123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298 |
- /*
- * Bit operations for the Hexagon architecture
- *
- * Copyright (c) 2010-2011, The Linux Foundation. All rights reserved.
- *
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License version 2 and
- * only version 2 as published by the Free Software Foundation.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
- * 02110-1301, USA.
- */
- #ifndef _ASM_BITOPS_H
- #define _ASM_BITOPS_H
- #include <linux/compiler.h>
- #include <asm/byteorder.h>
- #include <asm/atomic.h>
- #include <asm/barrier.h>
- #ifdef __KERNEL__
- /*
- * The offset calculations for these are based on BITS_PER_LONG == 32
- * (i.e. I get to shift by #5-2 (32 bits per long, 4 bytes per access),
- * mask by 0x0000001F)
- *
- * Typically, R10 is clobbered for address, R11 bit nr, and R12 is temp
- */
- /**
- * test_and_clear_bit - clear a bit and return its old value
- * @nr: bit number to clear
- * @addr: pointer to memory
- */
- static inline int test_and_clear_bit(int nr, volatile void *addr)
- {
- int oldval;
- __asm__ __volatile__ (
- " {R10 = %1; R11 = asr(%2,#5); }\n"
- " {R10 += asl(R11,#2); R11 = and(%2,#0x1f)}\n"
- "1: R12 = memw_locked(R10);\n"
- " { P0 = tstbit(R12,R11); R12 = clrbit(R12,R11); }\n"
- " memw_locked(R10,P1) = R12;\n"
- " {if !P1 jump 1b; %0 = mux(P0,#1,#0);}\n"
- : "=&r" (oldval)
- : "r" (addr), "r" (nr)
- : "r10", "r11", "r12", "p0", "p1", "memory"
- );
- return oldval;
- }
- /**
- * test_and_set_bit - set a bit and return its old value
- * @nr: bit number to set
- * @addr: pointer to memory
- */
- static inline int test_and_set_bit(int nr, volatile void *addr)
- {
- int oldval;
- __asm__ __volatile__ (
- " {R10 = %1; R11 = asr(%2,#5); }\n"
- " {R10 += asl(R11,#2); R11 = and(%2,#0x1f)}\n"
- "1: R12 = memw_locked(R10);\n"
- " { P0 = tstbit(R12,R11); R12 = setbit(R12,R11); }\n"
- " memw_locked(R10,P1) = R12;\n"
- " {if !P1 jump 1b; %0 = mux(P0,#1,#0);}\n"
- : "=&r" (oldval)
- : "r" (addr), "r" (nr)
- : "r10", "r11", "r12", "p0", "p1", "memory"
- );
- return oldval;
- }
- /**
- * test_and_change_bit - toggle a bit and return its old value
- * @nr: bit number to set
- * @addr: pointer to memory
- */
- static inline int test_and_change_bit(int nr, volatile void *addr)
- {
- int oldval;
- __asm__ __volatile__ (
- " {R10 = %1; R11 = asr(%2,#5); }\n"
- " {R10 += asl(R11,#2); R11 = and(%2,#0x1f)}\n"
- "1: R12 = memw_locked(R10);\n"
- " { P0 = tstbit(R12,R11); R12 = togglebit(R12,R11); }\n"
- " memw_locked(R10,P1) = R12;\n"
- " {if !P1 jump 1b; %0 = mux(P0,#1,#0);}\n"
- : "=&r" (oldval)
- : "r" (addr), "r" (nr)
- : "r10", "r11", "r12", "p0", "p1", "memory"
- );
- return oldval;
- }
- /*
- * Atomic, but doesn't care about the return value.
- * Rewrite later to save a cycle or two.
- */
- static inline void clear_bit(int nr, volatile void *addr)
- {
- test_and_clear_bit(nr, addr);
- }
- static inline void set_bit(int nr, volatile void *addr)
- {
- test_and_set_bit(nr, addr);
- }
- static inline void change_bit(int nr, volatile void *addr)
- {
- test_and_change_bit(nr, addr);
- }
- /*
- * These are allowed to be non-atomic. In fact the generic flavors are
- * in non-atomic.h. Would it be better to use intrinsics for this?
- *
- * OK, writes in our architecture do not invalidate LL/SC, so this has to
- * be atomic, particularly for things like slab_lock and slab_unlock.
- *
- */
- static inline void __clear_bit(int nr, volatile unsigned long *addr)
- {
- test_and_clear_bit(nr, addr);
- }
- static inline void __set_bit(int nr, volatile unsigned long *addr)
- {
- test_and_set_bit(nr, addr);
- }
- static inline void __change_bit(int nr, volatile unsigned long *addr)
- {
- test_and_change_bit(nr, addr);
- }
- /* Apparently, at least some of these are allowed to be non-atomic */
- static inline int __test_and_clear_bit(int nr, volatile unsigned long *addr)
- {
- return test_and_clear_bit(nr, addr);
- }
- static inline int __test_and_set_bit(int nr, volatile unsigned long *addr)
- {
- return test_and_set_bit(nr, addr);
- }
- static inline int __test_and_change_bit(int nr, volatile unsigned long *addr)
- {
- return test_and_change_bit(nr, addr);
- }
- static inline int __test_bit(int nr, const volatile unsigned long *addr)
- {
- int retval;
- asm volatile(
- "{P0 = tstbit(%1,%2); if (P0.new) %0 = #1; if (!P0.new) %0 = #0;}\n"
- : "=&r" (retval)
- : "r" (addr[BIT_WORD(nr)]), "r" (nr % BITS_PER_LONG)
- : "p0"
- );
- return retval;
- }
- #define test_bit(nr, addr) __test_bit(nr, addr)
- /*
- * ffz - find first zero in word.
- * @word: The word to search
- *
- * Undefined if no zero exists, so code should check against ~0UL first.
- */
- static inline long ffz(int x)
- {
- int r;
- asm("%0 = ct1(%1);\n"
- : "=&r" (r)
- : "r" (x));
- return r;
- }
- /*
- * fls - find last (most-significant) bit set
- * @x: the word to search
- *
- * This is defined the same way as ffs.
- * Note fls(0) = 0, fls(1) = 1, fls(0x80000000) = 32.
- */
- static inline int fls(int x)
- {
- int r;
- asm("{ %0 = cl0(%1);}\n"
- "%0 = sub(#32,%0);\n"
- : "=&r" (r)
- : "r" (x)
- : "p0");
- return r;
- }
- /*
- * ffs - find first bit set
- * @x: the word to search
- *
- * This is defined the same way as
- * the libc and compiler builtin ffs routines, therefore
- * differs in spirit from the above ffz (man ffs).
- */
- static inline int ffs(int x)
- {
- int r;
- asm("{ P0 = cmp.eq(%1,#0); %0 = ct0(%1);}\n"
- "{ if P0 %0 = #0; if !P0 %0 = add(%0,#1);}\n"
- : "=&r" (r)
- : "r" (x)
- : "p0");
- return r;
- }
- /*
- * __ffs - find first bit in word.
- * @word: The word to search
- *
- * Undefined if no bit exists, so code should check against 0 first.
- *
- * bits_per_long assumed to be 32
- * numbering starts at 0 I think (instead of 1 like ffs)
- */
- static inline unsigned long __ffs(unsigned long word)
- {
- int num;
- asm("%0 = ct0(%1);\n"
- : "=&r" (num)
- : "r" (word));
- return num;
- }
- /*
- * __fls - find last (most-significant) set bit in a long word
- * @word: the word to search
- *
- * Undefined if no set bit exists, so code should check against 0 first.
- * bits_per_long assumed to be 32
- */
- static inline unsigned long __fls(unsigned long word)
- {
- int num;
- asm("%0 = cl0(%1);\n"
- "%0 = sub(#31,%0);\n"
- : "=&r" (num)
- : "r" (word));
- return num;
- }
- #include <asm-generic/bitops/lock.h>
- #include <asm-generic/bitops/find.h>
- #include <asm-generic/bitops/fls64.h>
- #include <asm-generic/bitops/sched.h>
- #include <asm-generic/bitops/hweight.h>
- #include <asm-generic/bitops/le.h>
- #include <asm-generic/bitops/ext2-atomic.h>
- #endif /* __KERNEL__ */
- #endif
|