process.c 4.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184
  1. /*
  2. * Copyright (C) 2000-2003 Axis Communications AB
  3. *
  4. * Authors: Bjorn Wesen (bjornw@axis.com)
  5. * Mikael Starvik (starvik@axis.com)
  6. * Tobias Anderberg (tobiasa@axis.com), CRISv32 port.
  7. *
  8. * This file handles the architecture-dependent parts of process handling..
  9. */
  10. #include <linux/sched.h>
  11. #include <linux/slab.h>
  12. #include <linux/err.h>
  13. #include <linux/fs.h>
  14. #include <hwregs/reg_rdwr.h>
  15. #include <hwregs/reg_map.h>
  16. #include <hwregs/timer_defs.h>
  17. #include <hwregs/intr_vect_defs.h>
  18. #include <linux/ptrace.h>
  19. extern void stop_watchdog(void);
  20. /* We use this if we don't have any better idle routine. */
  21. void default_idle(void)
  22. {
  23. local_irq_enable();
  24. /* Halt until exception. */
  25. __asm__ volatile("halt");
  26. }
  27. /*
  28. * Free current thread data structures etc..
  29. */
  30. extern void deconfigure_bp(long pid);
  31. void exit_thread(void)
  32. {
  33. deconfigure_bp(current->pid);
  34. }
  35. /*
  36. * If the watchdog is enabled, disable interrupts and enter an infinite loop.
  37. * The watchdog will reset the CPU after 0.1s. If the watchdog isn't enabled
  38. * then enable it and wait.
  39. */
  40. extern void arch_enable_nmi(void);
  41. void
  42. hard_reset_now(void)
  43. {
  44. /*
  45. * Don't declare this variable elsewhere. We don't want any other
  46. * code to know about it than the watchdog handler in entry.S and
  47. * this code, implementing hard reset through the watchdog.
  48. */
  49. #if defined(CONFIG_ETRAX_WATCHDOG)
  50. extern int cause_of_death;
  51. #endif
  52. printk("*** HARD RESET ***\n");
  53. local_irq_disable();
  54. #if defined(CONFIG_ETRAX_WATCHDOG)
  55. cause_of_death = 0xbedead;
  56. #else
  57. {
  58. reg_timer_rw_wd_ctrl wd_ctrl = {0};
  59. stop_watchdog();
  60. wd_ctrl.key = 16; /* Arbitrary key. */
  61. wd_ctrl.cnt = 1; /* Minimum time. */
  62. wd_ctrl.cmd = regk_timer_start;
  63. arch_enable_nmi();
  64. REG_WR(timer, regi_timer0, rw_wd_ctrl, wd_ctrl);
  65. }
  66. #endif
  67. while (1)
  68. ; /* Wait for reset. */
  69. }
  70. /*
  71. * Return saved PC of a blocked thread.
  72. */
  73. unsigned long thread_saved_pc(struct task_struct *t)
  74. {
  75. return task_pt_regs(t)->erp;
  76. }
  77. /*
  78. * Setup the child's kernel stack with a pt_regs and call switch_stack() on it.
  79. * It will be unnested during _resume and _ret_from_sys_call when the new thread
  80. * is scheduled.
  81. *
  82. * Also setup the thread switching structure which is used to keep
  83. * thread-specific data during _resumes.
  84. */
  85. extern asmlinkage void ret_from_fork(void);
  86. extern asmlinkage void ret_from_kernel_thread(void);
  87. int
  88. copy_thread(unsigned long clone_flags, unsigned long usp,
  89. unsigned long arg, struct task_struct *p)
  90. {
  91. struct pt_regs *childregs = task_pt_regs(p);
  92. struct switch_stack *swstack = ((struct switch_stack *) childregs) - 1;
  93. /*
  94. * Put the pt_regs structure at the end of the new kernel stack page and
  95. * fix it up. Note: the task_struct doubles as the kernel stack for the
  96. * task.
  97. */
  98. if (unlikely(p->flags & PF_KTHREAD)) {
  99. memset(swstack, 0,
  100. sizeof(struct switch_stack) + sizeof(struct pt_regs));
  101. swstack->r1 = usp;
  102. swstack->r2 = arg;
  103. childregs->ccs = 1 << (I_CCS_BITNR + CCS_SHIFT);
  104. swstack->return_ip = (unsigned long) ret_from_kernel_thread;
  105. p->thread.ksp = (unsigned long) swstack;
  106. p->thread.usp = 0;
  107. return 0;
  108. }
  109. *childregs = *current_pt_regs(); /* Struct copy of pt_regs. */
  110. childregs->r10 = 0; /* Child returns 0 after a fork/clone. */
  111. /* Set a new TLS ?
  112. * The TLS is in $mof because it is the 5th argument to sys_clone.
  113. */
  114. if (p->mm && (clone_flags & CLONE_SETTLS)) {
  115. task_thread_info(p)->tls = childregs->mof;
  116. }
  117. /* Put the switch stack right below the pt_regs. */
  118. /* Parameter to ret_from_sys_call. 0 is don't restart the syscall. */
  119. swstack->r9 = 0;
  120. /*
  121. * We want to return into ret_from_sys_call after the _resume.
  122. * ret_from_fork will call ret_from_sys_call.
  123. */
  124. swstack->return_ip = (unsigned long) ret_from_fork;
  125. /* Fix the user-mode and kernel-mode stackpointer. */
  126. p->thread.usp = usp ?: rdusp();
  127. p->thread.ksp = (unsigned long) swstack;
  128. return 0;
  129. }
  130. unsigned long
  131. get_wchan(struct task_struct *p)
  132. {
  133. /* TODO */
  134. return 0;
  135. }
  136. #undef last_sched
  137. #undef first_sched
  138. void show_regs(struct pt_regs * regs)
  139. {
  140. unsigned long usp = rdusp();
  141. show_regs_print_info(KERN_DEFAULT);
  142. printk("ERP: %08lx SRP: %08lx CCS: %08lx USP: %08lx MOF: %08lx\n",
  143. regs->erp, regs->srp, regs->ccs, usp, regs->mof);
  144. printk(" r0: %08lx r1: %08lx r2: %08lx r3: %08lx\n",
  145. regs->r0, regs->r1, regs->r2, regs->r3);
  146. printk(" r4: %08lx r5: %08lx r6: %08lx r7: %08lx\n",
  147. regs->r4, regs->r5, regs->r6, regs->r7);
  148. printk(" r8: %08lx r9: %08lx r10: %08lx r11: %08lx\n",
  149. regs->r8, regs->r9, regs->r10, regs->r11);
  150. printk("r12: %08lx r13: %08lx oR10: %08lx\n",
  151. regs->r12, regs->r13, regs->orig_r10);
  152. }