. and $17,7,$6 # E : dst misalignment
  81. extql $2,$6,$2 # U :
  82. or $1,$5,$1 # E : 2nd src word complete
  83. extqh $3,$6,$22 # U : L U L U :
  84. cmoveq $6,$31,$22 # E : dst aligned?
  85. extql $3,$6,$3 # U :
  86. addq $20,$0,$20 # E : begin summing the words
  87. extqh $23,$6,$23 # U : L U L U :
  88. srl $18,16,$4 # U : 0000000000CCDDAA
  89. or $2,$22,$2 # E : 1st dst word complete
  90. zap $19,0x3,$19 # U : <sign bits>bbaa0000
  91. or $3,$23,$3 # E : U L U L : 2nd dst word complete
  92. cmpult $20,$0,$0 # E :
  93. addq $20,$1,$20 # E :
  94. zapnot $18,0xa,$18 # U : 00000000DD00BB00
  95. zap $4,0xa,$4 # U : U U L L : 0000000000CC00AA
  96. or $18,$4,$18 # E : 00000000DDCCBBAA
  97. nop # E :
  98. cmpult $20,$1,$1 # E :
  99. addq $20,$2,$20 # E : U L U L
  100. cmpult $20,$2,$2 # E :
  101. addq $20,$3,$20 # E :
  102. cmpult $20,$3,$3 # E : (1 cycle stall on $20)
  103. addq $20,$18,$20 # E : U L U L (1 cycle stall on $20)
  104. cmpult $20,$18,$18 # E :
  105. addq $20,$19,$20 # E : (1 cycle stall on $20)
  106. addq $0,$1,$0 # E : merge the carries back into the csum
  107. addq $2,$3,$2 # E :
  108. cmpult $20,$19,$19 # E :
  109. addq $18,$19,$18 # E : (1 cycle stall on $19)
  110. addq $0,$2,$0 # E :
  111. addq $20,$18,$20 # E : U L U L :
  112. /* (1 cycle stall on $18, 2 cycles on $20) */
  113. addq $0,$20,$0 # E :
  114. zapnot $0,15,$1 # U : Start folding output (1 cycle stall on $0)
  115. nop # E :
  116. srl $0,32,$0 # U : U L U L : (1 cycle stall on $0)
  117. addq $1,$0,$1 # E : Finished generating ulong
  118. extwl $1,2,$2 # U : ushort[1] (1 cycle stall on $1)
  119. zapnot $1,3,$0 # U : ushort[0] (1 cycle stall on $1)
  120. extwl $1,4,$1 # U : ushort[2] (1 cycle stall on $1)
  121. addq $0,$2,$0 # E
  122. addq $0,$1,$3 # E : Finished generating uint
  123. /* (1 cycle stall on $0) */
  124. extwl $3,2,$1 # U : ushort[1] (1 cycle stall on $3)
  125. nop # E : L U L U
  126. addq $1,$3,$0 # E : Final carry
  127. not $0,$4 # E : complement (1 cycle stall on $0)
  128. zapnot $4,3,$0 # U : clear upper garbage bits
  129. /* (1 cycle stall on $4) */
  130. ret # L0 : L U L U
  131. .end csum_ipv6_magic