123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257 |
- menu "Kernel hacking"
- source "lib/Kconfig.debug"
- config DEBUG_VERBOSE
- bool "Verbose fault messages"
- default y
- select PRINTK
- help
- When a program crashes due to an exception, or the kernel detects
- an internal error, the kernel can print a not so brief message
- explaining what the problem was. This debugging information is
- useful to developers and kernel hackers when tracking down problems,
- but mostly meaningless to other people. This is always helpful for
- debugging but serves no purpose on a production system.
- Most people should say N here.
- config DEBUG_MMRS
- tristate "Generate Blackfin MMR tree"
- depends on !PINCTRL
- select DEBUG_FS
- help
- Create a tree of Blackfin MMRs via the debugfs tree. If
- you enable this, you will find all MMRs laid out in the
- /sys/kernel/debug/blackfin/ directory where you can read/write
- MMRs directly from userspace. This is obviously just a debug
- feature.
- config DEBUG_HWERR
- bool "Hardware error interrupt debugging"
- depends on DEBUG_KERNEL
- help
- When enabled, the hardware error interrupt is never disabled, and
- will happen immediately when an error condition occurs. This comes
- at a slight cost in code size, but is necessary if you are getting
- hardware error interrupts and need to know where they are coming
- from.
- config EXACT_HWERR
- bool "Try to make Hardware errors exact"
- depends on DEBUG_HWERR
- help
- By default, the Blackfin hardware errors are not exact - the error
- be reported multiple cycles after the error happens. This delay
- can cause the wrong application, or even the kernel to receive a
- signal to be killed. If you are getting HW errors in your system,
- try turning this on to ensure they are at least coming from the
- proper thread.
- On production systems, it is safe (and a small optimization) to say N.
- config DEBUG_DOUBLEFAULT
- bool "Debug Double Faults"
- default n
- help
- If an exception is caused while executing code within the exception
- handler, the NMI handler, the reset vector, or in emulator mode,
- a double fault occurs. On the Blackfin, this is a unrecoverable
- event. You have two options:
- - RESET exactly when double fault occurs. The excepting
- instruction address is stored in RETX, where the next kernel
- boot will print it out.
- - Print debug message. This is much more error prone, although
- easier to handle. It is error prone since:
- - The excepting instruction is not committed.
- - All writebacks from the instruction are prevented.
- - The generated exception is not taken.
- - The EXCAUSE field is updated with an unrecoverable event
- The only way to check this is to see if EXCAUSE contains the
- unrecoverable event value at every exception return. By selecting
- this option, you are skipping over the faulting instruction, and
- hoping things stay together enough to print out a debug message.
- This does add a little kernel code, but is the only method to debug
- double faults - if unsure say "Y"
- choice
- prompt "Double Fault Failure Method"
- default DEBUG_DOUBLEFAULT_PRINT
- depends on DEBUG_DOUBLEFAULT
- config DEBUG_DOUBLEFAULT_PRINT
- bool "Print"
- config DEBUG_DOUBLEFAULT_RESET
- bool "Reset"
- endchoice
- config DEBUG_HUNT_FOR_ZERO
- bool "Catch NULL pointer reads/writes"
- default y
- help
- Say Y here to catch reads/writes to anywhere in the memory range
- from 0x0000 - 0x0FFF (the first 4k) of memory. This is useful in
- catching common programming errors such as NULL pointer dereferences.
- Misbehaving applications will be killed (generate a SEGV) while the
- kernel will trigger a panic.
- Enabling this option will take up an extra entry in CPLB table.
- Otherwise, there is no extra overhead.
- config DEBUG_BFIN_HWTRACE_ON
- bool "Turn on Blackfin's Hardware Trace"
- default y
- help
- All Blackfins include a Trace Unit which stores a history of the last
- 16 changes in program flow taken by the program sequencer. The history
- allows the user to recreate the program sequencer’s recent path. This
- can be handy when an application dies - we print out the execution
- path of how it got to the offending instruction.
- By turning this off, you may save a tiny amount of power.
- choice
- prompt "Omit loop Tracing"
- default DEBUG_BFIN_HWTRACE_COMPRESSION_OFF
- depends on DEBUG_BFIN_HWTRACE_ON
- help
- The trace buffer can be configured to omit recording of changes in
- program flow that match either the last entry or one of the last
- two entries. Omitting one of these entries from the record prevents
- the trace buffer from overflowing because of any sort of loop (for, do
- while, etc) in the program.
- Because zero-overhead Hardware loops are not recorded in the trace buffer,
- this feature can be used to prevent trace overflow from loops that
- are nested four deep.
- config DEBUG_BFIN_HWTRACE_COMPRESSION_OFF
- bool "Trace all Loops"
- help
- The trace buffer records all changes of flow
- config DEBUG_BFIN_HWTRACE_COMPRESSION_ONE
- bool "Compress single-level loops"
- help
- The trace buffer does not record single loops - helpful if trace
- is spinning on a while or do loop.
- config DEBUG_BFIN_HWTRACE_COMPRESSION_TWO
- bool "Compress two-level loops"
- help
- The trace buffer does not record loops two levels deep. Helpful if
- the trace is spinning in a nested loop
- endchoice
- config DEBUG_BFIN_HWTRACE_COMPRESSION
- int
- depends on DEBUG_BFIN_HWTRACE_ON
- default 0 if DEBUG_BFIN_HWTRACE_COMPRESSION_OFF
- default 1 if DEBUG_BFIN_HWTRACE_COMPRESSION_ONE
- default 2 if DEBUG_BFIN_HWTRACE_COMPRESSION_TWO
- config DEBUG_BFIN_HWTRACE_EXPAND
- bool "Expand Trace Buffer greater than 16 entries"
- depends on DEBUG_BFIN_HWTRACE_ON
- default n
- help
- By selecting this option, every time the 16 hardware entries in
- the Blackfin's HW Trace buffer are full, the kernel will move them
- into a software buffer, for dumping when there is an issue. This
- has a great impact on performance, (an interrupt every 16 change of
- flows) and should normally be turned off, except in those nasty
- debugging sessions
- config DEBUG_BFIN_HWTRACE_EXPAND_LEN
- int "Size of Trace buffer (in power of 2k)"
- range 0 4
- depends on DEBUG_BFIN_HWTRACE_EXPAND
- default 1
- help
- This sets the size of the software buffer that the trace information
- is kept in.
- 0 for (2^0) 1k, or 256 entries,
- 1 for (2^1) 2k, or 512 entries,
- 2 for (2^2) 4k, or 1024 entries,
- 3 for (2^3) 8k, or 2048 entries,
- 4 for (2^4) 16k, or 4096 entries
- config DEBUG_BFIN_NO_KERN_HWTRACE
- bool "Turn off hwtrace in CPLB handlers"
- depends on DEBUG_BFIN_HWTRACE_ON
- default y
- help
- The CPLB error handler contains a lot of flow changes which can
- quickly fill up the hardware trace buffer. When debugging crashes,
- the hardware trace may indicate that the problem lies in kernel
- space when in reality an application is buggy.
- Say Y here to disable hardware tracing in some known "jumpy" pieces
- of code so that the trace buffer will extend further back.
- config EARLY_PRINTK
- bool "Early printk"
- default n
- select SERIAL_CORE_CONSOLE
- help
- This option enables special console drivers which allow the kernel
- to print messages very early in the bootup process.
- This is useful for kernel debugging when your machine crashes very
- early before the console code is initialized. After enabling this
- feature, you must add "earlyprintk=serial,uart0,57600" to the
- command line (bootargs). It is safe to say Y here in all cases, as
- all of this lives in the init section and is thrown away after the
- kernel boots completely.
- config NMI_WATCHDOG
- bool "Enable NMI watchdog to help debugging lockup on SMP"
- default n
- depends on SMP
- help
- If any CPU in the system does not execute the period local timer
- interrupt for more than 5 seconds, then the NMI handler dumps debug
- information. This information can be used to debug the lockup.
- config CPLB_INFO
- bool "Display the CPLB information"
- help
- Display the CPLB information via /proc/cplbinfo.
- config ACCESS_CHECK
- bool "Check the user pointer address"
- default y
- help
- Usually the pointer transfer from user space is checked to see if its
- address is in the kernel space.
- Say N here to disable that check to improve the performance.
- config BFIN_ISRAM_SELF_TEST
- bool "isram boot self tests"
- default n
- help
- Run some self tests of the isram driver code at boot.
- config BFIN_PSEUDODBG_INSNS
- bool "Support pseudo debug instructions"
- default n
- help
- This option allows the kernel to emulate some pseudo instructions which
- allow simulator test cases to be run under Linux with no changes.
- Most people should say N here.
- config BFIN_PM_WAKEUP_TIME_BENCH
- bool "Display the total time for kernel to resume from power saving mode"
- default n
- help
- Display the total time when kernel resumes normal from standby or
- suspend to mem mode.
- endmenu
|