123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240 |
- /*
- * Time related functions for Hexagon architecture
- *
- * Copyright (c) 2010-2011, The Linux Foundation. All rights reserved.
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License version 2 and
- * only version 2 as published by the Free Software Foundation.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
- * 02110-1301, USA.
- */
- #include <linux/init.h>
- #include <linux/clockchips.h>
- #include <linux/clocksource.h>
- #include <linux/interrupt.h>
- #include <linux/err.h>
- #include <linux/platform_device.h>
- #include <linux/ioport.h>
- #include <linux/of.h>
- #include <linux/of_address.h>
- #include <linux/of_irq.h>
- #include <linux/module.h>
- #include <asm/timer-regs.h>
- #include <asm/hexagon_vm.h>
- /*
- * For the clocksource we need:
- * pcycle frequency (600MHz)
- * For the loops_per_jiffy we need:
- * thread/cpu frequency (100MHz)
- * And for the timer, we need:
- * sleep clock rate
- */
- cycles_t pcycle_freq_mhz;
- cycles_t thread_freq_mhz;
- cycles_t sleep_clk_freq;
- static struct resource rtos_timer_resources[] = {
- {
- .start = RTOS_TIMER_REGS_ADDR,
- .end = RTOS_TIMER_REGS_ADDR+PAGE_SIZE-1,
- .flags = IORESOURCE_MEM,
- },
- };
- static struct platform_device rtos_timer_device = {
- .name = "rtos_timer",
- .id = -1,
- .num_resources = ARRAY_SIZE(rtos_timer_resources),
- .resource = rtos_timer_resources,
- };
- /* A lot of this stuff should move into a platform specific section. */
- struct adsp_hw_timer_struct {
- u32 match; /* Match value */
- u32 count;
- u32 enable; /* [1] - CLR_ON_MATCH_EN, [0] - EN */
- u32 clear; /* one-shot register that clears the count */
- };
- /* Look for "TCX0" for related constants. */
- static __iomem struct adsp_hw_timer_struct *rtos_timer;
- static cycle_t timer_get_cycles(struct clocksource *cs)
- {
- return (cycle_t) __vmgettime();
- }
- static struct clocksource hexagon_clocksource = {
- .name = "pcycles",
- .rating = 250,
- .read = timer_get_cycles,
- .mask = CLOCKSOURCE_MASK(64),
- .flags = CLOCK_SOURCE_IS_CONTINUOUS,
- };
- static int set_next_event(unsigned long delta, struct clock_event_device *evt)
- {
- /* Assuming the timer will be disabled when we enter here. */
- iowrite32(1, &rtos_timer->clear);
- iowrite32(0, &rtos_timer->clear);
- iowrite32(delta, &rtos_timer->match);
- iowrite32(1 << TIMER_ENABLE, &rtos_timer->enable);
- return 0;
- }
- #ifdef CONFIG_SMP
- /* Broadcast mechanism */
- static void broadcast(const struct cpumask *mask)
- {
- send_ipi(mask, IPI_TIMER);
- }
- #endif
- /* XXX Implement set_state_shutdown() */
- static struct clock_event_device hexagon_clockevent_dev = {
- .name = "clockevent",
- .features = CLOCK_EVT_FEAT_ONESHOT,
- .rating = 400,
- .irq = RTOS_TIMER_INT,
- .set_next_event = set_next_event,
- #ifdef CONFIG_SMP
- .broadcast = broadcast,
- #endif
- };
- #ifdef CONFIG_SMP
- static DEFINE_PER_CPU(struct clock_event_device, clock_events);
- void setup_percpu_clockdev(void)
- {
- int cpu = smp_processor_id();
- struct clock_event_device *ce_dev = &hexagon_clockevent_dev;
- struct clock_event_device *dummy_clock_dev =
- &per_cpu(clock_events, cpu);
- memcpy(dummy_clock_dev, ce_dev, sizeof(*dummy_clock_dev));
- INIT_LIST_HEAD(&dummy_clock_dev->list);
- dummy_clock_dev->features = CLOCK_EVT_FEAT_DUMMY;
- dummy_clock_dev->cpumask = cpumask_of(cpu);
- clockevents_register_device(dummy_clock_dev);
- }
- /* Called from smp.c for each CPU's timer ipi call */
- void ipi_timer(void)
- {
- int cpu = smp_processor_id();
- struct clock_event_device *ce_dev = &per_cpu(clock_events, cpu);
- ce_dev->event_handler(ce_dev);
- }
- #endif /* CONFIG_SMP */
- static irqreturn_t timer_interrupt(int irq, void *devid)
- {
- struct clock_event_device *ce_dev = &hexagon_clockevent_dev;
- iowrite32(0, &rtos_timer->enable);
- ce_dev->event_handler(ce_dev);
- return IRQ_HANDLED;
- }
- /* This should also be pulled from devtree */
- static struct irqaction rtos_timer_intdesc = {
- .handler = timer_interrupt,
- .flags = IRQF_TIMER | IRQF_TRIGGER_RISING,
- .name = "rtos_timer"
- };
- /*
- * time_init_deferred - called by start_kernel to set up timer/clock source
- *
- * Install the IRQ handler for the clock, setup timers.
- * This is done late, as that way, we can use ioremap().
- *
- * This runs just before the delay loop is calibrated, and
- * is used for delay calibration.
- */
- void __init time_init_deferred(void)
- {
- struct resource *resource = NULL;
- struct clock_event_device *ce_dev = &hexagon_clockevent_dev;
- ce_dev->cpumask = cpu_all_mask;
- if (!resource)
- resource = rtos_timer_device.resource;
- /* ioremap here means this has to run later, after paging init */
- rtos_timer = ioremap(resource->start, resource_size(resource));
- if (!rtos_timer) {
- release_mem_region(resource->start, resource_size(resource));
- }
- clocksource_register_khz(&hexagon_clocksource, pcycle_freq_mhz * 1000);
- /* Note: the sim generic RTOS clock is apparently really 18750Hz */
- /*
- * Last arg is some guaranteed seconds for which the conversion will
- * work without overflow.
- */
- clockevents_calc_mult_shift(ce_dev, sleep_clk_freq, 4);
- ce_dev->max_delta_ns = clockevent_delta2ns(0x7fffffff, ce_dev);
- ce_dev->min_delta_ns = clockevent_delta2ns(0xf, ce_dev);
- #ifdef CONFIG_SMP
- setup_percpu_clockdev();
- #endif
- clockevents_register_device(ce_dev);
- setup_irq(ce_dev->irq, &rtos_timer_intdesc);
- }
- void __init time_init(void)
- {
- late_time_init = time_init_deferred;
- }
- void __delay(unsigned long cycles)
- {
- unsigned long long start = __vmgettime();
- while ((__vmgettime() - start) < cycles)
- cpu_relax();
- }
- EXPORT_SYMBOL(__delay);
- /*
- * This could become parametric or perhaps even computed at run-time,
- * but for now we take the observed simulator jitter.
- */
- static long long fudgefactor = 350; /* Maybe lower if kernel optimized. */
- void __udelay(unsigned long usecs)
- {
- unsigned long long start = __vmgettime();
- unsigned long long finish = (pcycle_freq_mhz * usecs) - fudgefactor;
- while ((__vmgettime() - start) < finish)
- cpu_relax(); /* not sure how this improves readability */
- }
- EXPORT_SYMBOL(__udelay);
|