123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347 |
- /*
- * Copyright (C) 2004-2006 Atmel Corporation
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License version 2 as
- * published by the Free Software Foundation.
- */
- #ifndef __ASM_AVR32_PGTABLE_H
- #define __ASM_AVR32_PGTABLE_H
- #include <asm/addrspace.h>
- #ifndef __ASSEMBLY__
- #include <linux/sched.h>
- #endif /* !__ASSEMBLY__ */
- /*
- * Use two-level page tables just as the i386 (without PAE)
- */
- #include <asm/pgtable-2level.h>
- /*
- * The following code might need some cleanup when the values are
- * final...
- */
- #define PMD_SIZE (1UL << PMD_SHIFT)
- #define PMD_MASK (~(PMD_SIZE-1))
- #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
- #define PGDIR_MASK (~(PGDIR_SIZE-1))
- #define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE)
- #define FIRST_USER_ADDRESS 0UL
- #ifndef __ASSEMBLY__
- extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
- extern void paging_init(void);
- /*
- * ZERO_PAGE is a global shared page that is always zero: used for
- * zero-mapped memory areas etc.
- */
- extern struct page *empty_zero_page;
- #define ZERO_PAGE(vaddr) (empty_zero_page)
- /*
- * Just any arbitrary offset to the start of the vmalloc VM area: the
- * current 8 MiB value just means that there will be a 8 MiB "hole"
- * after the uncached physical memory (P2 segment) until the vmalloc
- * area starts. That means that any out-of-bounds memory accesses will
- * hopefully be caught; we don't know if the end of the P1/P2 segments
- * are actually used for anything, but it is anyway safer to let the
- * MMU catch these kinds of errors than to rely on the memory bus.
- *
- * A "hole" of the same size is added to the end of the P3 segment as
- * well. It might seem wasteful to use 16 MiB of virtual address space
- * on this, but we do have 512 MiB of it...
- *
- * The vmalloc() routines leave a hole of 4 KiB between each vmalloced
- * area for the same reason.
- */
- #define VMALLOC_OFFSET (8 * 1024 * 1024)
- #define VMALLOC_START (P3SEG + VMALLOC_OFFSET)
- #define VMALLOC_END (P4SEG - VMALLOC_OFFSET)
- #endif /* !__ASSEMBLY__ */
- /*
- * Page flags. Some of these flags are not directly supported by
- * hardware, so we have to emulate them.
- */
- #define _TLBEHI_BIT_VALID 9
- #define _TLBEHI_VALID (1 << _TLBEHI_BIT_VALID)
- #define _PAGE_BIT_WT 0 /* W-bit : write-through */
- #define _PAGE_BIT_DIRTY 1 /* D-bit : page changed */
- #define _PAGE_BIT_SZ0 2 /* SZ0-bit : Size of page */
- #define _PAGE_BIT_SZ1 3 /* SZ1-bit : Size of page */
- #define _PAGE_BIT_EXECUTE 4 /* X-bit : execute access allowed */
- #define _PAGE_BIT_RW 5 /* AP0-bit : write access allowed */
- #define _PAGE_BIT_USER 6 /* AP1-bit : user space access allowed */
- #define _PAGE_BIT_BUFFER 7 /* B-bit : bufferable */
- #define _PAGE_BIT_GLOBAL 8 /* G-bit : global (ignore ASID) */
- #define _PAGE_BIT_CACHABLE 9 /* C-bit : cachable */
- /* If we drop support for 1K pages, we get two extra bits */
- #define _PAGE_BIT_PRESENT 10
- #define _PAGE_BIT_ACCESSED 11 /* software: page was accessed */
- #define _PAGE_WT (1 << _PAGE_BIT_WT)
- #define _PAGE_DIRTY (1 << _PAGE_BIT_DIRTY)
- #define _PAGE_EXECUTE (1 << _PAGE_BIT_EXECUTE)
- #define _PAGE_RW (1 << _PAGE_BIT_RW)
- #define _PAGE_USER (1 << _PAGE_BIT_USER)
- #define _PAGE_BUFFER (1 << _PAGE_BIT_BUFFER)
- #define _PAGE_GLOBAL (1 << _PAGE_BIT_GLOBAL)
- #define _PAGE_CACHABLE (1 << _PAGE_BIT_CACHABLE)
- /* Software flags */
- #define _PAGE_ACCESSED (1 << _PAGE_BIT_ACCESSED)
- #define _PAGE_PRESENT (1 << _PAGE_BIT_PRESENT)
- /*
- * Page types, i.e. sizes. _PAGE_TYPE_NONE corresponds to what is
- * usually called _PAGE_PROTNONE on other architectures.
- *
- * XXX: Find out if _PAGE_PROTNONE is equivalent with !_PAGE_USER. If
- * so, we can encode all possible page sizes (although we can't really
- * support 1K pages anyway due to the _PAGE_PRESENT and _PAGE_ACCESSED
- * bits)
- *
- */
- #define _PAGE_TYPE_MASK ((1 << _PAGE_BIT_SZ0) | (1 << _PAGE_BIT_SZ1))
- #define _PAGE_TYPE_NONE (0 << _PAGE_BIT_SZ0)
- #define _PAGE_TYPE_SMALL (1 << _PAGE_BIT_SZ0)
- #define _PAGE_TYPE_MEDIUM (2 << _PAGE_BIT_SZ0)
- #define _PAGE_TYPE_LARGE (3 << _PAGE_BIT_SZ0)
- /*
- * Mask which drop software flags. We currently can't handle more than
- * 512 MiB of physical memory, so we can use bits 29-31 for other
- * stuff. With a fixed 4K page size, we can use bits 10-11 as well as
- * bits 2-3 (SZ)
- */
- #define _PAGE_FLAGS_HARDWARE_MASK 0xfffff3ff
- #define _PAGE_FLAGS_CACHE_MASK (_PAGE_CACHABLE | _PAGE_BUFFER | _PAGE_WT)
- /* Flags that may be modified by software */
- #define _PAGE_CHG_MASK (PTE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY \
- | _PAGE_FLAGS_CACHE_MASK)
- #define _PAGE_FLAGS_READ (_PAGE_CACHABLE | _PAGE_BUFFER)
- #define _PAGE_FLAGS_WRITE (_PAGE_FLAGS_READ | _PAGE_RW | _PAGE_DIRTY)
- #define _PAGE_NORMAL(x) __pgprot((x) | _PAGE_PRESENT | _PAGE_TYPE_SMALL \
- | _PAGE_ACCESSED)
- #define PAGE_NONE (_PAGE_ACCESSED | _PAGE_TYPE_NONE)
- #define PAGE_READ (_PAGE_FLAGS_READ | _PAGE_USER)
- #define PAGE_EXEC (_PAGE_FLAGS_READ | _PAGE_EXECUTE | _PAGE_USER)
- #define PAGE_WRITE (_PAGE_FLAGS_WRITE | _PAGE_USER)
- #define PAGE_KERNEL _PAGE_NORMAL(_PAGE_FLAGS_WRITE | _PAGE_EXECUTE | _PAGE_GLOBAL)
- #define PAGE_KERNEL_RO _PAGE_NORMAL(_PAGE_FLAGS_READ | _PAGE_EXECUTE | _PAGE_GLOBAL)
- #define _PAGE_P(x) _PAGE_NORMAL((x) & ~(_PAGE_RW | _PAGE_DIRTY))
- #define _PAGE_S(x) _PAGE_NORMAL(x)
- #define PAGE_COPY _PAGE_P(PAGE_WRITE | PAGE_READ)
- #define PAGE_SHARED _PAGE_S(PAGE_WRITE | PAGE_READ)
- #ifndef __ASSEMBLY__
- /*
- * The hardware supports flags for write- and execute access. Read is
- * always allowed if the page is loaded into the TLB, so the "-w-",
- * "--x" and "-wx" mappings are implemented as "rw-", "r-x" and "rwx",
- * respectively.
- *
- * The "---" case is handled by software; the page will simply not be
- * loaded into the TLB if the page type is _PAGE_TYPE_NONE.
- */
- #define __P000 __pgprot(PAGE_NONE)
- #define __P001 _PAGE_P(PAGE_READ)
- #define __P010 _PAGE_P(PAGE_WRITE)
- #define __P011 _PAGE_P(PAGE_WRITE | PAGE_READ)
- #define __P100 _PAGE_P(PAGE_EXEC)
- #define __P101 _PAGE_P(PAGE_EXEC | PAGE_READ)
- #define __P110 _PAGE_P(PAGE_EXEC | PAGE_WRITE)
- #define __P111 _PAGE_P(PAGE_EXEC | PAGE_WRITE | PAGE_READ)
- #define __S000 __pgprot(PAGE_NONE)
- #define __S001 _PAGE_S(PAGE_READ)
- #define __S010 _PAGE_S(PAGE_WRITE)
- #define __S011 _PAGE_S(PAGE_WRITE | PAGE_READ)
- #define __S100 _PAGE_S(PAGE_EXEC)
- #define __S101 _PAGE_S(PAGE_EXEC | PAGE_READ)
- #define __S110 _PAGE_S(PAGE_EXEC | PAGE_WRITE)
- #define __S111 _PAGE_S(PAGE_EXEC | PAGE_WRITE | PAGE_READ)
- #define pte_none(x) (!pte_val(x))
- #define pte_present(x) (pte_val(x) & _PAGE_PRESENT)
- #define pte_clear(mm,addr,xp) \
- do { \
- set_pte_at(mm, addr, xp, __pte(0)); \
- } while (0)
- /*
- * The following only work if pte_present() is true.
- * Undefined behaviour if not..
- */
- static inline int pte_write(pte_t pte)
- {
- return pte_val(pte) & _PAGE_RW;
- }
- static inline int pte_dirty(pte_t pte)
- {
- return pte_val(pte) & _PAGE_DIRTY;
- }
- static inline int pte_young(pte_t pte)
- {
- return pte_val(pte) & _PAGE_ACCESSED;
- }
- static inline int pte_special(pte_t pte)
- {
- return 0;
- }
- /* Mutator functions for PTE bits */
- static inline pte_t pte_wrprotect(pte_t pte)
- {
- set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_RW));
- return pte;
- }
- static inline pte_t pte_mkclean(pte_t pte)
- {
- set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_DIRTY));
- return pte;
- }
- static inline pte_t pte_mkold(pte_t pte)
- {
- set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_ACCESSED));
- return pte;
- }
- static inline pte_t pte_mkwrite(pte_t pte)
- {
- set_pte(&pte, __pte(pte_val(pte) | _PAGE_RW));
- return pte;
- }
- static inline pte_t pte_mkdirty(pte_t pte)
- {
- set_pte(&pte, __pte(pte_val(pte) | _PAGE_DIRTY));
- return pte;
- }
- static inline pte_t pte_mkyoung(pte_t pte)
- {
- set_pte(&pte, __pte(pte_val(pte) | _PAGE_ACCESSED));
- return pte;
- }
- static inline pte_t pte_mkspecial(pte_t pte)
- {
- return pte;
- }
- #define pmd_none(x) (!pmd_val(x))
- #define pmd_present(x) (pmd_val(x))
- static inline void pmd_clear(pmd_t *pmdp)
- {
- set_pmd(pmdp, __pmd(0));
- }
- #define pmd_bad(x) (pmd_val(x) & ~PAGE_MASK)
- /*
- * Permanent address of a page. We don't support highmem, so this is
- * trivial.
- */
- #define pages_to_mb(x) ((x) >> (20-PAGE_SHIFT))
- #define pte_page(x) (pfn_to_page(pte_pfn(x)))
- /*
- * Mark the prot value as uncacheable and unbufferable
- */
- #define pgprot_noncached(prot) \
- __pgprot(pgprot_val(prot) & ~(_PAGE_BUFFER | _PAGE_CACHABLE))
- /*
- * Mark the prot value as uncacheable but bufferable
- */
- #define pgprot_writecombine(prot) \
- __pgprot((pgprot_val(prot) & ~_PAGE_CACHABLE) | _PAGE_BUFFER)
- /*
- * Conversion functions: convert a page and protection to a page entry,
- * and a page entry and page directory to the page they refer to.
- *
- * extern pte_t mk_pte(struct page *page, pgprot_t pgprot)
- */
- #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))
- static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
- {
- set_pte(&pte, __pte((pte_val(pte) & _PAGE_CHG_MASK)
- | pgprot_val(newprot)));
- return pte;
- }
- #define page_pte(page) page_pte_prot(page, __pgprot(0))
- #define pmd_page_vaddr(pmd) pmd_val(pmd)
- #define pmd_page(pmd) (virt_to_page(pmd_val(pmd)))
- /* to find an entry in a page-table-directory. */
- #define pgd_index(address) (((address) >> PGDIR_SHIFT) \
- & (PTRS_PER_PGD - 1))
- #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
- /* to find an entry in a kernel page-table-directory */
- #define pgd_offset_k(address) pgd_offset(&init_mm, address)
- /* Find an entry in the third-level page table.. */
- #define pte_index(address) \
- ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
- #define pte_offset(dir, address) \
- ((pte_t *) pmd_page_vaddr(*(dir)) + pte_index(address))
- #define pte_offset_kernel(dir, address) \
- ((pte_t *) pmd_page_vaddr(*(dir)) + pte_index(address))
- #define pte_offset_map(dir, address) pte_offset_kernel(dir, address)
- #define pte_unmap(pte) do { } while (0)
- struct vm_area_struct;
- extern void update_mmu_cache(struct vm_area_struct * vma,
- unsigned long address, pte_t *ptep);
- /*
- * Encode and decode a swap entry
- *
- * Constraints:
- * _PAGE_TYPE_* at bits 2-3 (for emulating _PAGE_PROTNONE)
- * _PAGE_PRESENT at bit 10
- *
- * We encode the type into bits 4-9 and offset into bits 11-31. This
- * gives us a 21 bits offset, or 2**21 * 4K = 8G usable swap space per
- * device, and 64 possible types.
- *
- * NOTE: We should set ZEROs at the position of _PAGE_PRESENT
- * and _PAGE_PROTNONE bits
- */
- #define __swp_type(x) (((x).val >> 4) & 0x3f)
- #define __swp_offset(x) ((x).val >> 11)
- #define __swp_entry(type, offset) ((swp_entry_t) { ((type) << 4) | ((offset) << 11) })
- #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
- #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
- typedef pte_t *pte_addr_t;
- #define kern_addr_valid(addr) (1)
- /* No page table caches to initialize (?) */
- #define pgtable_cache_init() do { } while(0)
- #include <asm-generic/pgtable.h>
- #endif /* !__ASSEMBLY__ */
- #endif /* __ASM_AVR32_PGTABLE_H */
|