123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634 |
- /*
- * Memory arbiter functions. Allocates bandwidth through the
- * arbiter and sets up arbiter breakpoints.
- *
- * The algorithm first assigns slots to the clients that has specified
- * bandwidth (e.g. ethernet) and then the remaining slots are divided
- * on all the active clients.
- *
- * Copyright (c) 2004-2007 Axis Communications AB.
- *
- * The artpec-3 has two arbiters. The memory hierarchy looks like this:
- *
- *
- * CPU DMAs
- * | |
- * | |
- * -------------- ------------------
- * | foo arbiter|----| Internal memory|
- * -------------- ------------------
- * |
- * --------------
- * | L2 cache |
- * --------------
- * |
- * h264 etc |
- * | |
- * | |
- * --------------
- * | bar arbiter|
- * --------------
- * |
- * ---------
- * | SDRAM |
- * ---------
- *
- */
- #include <hwregs/reg_map.h>
- #include <hwregs/reg_rdwr.h>
- #include <hwregs/marb_foo_defs.h>
- #include <hwregs/marb_bar_defs.h>
- #include <arbiter.h>
- #include <hwregs/intr_vect.h>
- #include <linux/interrupt.h>
- #include <linux/irq.h>
- #include <linux/signal.h>
- #include <linux/errno.h>
- #include <linux/spinlock.h>
- #include <asm/io.h>
- #include <asm/irq_regs.h>
- #define D(x)
- struct crisv32_watch_entry {
- unsigned long instance;
- watch_callback *cb;
- unsigned long start;
- unsigned long end;
- int used;
- };
- #define NUMBER_OF_BP 4
- #define SDRAM_BANDWIDTH 400000000
- #define INTMEM_BANDWIDTH 400000000
- #define NBR_OF_SLOTS 64
- #define NBR_OF_REGIONS 2
- #define NBR_OF_CLIENTS 15
- #define ARBITERS 2
- #define UNASSIGNED 100
- struct arbiter {
- unsigned long instance;
- int nbr_regions;
- int nbr_clients;
- int requested_slots[NBR_OF_REGIONS][NBR_OF_CLIENTS];
- int active_clients[NBR_OF_REGIONS][NBR_OF_CLIENTS];
- };
- static struct crisv32_watch_entry watches[ARBITERS][NUMBER_OF_BP] =
- {
- {
- {regi_marb_foo_bp0},
- {regi_marb_foo_bp1},
- {regi_marb_foo_bp2},
- {regi_marb_foo_bp3}
- },
- {
- {regi_marb_bar_bp0},
- {regi_marb_bar_bp1},
- {regi_marb_bar_bp2},
- {regi_marb_bar_bp3}
- }
- };
- struct arbiter arbiters[ARBITERS] =
- {
- { /* L2 cache arbiter */
- .instance = regi_marb_foo,
- .nbr_regions = 2,
- .nbr_clients = 15
- },
- { /* DDR2 arbiter */
- .instance = regi_marb_bar,
- .nbr_regions = 1,
- .nbr_clients = 9
- }
- };
- static int max_bandwidth[NBR_OF_REGIONS] = {SDRAM_BANDWIDTH, INTMEM_BANDWIDTH};
- DEFINE_SPINLOCK(arbiter_lock);
- static irqreturn_t
- crisv32_foo_arbiter_irq(int irq, void *dev_id);
- static irqreturn_t
- crisv32_bar_arbiter_irq(int irq, void *dev_id);
- /*
- * "I'm the arbiter, I know the score.
- * From square one I'll be watching all 64."
- * (memory arbiter slots, that is)
- *
- * Or in other words:
- * Program the memory arbiter slots for "region" according to what's
- * in requested_slots[] and active_clients[], while minimizing
- * latency. A caller may pass a non-zero positive amount for
- * "unused_slots", which must then be the unallocated, remaining
- * number of slots, free to hand out to any client.
- */
- static void crisv32_arbiter_config(int arbiter, int region, int unused_slots)
- {
- int slot;
- int client;
- int interval = 0;
- /*
- * This vector corresponds to the hardware arbiter slots (see
- * the hardware documentation for semantics). We initialize
- * each slot with a suitable sentinel value outside the valid
- * range {0 .. NBR_OF_CLIENTS - 1} and replace them with
- * client indexes. Then it's fed to the hardware.
- */
- s8 val[NBR_OF_SLOTS];
- for (slot = 0; slot < NBR_OF_SLOTS; slot++)
- val[slot] = -1;
- for (client = 0; client < arbiters[arbiter].nbr_clients; client++) {
- int pos;
- /* Allocate the requested non-zero number of slots, but
- * also give clients with zero-requests one slot each
- * while stocks last. We do the latter here, in client
- * order. This makes sure zero-request clients are the
- * first to get to any spare slots, else those slots
- * could, when bandwidth is allocated close to the limit,
- * all be allocated to low-index non-zero-request clients
- * in the default-fill loop below. Another positive but
- * secondary effect is a somewhat better spread of the
- * zero-bandwidth clients in the vector, avoiding some of
- * the latency that could otherwise be caused by the
- * partitioning of non-zero-bandwidth clients at low
- * indexes and zero-bandwidth clients at high
- * indexes. (Note that this spreading can only affect the
- * unallocated bandwidth.) All the above only matters for
- * memory-intensive situations, of course.
- */
- if (!arbiters[arbiter].requested_slots[region][client]) {
- /*
- * Skip inactive clients. Also skip zero-slot
- * allocations in this pass when there are no known
- * free slots.
- */
- if (!arbiters[arbiter].active_clients[region][client] ||
- unused_slots <= 0)
- continue;
- unused_slots--;
- /* Only allocate one slot for this client. */
- interval = NBR_OF_SLOTS;
- } else
- interval = NBR_OF_SLOTS /
- arbiters[arbiter].requested_slots[region][client];
- pos = 0;
- while (pos < NBR_OF_SLOTS) {
- if (val[pos] >= 0)
- pos++;
- else {
- val[pos] = client;
- pos += interval;
- }
- }
- }
- client = 0;
- for (slot = 0; slot < NBR_OF_SLOTS; slot++) {
- /*
- * Allocate remaining slots in round-robin
- * client-number order for active clients. For this
- * pass, we ignore requested bandwidth and previous
- * allocations.
- */
- if (val[slot] < 0) {
- int first = client;
- while (!arbiters[arbiter].active_clients[region][client]) {
- client = (client + 1) %
- arbiters[arbiter].nbr_clients;
- if (client == first)
- break;
- }
- val[slot] = client;
- client = (client + 1) % arbiters[arbiter].nbr_clients;
- }
- if (arbiter == 0) {
- if (region == EXT_REGION)
- REG_WR_INT_VECT(marb_foo, regi_marb_foo,
- rw_l2_slots, slot, val[slot]);
- else if (region == INT_REGION)
- REG_WR_INT_VECT(marb_foo, regi_marb_foo,
- rw_intm_slots, slot, val[slot]);
- } else {
- REG_WR_INT_VECT(marb_bar, regi_marb_bar,
- rw_ddr2_slots, slot, val[slot]);
- }
- }
- }
- extern char _stext, _etext;
- static void crisv32_arbiter_init(void)
- {
- static int initialized;
- if (initialized)
- return;
- initialized = 1;
- /*
- * CPU caches are always set to active, but with zero
- * bandwidth allocated. It should be ok to allocate zero
- * bandwidth for the caches, because DMA for other channels
- * will supposedly finish, once their programmed amount is
- * done, and then the caches will get access according to the
- * "fixed scheme" for unclaimed slots. Though, if for some
- * use-case somewhere, there's a maximum CPU latency for
- * e.g. some interrupt, we have to start allocating specific
- * bandwidth for the CPU caches too.
- */
- arbiters[0].active_clients[EXT_REGION][11] = 1;
- arbiters[0].active_clients[EXT_REGION][12] = 1;
- crisv32_arbiter_config(0, EXT_REGION, 0);
- crisv32_arbiter_config(0, INT_REGION, 0);
- crisv32_arbiter_config(1, EXT_REGION, 0);
- if (request_irq(MEMARB_FOO_INTR_VECT, crisv32_foo_arbiter_irq,
- 0, "arbiter", NULL))
- printk(KERN_ERR "Couldn't allocate arbiter IRQ\n");
- if (request_irq(MEMARB_BAR_INTR_VECT, crisv32_bar_arbiter_irq,
- 0, "arbiter", NULL))
- printk(KERN_ERR "Couldn't allocate arbiter IRQ\n");
- #ifndef CONFIG_ETRAX_KGDB
- /* Global watch for writes to kernel text segment. */
- crisv32_arbiter_watch(virt_to_phys(&_stext), &_etext - &_stext,
- MARB_CLIENTS(arbiter_all_clients, arbiter_bar_all_clients),
- arbiter_all_write, NULL);
- #endif
- /* Set up max burst sizes by default */
- REG_WR_INT(marb_bar, regi_marb_bar, rw_h264_rd_burst, 3);
- REG_WR_INT(marb_bar, regi_marb_bar, rw_h264_wr_burst, 3);
- REG_WR_INT(marb_bar, regi_marb_bar, rw_ccd_burst, 3);
- REG_WR_INT(marb_bar, regi_marb_bar, rw_vin_wr_burst, 3);
- REG_WR_INT(marb_bar, regi_marb_bar, rw_vin_rd_burst, 3);
- REG_WR_INT(marb_bar, regi_marb_bar, rw_sclr_rd_burst, 3);
- REG_WR_INT(marb_bar, regi_marb_bar, rw_vout_burst, 3);
- REG_WR_INT(marb_bar, regi_marb_bar, rw_sclr_fifo_burst, 3);
- REG_WR_INT(marb_bar, regi_marb_bar, rw_l2cache_burst, 3);
- }
- int crisv32_arbiter_allocate_bandwidth(int client, int region,
- unsigned long bandwidth)
- {
- int i;
- int total_assigned = 0;
- int total_clients = 0;
- int req;
- int arbiter = 0;
- crisv32_arbiter_init();
- if (client & 0xffff0000) {
- arbiter = 1;
- client >>= 16;
- }
- for (i = 0; i < arbiters[arbiter].nbr_clients; i++) {
- total_assigned += arbiters[arbiter].requested_slots[region][i];
- total_clients += arbiters[arbiter].active_clients[region][i];
- }
- /* Avoid division by 0 for 0-bandwidth requests. */
- req = bandwidth == 0
- ? 0 : NBR_OF_SLOTS / (max_bandwidth[region] / bandwidth);
- /*
- * We make sure that there are enough slots only for non-zero
- * requests. Requesting 0 bandwidth *may* allocate slots,
- * though if all bandwidth is allocated, such a client won't
- * get any and will have to rely on getting memory access
- * according to the fixed scheme that's the default when one
- * of the slot-allocated clients doesn't claim their slot.
- */
- if (total_assigned + req > NBR_OF_SLOTS)
- return -ENOMEM;
- arbiters[arbiter].active_clients[region][client] = 1;
- arbiters[arbiter].requested_slots[region][client] = req;
- crisv32_arbiter_config(arbiter, region, NBR_OF_SLOTS - total_assigned);
- /* Propagate allocation from foo to bar */
- if (arbiter == 0)
- crisv32_arbiter_allocate_bandwidth(8 << 16,
- EXT_REGION, bandwidth);
- return 0;
- }
- /*
- * Main entry for bandwidth deallocation.
- *
- * Strictly speaking, for a somewhat constant set of clients where
- * each client gets a constant bandwidth and is just enabled or
- * disabled (somewhat dynamically), no action is necessary here to
- * avoid starvation for non-zero-allocation clients, as the allocated
- * slots will just be unused. However, handing out those unused slots
- * to active clients avoids needless latency if the "fixed scheme"
- * would give unclaimed slots to an eager low-index client.
- */
- void crisv32_arbiter_deallocate_bandwidth(int client, int region)
- {
- int i;
- int total_assigned = 0;
- int arbiter = 0;
- if (client & 0xffff0000)
- arbiter = 1;
- arbiters[arbiter].requested_slots[region][client] = 0;
- arbiters[arbiter].active_clients[region][client] = 0;
- for (i = 0; i < arbiters[arbiter].nbr_clients; i++)
- total_assigned += arbiters[arbiter].requested_slots[region][i];
- crisv32_arbiter_config(arbiter, region, NBR_OF_SLOTS - total_assigned);
- }
- int crisv32_arbiter_watch(unsigned long start, unsigned long size,
- unsigned long clients, unsigned long accesses,
- watch_callback *cb)
- {
- int i;
- int arbiter;
- int used[2];
- int ret = 0;
- crisv32_arbiter_init();
- if (start > 0x80000000) {
- printk(KERN_ERR "Arbiter: %lX doesn't look like a "
- "physical address", start);
- return -EFAULT;
- }
- spin_lock(&arbiter_lock);
- if (clients & 0xffff)
- used[0] = 1;
- if (clients & 0xffff0000)
- used[1] = 1;
- for (arbiter = 0; arbiter < ARBITERS; arbiter++) {
- if (!used[arbiter])
- continue;
- for (i = 0; i < NUMBER_OF_BP; i++) {
- if (!watches[arbiter][i].used) {
- unsigned intr_mask;
- if (arbiter)
- intr_mask = REG_RD_INT(marb_bar,
- regi_marb_bar, rw_intr_mask);
- else
- intr_mask = REG_RD_INT(marb_foo,
- regi_marb_foo, rw_intr_mask);
- watches[arbiter][i].used = 1;
- watches[arbiter][i].start = start;
- watches[arbiter][i].end = start + size;
- watches[arbiter][i].cb = cb;
- ret |= (i + 1) << (arbiter + 8);
- if (arbiter) {
- REG_WR_INT(marb_bar_bp,
- watches[arbiter][i].instance,
- rw_first_addr,
- watches[arbiter][i].start);
- REG_WR_INT(marb_bar_bp,
- watches[arbiter][i].instance,
- rw_last_addr,
- watches[arbiter][i].end);
- REG_WR_INT(marb_bar_bp,
- watches[arbiter][i].instance,
- rw_op, accesses);
- REG_WR_INT(marb_bar_bp,
- watches[arbiter][i].instance,
- rw_clients,
- clients & 0xffff);
- } else {
- REG_WR_INT(marb_foo_bp,
- watches[arbiter][i].instance,
- rw_first_addr,
- watches[arbiter][i].start);
- REG_WR_INT(marb_foo_bp,
- watches[arbiter][i].instance,
- rw_last_addr,
- watches[arbiter][i].end);
- REG_WR_INT(marb_foo_bp,
- watches[arbiter][i].instance,
- rw_op, accesses);
- REG_WR_INT(marb_foo_bp,
- watches[arbiter][i].instance,
- rw_clients, clients >> 16);
- }
- if (i == 0)
- intr_mask |= 1;
- else if (i == 1)
- intr_mask |= 2;
- else if (i == 2)
- intr_mask |= 4;
- else if (i == 3)
- intr_mask |= 8;
- if (arbiter)
- REG_WR_INT(marb_bar, regi_marb_bar,
- rw_intr_mask, intr_mask);
- else
- REG_WR_INT(marb_foo, regi_marb_foo,
- rw_intr_mask, intr_mask);
- spin_unlock(&arbiter_lock);
- break;
- }
- }
- }
- spin_unlock(&arbiter_lock);
- if (ret)
- return ret;
- else
- return -ENOMEM;
- }
- int crisv32_arbiter_unwatch(int id)
- {
- int arbiter;
- int intr_mask;
- crisv32_arbiter_init();
- spin_lock(&arbiter_lock);
- for (arbiter = 0; arbiter < ARBITERS; arbiter++) {
- int id2;
- if (arbiter)
- intr_mask = REG_RD_INT(marb_bar, regi_marb_bar,
- rw_intr_mask);
- else
- intr_mask = REG_RD_INT(marb_foo, regi_marb_foo,
- rw_intr_mask);
- id2 = (id & (0xff << (arbiter + 8))) >> (arbiter + 8);
- if (id2 == 0)
- continue;
- id2--;
- if ((id2 >= NUMBER_OF_BP) || (!watches[arbiter][id2].used)) {
- spin_unlock(&arbiter_lock);
- return -EINVAL;
- }
- memset(&watches[arbiter][id2], 0,
- sizeof(struct crisv32_watch_entry));
- if (id2 == 0)
- intr_mask &= ~1;
- else if (id2 == 1)
- intr_mask &= ~2;
- else if (id2 == 2)
- intr_mask &= ~4;
- else if (id2 == 3)
- intr_mask &= ~8;
- if (arbiter)
- REG_WR_INT(marb_bar, regi_marb_bar, rw_intr_mask,
- intr_mask);
- else
- REG_WR_INT(marb_foo, regi_marb_foo, rw_intr_mask,
- intr_mask);
- }
- spin_unlock(&arbiter_lock);
- return 0;
- }
- extern void show_registers(struct pt_regs *regs);
- static irqreturn_t
- crisv32_foo_arbiter_irq(int irq, void *dev_id)
- {
- reg_marb_foo_r_masked_intr masked_intr =
- REG_RD(marb_foo, regi_marb_foo, r_masked_intr);
- reg_marb_foo_bp_r_brk_clients r_clients;
- reg_marb_foo_bp_r_brk_addr r_addr;
- reg_marb_foo_bp_r_brk_op r_op;
- reg_marb_foo_bp_r_brk_first_client r_first;
- reg_marb_foo_bp_r_brk_size r_size;
- reg_marb_foo_bp_rw_ack ack = {0};
- reg_marb_foo_rw_ack_intr ack_intr = {
- .bp0 = 1, .bp1 = 1, .bp2 = 1, .bp3 = 1
- };
- struct crisv32_watch_entry *watch;
- unsigned arbiter = (unsigned)dev_id;
- masked_intr = REG_RD(marb_foo, regi_marb_foo, r_masked_intr);
- if (masked_intr.bp0)
- watch = &watches[arbiter][0];
- else if (masked_intr.bp1)
- watch = &watches[arbiter][1];
- else if (masked_intr.bp2)
- watch = &watches[arbiter][2];
- else if (masked_intr.bp3)
- watch = &watches[arbiter][3];
- else
- return IRQ_NONE;
- /* Retrieve all useful information and print it. */
- r_clients = REG_RD(marb_foo_bp, watch->instance, r_brk_clients);
- r_addr = REG_RD(marb_foo_bp, watch->instance, r_brk_addr);
- r_op = REG_RD(marb_foo_bp, watch->instance, r_brk_op);
- r_first = REG_RD(marb_foo_bp, watch->instance, r_brk_first_client);
- r_size = REG_RD(marb_foo_bp, watch->instance, r_brk_size);
- printk(KERN_DEBUG "Arbiter IRQ\n");
- printk(KERN_DEBUG "Clients %X addr %X op %X first %X size %X\n",
- REG_TYPE_CONV(int, reg_marb_foo_bp_r_brk_clients, r_clients),
- REG_TYPE_CONV(int, reg_marb_foo_bp_r_brk_addr, r_addr),
- REG_TYPE_CONV(int, reg_marb_foo_bp_r_brk_op, r_op),
- REG_TYPE_CONV(int, reg_marb_foo_bp_r_brk_first_client, r_first),
- REG_TYPE_CONV(int, reg_marb_foo_bp_r_brk_size, r_size));
- REG_WR(marb_foo_bp, watch->instance, rw_ack, ack);
- REG_WR(marb_foo, regi_marb_foo, rw_ack_intr, ack_intr);
- printk(KERN_DEBUG "IRQ occurred at %X\n", (unsigned)get_irq_regs());
- if (watch->cb)
- watch->cb();
- return IRQ_HANDLED;
- }
- static irqreturn_t
- crisv32_bar_arbiter_irq(int irq, void *dev_id)
- {
- reg_marb_bar_r_masked_intr masked_intr =
- REG_RD(marb_bar, regi_marb_bar, r_masked_intr);
- reg_marb_bar_bp_r_brk_clients r_clients;
- reg_marb_bar_bp_r_brk_addr r_addr;
- reg_marb_bar_bp_r_brk_op r_op;
- reg_marb_bar_bp_r_brk_first_client r_first;
- reg_marb_bar_bp_r_brk_size r_size;
- reg_marb_bar_bp_rw_ack ack = {0};
- reg_marb_bar_rw_ack_intr ack_intr = {
- .bp0 = 1, .bp1 = 1, .bp2 = 1, .bp3 = 1
- };
- struct crisv32_watch_entry *watch;
- unsigned arbiter = (unsigned)dev_id;
- masked_intr = REG_RD(marb_bar, regi_marb_bar, r_masked_intr);
- if (masked_intr.bp0)
- watch = &watches[arbiter][0];
- else if (masked_intr.bp1)
- watch = &watches[arbiter][1];
- else if (masked_intr.bp2)
- watch = &watches[arbiter][2];
- else if (masked_intr.bp3)
- watch = &watches[arbiter][3];
- else
- return IRQ_NONE;
- /* Retrieve all useful information and print it. */
- r_clients = REG_RD(marb_bar_bp, watch->instance, r_brk_clients);
- r_addr = REG_RD(marb_bar_bp, watch->instance, r_brk_addr);
- r_op = REG_RD(marb_bar_bp, watch->instance, r_brk_op);
- r_first = REG_RD(marb_bar_bp, watch->instance, r_brk_first_client);
- r_size = REG_RD(marb_bar_bp, watch->instance, r_brk_size);
- printk(KERN_DEBUG "Arbiter IRQ\n");
- printk(KERN_DEBUG "Clients %X addr %X op %X first %X size %X\n",
- REG_TYPE_CONV(int, reg_marb_bar_bp_r_brk_clients, r_clients),
- REG_TYPE_CONV(int, reg_marb_bar_bp_r_brk_addr, r_addr),
- REG_TYPE_CONV(int, reg_marb_bar_bp_r_brk_op, r_op),
- REG_TYPE_CONV(int, reg_marb_bar_bp_r_brk_first_client, r_first),
- REG_TYPE_CONV(int, reg_marb_bar_bp_r_brk_size, r_size));
- REG_WR(marb_bar_bp, watch->instance, rw_ack, ack);
- REG_WR(marb_bar, regi_marb_bar, rw_ack_intr, ack_intr);
- printk(KERN_DEBUG "IRQ occurred at %X\n", (unsigned)get_irq_regs()->erp);
- if (watch->cb)
- watch->cb();
- return IRQ_HANDLED;
- }
|