uaccess.h 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400
  1. #ifndef _ASM_IA64_UACCESS_H
  2. #define _ASM_IA64_UACCESS_H
  3. /*
  4. * This file defines various macros to transfer memory areas across
  5. * the user/kernel boundary. This needs to be done carefully because
  6. * this code is executed in kernel mode and uses user-specified
  7. * addresses. Thus, we need to be careful not to let the user to
  8. * trick us into accessing kernel memory that would normally be
  9. * inaccessible. This code is also fairly performance sensitive,
  10. * so we want to spend as little time doing safety checks as
  11. * possible.
  12. *
  13. * To make matters a bit more interesting, these macros sometimes also
  14. * called from within the kernel itself, in which case the address
  15. * validity check must be skipped. The get_fs() macro tells us what
  16. * to do: if get_fs()==USER_DS, checking is performed, if
  17. * get_fs()==KERNEL_DS, checking is bypassed.
  18. *
  19. * Note that even if the memory area specified by the user is in a
  20. * valid address range, it is still possible that we'll get a page
  21. * fault while accessing it. This is handled by filling out an
  22. * exception handler fixup entry for each instruction that has the
  23. * potential to fault. When such a fault occurs, the page fault
  24. * handler checks to see whether the faulting instruction has a fixup
  25. * associated and, if so, sets r8 to -EFAULT and clears r9 to 0 and
  26. * then resumes execution at the continuation point.
  27. *
  28. * Based on <asm-alpha/uaccess.h>.
  29. *
  30. * Copyright (C) 1998, 1999, 2001-2004 Hewlett-Packard Co
  31. * David Mosberger-Tang <davidm@hpl.hp.com>
  32. */
  33. #include <linux/compiler.h>
  34. #include <linux/errno.h>
  35. #include <linux/sched.h>
  36. #include <linux/page-flags.h>
  37. #include <linux/mm.h>
  38. #include <asm/intrinsics.h>
  39. #include <asm/pgtable.h>
  40. #include <asm/io.h>
  41. /*
  42. * For historical reasons, the following macros are grossly misnamed:
  43. */
  44. #define KERNEL_DS ((mm_segment_t) { ~0UL }) /* cf. access_ok() */
  45. #define USER_DS ((mm_segment_t) { TASK_SIZE-1 }) /* cf. access_ok() */
  46. #define VERIFY_READ 0
  47. #define VERIFY_WRITE 1
  48. #define get_ds() (KERNEL_DS)
  49. #define get_fs() (current_thread_info()->addr_limit)
  50. #define set_fs(x) (current_thread_info()->addr_limit = (x))
  51. #define segment_eq(a, b) ((a).seg == (b).seg)
  52. /*
  53. * When accessing user memory, we need to make sure the entire area really is in
  54. * user-level space. In order to do this efficiently, we make sure that the page at
  55. * address TASK_SIZE is never valid. We also need to make sure that the address doesn't
  56. * point inside the virtually mapped linear page table.
  57. */
  58. #define __access_ok(addr, size, segment) \
  59. ({ \
  60. __chk_user_ptr(addr); \
  61. (likely((unsigned long) (addr) <= (segment).seg) \
  62. && ((segment).seg == KERNEL_DS.seg \
  63. || likely(REGION_OFFSET((unsigned long) (addr)) < RGN_MAP_LIMIT))); \
  64. })
  65. #define access_ok(type, addr, size) __access_ok((addr), (size), get_fs())
  66. /*
  67. * These are the main single-value transfer routines. They automatically
  68. * use the right size if we just have the right pointer type.
  69. *
  70. * Careful to not
  71. * (a) re-use the arguments for side effects (sizeof/typeof is ok)
  72. * (b) require any knowledge of processes at this stage
  73. */
  74. #define put_user(x, ptr) __put_user_check((__typeof__(*(ptr))) (x), (ptr), sizeof(*(ptr)), get_fs())
  75. #define get_user(x, ptr) __get_user_check((x), (ptr), sizeof(*(ptr)), get_fs())
  76. /*
  77. * The "__xxx" versions do not do address space checking, useful when
  78. * doing multiple accesses to the same area (the programmer has to do the
  79. * checks by hand with "access_ok()")
  80. */
  81. #define __put_user(x, ptr) __put_user_nocheck((__typeof__(*(ptr))) (x), (ptr), sizeof(*(ptr)))
  82. #define __get_user(x, ptr) __get_user_nocheck((x), (ptr), sizeof(*(ptr)))
  83. extern long __put_user_unaligned_unknown (void);
  84. #define __put_user_unaligned(x, ptr) \
  85. ({ \
  86. long __ret; \
  87. switch (sizeof(*(ptr))) { \
  88. case 1: __ret = __put_user((x), (ptr)); break; \
  89. case 2: __ret = (__put_user((x), (u8 __user *)(ptr))) \
  90. | (__put_user((x) >> 8, ((u8 __user *)(ptr) + 1))); break; \
  91. case 4: __ret = (__put_user((x), (u16 __user *)(ptr))) \
  92. | (__put_user((x) >> 16, ((u16 __user *)(ptr) + 1))); break; \
  93. case 8: __ret = (__put_user((x), (u32 __user *)(ptr))) \
  94. | (__put_user((x) >> 32, ((u32 __user *)(ptr) + 1))); break; \
  95. default: __ret = __put_user_unaligned_unknown(); \
  96. } \
  97. __ret; \
  98. })
  99. extern long __get_user_unaligned_unknown (void);
  100. #define __get_user_unaligned(x, ptr) \
  101. ({ \
  102. long __ret; \
  103. switch (sizeof(*(ptr))) { \
  104. case 1: __ret = __get_user((x), (ptr)); break; \
  105. case 2: __ret = (__get_user((x), (u8 __user *)(ptr))) \
  106. | (__get_user((x) >> 8, ((u8 __user *)(ptr) + 1))); break; \
  107. case 4: __ret = (__get_user((x), (u16 __user *)(ptr))) \
  108. | (__get_user((x) >> 16, ((u16 __user *)(ptr) + 1))); break; \
  109. case 8: __ret = (__get_user((x), (u32 __user *)(ptr))) \
  110. | (__get_user((x) >> 32, ((u32 __user *)(ptr) + 1))); break; \
  111. default: __ret = __get_user_unaligned_unknown(); \
  112. } \
  113. __ret; \
  114. })
  115. #ifdef ASM_SUPPORTED
  116. struct __large_struct { unsigned long buf[100]; };
  117. # define __m(x) (*(struct __large_struct __user *)(x))
  118. /* We need to declare the __ex_table section before we can use it in .xdata. */
  119. asm (".section \"__ex_table\", \"a\"\n\t.previous");
  120. # define __get_user_size(val, addr, n, err) \
  121. do { \
  122. register long __gu_r8 asm ("r8") = 0; \
  123. register long __gu_r9 asm ("r9"); \
  124. asm ("\n[1:]\tld"#n" %0=%2%P2\t// %0 and %1 get overwritten by exception handler\n" \
  125. "\t.xdata4 \"__ex_table\", 1b-., 1f-.+4\n" \
  126. "[1:]" \
  127. : "=r"(__gu_r9), "=r"(__gu_r8) : "m"(__m(addr)), "1"(__gu_r8)); \
  128. (err) = __gu_r8; \
  129. (val) = __gu_r9; \
  130. } while (0)
  131. /*
  132. * The "__put_user_size()" macro tells gcc it reads from memory instead of writing it. This
  133. * is because they do not write to any memory gcc knows about, so there are no aliasing
  134. * issues.
  135. */
  136. # define __put_user_size(val, addr, n, err) \
  137. do { \
  138. register long __pu_r8 asm ("r8") = 0; \
  139. asm volatile ("\n[1:]\tst"#n" %1=%r2%P1\t// %0 gets overwritten by exception handler\n" \
  140. "\t.xdata4 \"__ex_table\", 1b-., 1f-.\n" \
  141. "[1:]" \
  142. : "=r"(__pu_r8) : "m"(__m(addr)), "rO"(val), "0"(__pu_r8)); \
  143. (err) = __pu_r8; \
  144. } while (0)
  145. #else /* !ASM_SUPPORTED */
  146. # define RELOC_TYPE 2 /* ip-rel */
  147. # define __get_user_size(val, addr, n, err) \
  148. do { \
  149. __ld_user("__ex_table", (unsigned long) addr, n, RELOC_TYPE); \
  150. (err) = ia64_getreg(_IA64_REG_R8); \
  151. (val) = ia64_getreg(_IA64_REG_R9); \
  152. } while (0)
  153. # define __put_user_size(val, addr, n, err) \
  154. do { \
  155. __st_user("__ex_table", (unsigned long) addr, n, RELOC_TYPE, \
  156. (__force unsigned long) (val)); \
  157. (err) = ia64_getreg(_IA64_REG_R8); \
  158. } while (0)
  159. #endif /* !ASM_SUPPORTED */
  160. extern void __get_user_unknown (void);
  161. /*
  162. * Evaluating arguments X, PTR, SIZE, and SEGMENT may involve subroutine-calls, which
  163. * could clobber r8 and r9 (among others). Thus, be careful not to evaluate it while
  164. * using r8/r9.
  165. */
  166. #define __do_get_user(check, x, ptr, size, segment) \
  167. ({ \
  168. const __typeof__(*(ptr)) __user *__gu_ptr = (ptr); \
  169. __typeof__ (size) __gu_size = (size); \
  170. long __gu_err = -EFAULT; \
  171. unsigned long __gu_val = 0; \
  172. if (!check || __access_ok(__gu_ptr, size, segment)) \
  173. switch (__gu_size) { \
  174. case 1: __get_user_size(__gu_val, __gu_ptr, 1, __gu_err); break; \
  175. case 2: __get_user_size(__gu_val, __gu_ptr, 2, __gu_err); break; \
  176. case 4: __get_user_size(__gu_val, __gu_ptr, 4, __gu_err); break; \
  177. case 8: __get_user_size(__gu_val, __gu_ptr, 8, __gu_err); break; \
  178. default: __get_user_unknown(); break; \
  179. } \
  180. (x) = (__force __typeof__(*(__gu_ptr))) __gu_val; \
  181. __gu_err; \
  182. })
  183. #define __get_user_nocheck(x, ptr, size) __do_get_user(0, x, ptr, size, KERNEL_DS)
  184. #define __get_user_check(x, ptr, size, segment) __do_get_user(1, x, ptr, size, segment)
  185. extern void __put_user_unknown (void);
  186. /*
  187. * Evaluating arguments X, PTR, SIZE, and SEGMENT may involve subroutine-calls, which
  188. * could clobber r8 (among others). Thus, be careful not to evaluate them while using r8.
  189. */
  190. #define __do_put_user(check, x, ptr, size, segment) \
  191. ({ \
  192. __typeof__ (x) __pu_x = (x); \
  193. __typeof__ (*(ptr)) __user *__pu_ptr = (ptr); \
  194. __typeof__ (size) __pu_size = (size); \
  195. long __pu_err = -EFAULT; \
  196. \
  197. if (!check || __access_ok(__pu_ptr, __pu_size, segment)) \
  198. switch (__pu_size) { \
  199. case 1: __put_user_size(__pu_x, __pu_ptr, 1, __pu_err); break; \
  200. case 2: __put_user_size(__pu_x, __pu_ptr, 2, __pu_err); break; \
  201. case 4: __put_user_size(__pu_x, __pu_ptr, 4, __pu_err); break; \
  202. case 8: __put_user_size(__pu_x, __pu_ptr, 8, __pu_err); break; \
  203. default: __put_user_unknown(); break; \
  204. } \
  205. __pu_err; \
  206. })
  207. #define __put_user_nocheck(x, ptr, size) __do_put_user(0, x, ptr, size, KERNEL_DS)
  208. #define __put_user_check(x, ptr, size, segment) __do_put_user(1, x, ptr, size, segment)
  209. /*
  210. * Complex access routines
  211. */
  212. extern unsigned long __must_check __copy_user (void __user *to, const void __user *from,
  213. unsigned long count);
  214. static inline unsigned long
  215. __copy_to_user (void __user *to, const void *from, unsigned long count)
  216. {
  217. return __copy_user(to, (__force void __user *) from, count);
  218. }
  219. static inline unsigned long
  220. __copy_from_user (void *to, const void __user *from, unsigned long count)
  221. {
  222. return __copy_user((__force void __user *) to, from, count);
  223. }
  224. #define __copy_to_user_inatomic __copy_to_user
  225. #define __copy_from_user_inatomic __copy_from_user
  226. #define copy_to_user(to, from, n) \
  227. ({ \
  228. void __user *__cu_to = (to); \
  229. const void *__cu_from = (from); \
  230. long __cu_len = (n); \
  231. \
  232. if (__access_ok(__cu_to, __cu_len, get_fs())) \
  233. __cu_len = __copy_user(__cu_to, (__force void __user *) __cu_from, __cu_len); \
  234. __cu_len; \
  235. })
  236. static inline unsigned long
  237. copy_from_user(void *to, const void __user *from, unsigned long n)
  238. {
  239. if (likely(__access_ok(from, n, get_fs())))
  240. n = __copy_user((__force void __user *) to, from, n);
  241. else
  242. memset(to, 0, n);
  243. return n;
  244. }
  245. #define __copy_in_user(to, from, size) __copy_user((to), (from), (size))
  246. static inline unsigned long
  247. copy_in_user (void __user *to, const void __user *from, unsigned long n)
  248. {
  249. if (likely(access_ok(VERIFY_READ, from, n) && access_ok(VERIFY_WRITE, to, n)))
  250. n = __copy_user(to, from, n);
  251. return n;
  252. }
  253. extern unsigned long __do_clear_user (void __user *, unsigned long);
  254. #define __clear_user(to, n) __do_clear_user(to, n)
  255. #define clear_user(to, n) \
  256. ({ \
  257. unsigned long __cu_len = (n); \
  258. if (__access_ok(to, __cu_len, get_fs())) \
  259. __cu_len = __do_clear_user(to, __cu_len); \
  260. __cu_len; \
  261. })
  262. /*
  263. * Returns: -EFAULT if exception before terminator, N if the entire buffer filled, else
  264. * strlen.
  265. */
  266. extern long __must_check __strncpy_from_user (char *to, const char __user *from, long to_len);
  267. #define strncpy_from_user(to, from, n) \
  268. ({ \
  269. const char __user * __sfu_from = (from); \
  270. long __sfu_ret = -EFAULT; \
  271. if (__access_ok(__sfu_from, 0, get_fs())) \
  272. __sfu_ret = __strncpy_from_user((to), __sfu_from, (n)); \
  273. __sfu_ret; \
  274. })
  275. /* Returns: 0 if bad, string length+1 (memory size) of string if ok */
  276. extern unsigned long __strlen_user (const char __user *);
  277. #define strlen_user(str) \
  278. ({ \
  279. const char __user *__su_str = (str); \
  280. unsigned long __su_ret = 0; \
  281. if (__access_ok(__su_str, 0, get_fs())) \
  282. __su_ret = __strlen_user(__su_str); \
  283. __su_ret; \
  284. })
  285. /*
  286. * Returns: 0 if exception before NUL or reaching the supplied limit
  287. * (N), a value greater than N if the limit would be exceeded, else
  288. * strlen.
  289. */
  290. extern unsigned long __strnlen_user (const char __user *, long);
  291. #define strnlen_user(str, len) \
  292. ({ \
  293. const char __user *__su_str = (str); \
  294. unsigned long __su_ret = 0; \
  295. if (__access_ok(__su_str, 0, get_fs())) \
  296. __su_ret = __strnlen_user(__su_str, len); \
  297. __su_ret; \
  298. })
  299. /* Generic code can't deal with the location-relative format that we use for compactness. */
  300. #define ARCH_HAS_SORT_EXTABLE
  301. #define ARCH_HAS_SEARCH_EXTABLE
  302. struct exception_table_entry {
  303. int addr; /* location-relative address of insn this fixup is for */
  304. int cont; /* location-relative continuation addr.; if bit 2 is set, r9 is set to 0 */
  305. };
  306. extern void ia64_handle_exception (struct pt_regs *regs, const struct exception_table_entry *e);
  307. extern const struct exception_table_entry *search_exception_tables (unsigned long addr);
  308. static inline int
  309. ia64_done_with_exception (struct pt_regs *regs)
  310. {
  311. const struct exception_table_entry *e;
  312. e = search_exception_tables(regs->cr_iip + ia64_psr(regs)->ri);
  313. if (e) {
  314. ia64_handle_exception(regs, e);
  315. return 1;
  316. }
  317. return 0;
  318. }
  319. #define ARCH_HAS_TRANSLATE_MEM_PTR 1
  320. static __inline__ void *
  321. xlate_dev_mem_ptr(phys_addr_t p)
  322. {
  323. struct page *page;
  324. void *ptr;
  325. page = pfn_to_page(p >> PAGE_SHIFT);
  326. if (PageUncached(page))
  327. ptr = (void *)p + __IA64_UNCACHED_OFFSET;
  328. else
  329. ptr = __va(p);
  330. return ptr;
  331. }
  332. /*
  333. * Convert a virtual cached kernel memory pointer to an uncached pointer
  334. */
  335. static __inline__ void *
  336. xlate_dev_kmem_ptr(void *p)
  337. {
  338. struct page *page;
  339. void *ptr;
  340. page = virt_to_page((unsigned long)p);
  341. if (PageUncached(page))
  342. ptr = (void *)__pa(p) + __IA64_UNCACHED_OFFSET;
  343. else
  344. ptr = p;
  345. return ptr;
  346. }
  347. #endif /* _ASM_IA64_UACCESS_H */