discontig.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764
  1. /*
  2. * Copyright (c) 2000, 2003 Silicon Graphics, Inc. All rights reserved.
  3. * Copyright (c) 2001 Intel Corp.
  4. * Copyright (c) 2001 Tony Luck <tony.luck@intel.com>
  5. * Copyright (c) 2002 NEC Corp.
  6. * Copyright (c) 2002 Kimio Suganuma <k-suganuma@da.jp.nec.com>
  7. * Copyright (c) 2004 Silicon Graphics, Inc
  8. * Russ Anderson <rja@sgi.com>
  9. * Jesse Barnes <jbarnes@sgi.com>
  10. * Jack Steiner <steiner@sgi.com>
  11. */
  12. /*
  13. * Platform initialization for Discontig Memory
  14. */
  15. #include <linux/kernel.h>
  16. #include <linux/mm.h>
  17. #include <linux/nmi.h>
  18. #include <linux/swap.h>
  19. #include <linux/bootmem.h>
  20. #include <linux/acpi.h>
  21. #include <linux/efi.h>
  22. #include <linux/nodemask.h>
  23. #include <linux/slab.h>
  24. #include <asm/pgalloc.h>
  25. #include <asm/tlb.h>
  26. #include <asm/meminit.h>
  27. #include <asm/numa.h>
  28. #include <asm/sections.h>
  29. /*
  30. * Track per-node information needed to setup the boot memory allocator, the
  31. * per-node areas, and the real VM.
  32. */
  33. struct early_node_data {
  34. struct ia64_node_data *node_data;
  35. unsigned long pernode_addr;
  36. unsigned long pernode_size;
  37. #ifdef CONFIG_ZONE_DMA
  38. unsigned long num_dma_physpages;
  39. #endif
  40. unsigned long min_pfn;
  41. unsigned long max_pfn;
  42. };
  43. static struct early_node_data mem_data[MAX_NUMNODES] __initdata;
  44. static nodemask_t memory_less_mask __initdata;
  45. pg_data_t *pgdat_list[MAX_NUMNODES];
  46. /*
  47. * To prevent cache aliasing effects, align per-node structures so that they
  48. * start at addresses that are strided by node number.
  49. */
  50. #define MAX_NODE_ALIGN_OFFSET (32 * 1024 * 1024)
  51. #define NODEDATA_ALIGN(addr, node) \
  52. ((((addr) + 1024*1024-1) & ~(1024*1024-1)) + \
  53. (((node)*PERCPU_PAGE_SIZE) & (MAX_NODE_ALIGN_OFFSET - 1)))
  54. /**
  55. * build_node_maps - callback to setup bootmem structs for each node
  56. * @start: physical start of range
  57. * @len: length of range
  58. * @node: node where this range resides
  59. *
  60. * We allocate a struct bootmem_data for each piece of memory that we wish to
  61. * treat as a virtually contiguous block (i.e. each node). Each such block
  62. * must start on an %IA64_GRANULE_SIZE boundary, so we round the address down
  63. * if necessary. Any non-existent pages will simply be part of the virtual
  64. * memmap. We also update min_low_pfn and max_low_pfn here as we receive
  65. * memory ranges from the caller.
  66. */
  67. static int __init build_node_maps(unsigned long start, unsigned long len,
  68. int node)
  69. {
  70. unsigned long spfn, epfn, end = start + len;
  71. struct bootmem_data *bdp = &bootmem_node_data[node];
  72. epfn = GRANULEROUNDUP(end) >> PAGE_SHIFT;
  73. spfn = GRANULEROUNDDOWN(start) >> PAGE_SHIFT;
  74. if (!bdp->node_low_pfn) {
  75. bdp->node_min_pfn = spfn;
  76. bdp->node_low_pfn = epfn;
  77. } else {
  78. bdp->node_min_pfn = min(spfn, bdp->node_min_pfn);
  79. bdp->node_low_pfn = max(epfn, bdp->node_low_pfn);
  80. }
  81. return 0;
  82. }
  83. /**
  84. * early_nr_cpus_node - return number of cpus on a given node
  85. * @node: node to check
  86. *
  87. * Count the number of cpus on @node. We can't use nr_cpus_node() yet because
  88. * acpi_boot_init() (which builds the node_to_cpu_mask array) hasn't been
  89. * called yet. Note that node 0 will also count all non-existent cpus.
  90. */
  91. static int __meminit early_nr_cpus_node(int node)
  92. {
  93. int cpu, n = 0;
  94. for_each_possible_early_cpu(cpu)
  95. if (node == node_cpuid[cpu].nid)
  96. n++;
  97. return n;
  98. }
  99. /**
  100. * compute_pernodesize - compute size of pernode data
  101. * @node: the node id.
  102. */
  103. static unsigned long __meminit compute_pernodesize(int node)
  104. {
  105. unsigned long pernodesize = 0, cpus;
  106. cpus = early_nr_cpus_node(node);
  107. pernodesize += PERCPU_PAGE_SIZE * cpus;
  108. pernodesize += node * L1_CACHE_BYTES;
  109. pernodesize += L1_CACHE_ALIGN(sizeof(pg_data_t));
  110. pernodesize += L1_CACHE_ALIGN(sizeof(struct ia64_node_data));
  111. pernodesize += L1_CACHE_ALIGN(sizeof(pg_data_t));
  112. pernodesize = PAGE_ALIGN(pernodesize);
  113. return pernodesize;
  114. }
  115. /**
  116. * per_cpu_node_setup - setup per-cpu areas on each node
  117. * @cpu_data: per-cpu area on this node
  118. * @node: node to setup
  119. *
  120. * Copy the static per-cpu data into the region we just set aside and then
  121. * setup __per_cpu_offset for each CPU on this node. Return a pointer to
  122. * the end of the area.
  123. */
  124. static void *per_cpu_node_setup(void *cpu_data, int node)
  125. {
  126. #ifdef CONFIG_SMP
  127. int cpu;
  128. for_each_possible_early_cpu(cpu) {
  129. void *src = cpu == 0 ? __cpu0_per_cpu : __phys_per_cpu_start;
  130. if (node != node_cpuid[cpu].nid)
  131. continue;
  132. memcpy(__va(cpu_data), src, __per_cpu_end - __per_cpu_start);
  133. __per_cpu_offset[cpu] = (char *)__va(cpu_data) -
  134. __per_cpu_start;
  135. /*
  136. * percpu area for cpu0 is moved from the __init area
  137. * which is setup by head.S and used till this point.
  138. * Update ar.k3. This move is ensures that percpu
  139. * area for cpu0 is on the correct node and its
  140. * virtual address isn't insanely far from other
  141. * percpu areas which is important for congruent
  142. * percpu allocator.
  143. */
  144. if (cpu == 0)
  145. ia64_set_kr(IA64_KR_PER_CPU_DATA,
  146. (unsigned long)cpu_data -
  147. (unsigned long)__per_cpu_start);
  148. cpu_data += PERCPU_PAGE_SIZE;
  149. }
  150. #endif
  151. return cpu_data;
  152. }
  153. #ifdef CONFIG_SMP
  154. /**
  155. * setup_per_cpu_areas - setup percpu areas
  156. *
  157. * Arch code has already allocated and initialized percpu areas. All
  158. * this function has to do is to teach the determined layout to the
  159. * dynamic percpu allocator, which happens to be more complex than
  160. * creating whole new ones using helpers.
  161. */
  162. void __init setup_per_cpu_areas(void)
  163. {
  164. struct pcpu_alloc_info *ai;
  165. struct pcpu_group_info *uninitialized_var(gi);
  166. unsigned int *cpu_map;
  167. void *base;
  168. unsigned long base_offset;
  169. unsigned int cpu;
  170. ssize_t static_size, reserved_size, dyn_size;
  171. int node, prev_node, unit, nr_units, rc;
  172. ai = pcpu_alloc_alloc_info(MAX_NUMNODES, nr_cpu_ids);
  173. if (!ai)
  174. panic("failed to allocate pcpu_alloc_info");
  175. cpu_map = ai->groups[0].cpu_map;
  176. /* determine base */
  177. base = (void *)ULONG_MAX;
  178. for_each_possible_cpu(cpu)
  179. base = min(base,
  180. (void *)(__per_cpu_offset[cpu] + __per_cpu_start));
  181. base_offset = (void *)__per_cpu_start - base;
  182. /* build cpu_map, units are grouped by node */
  183. unit = 0;
  184. for_each_node(node)
  185. for_each_possible_cpu(cpu)
  186. if (node == node_cpuid[cpu].nid)
  187. cpu_map[unit++] = cpu;
  188. nr_units = unit;
  189. /* set basic parameters */
  190. static_size = __per_cpu_end - __per_cpu_start;
  191. reserved_size = PERCPU_MODULE_RESERVE;
  192. dyn_size = PERCPU_PAGE_SIZE - static_size - reserved_size;
  193. if (dyn_size < 0)
  194. panic("percpu area overflow static=%zd reserved=%zd\n",
  195. static_size, reserved_size);
  196. ai->static_size = static_size;
  197. ai->reserved_size = reserved_size;
  198. ai->dyn_size = dyn_size;
  199. ai->unit_size = PERCPU_PAGE_SIZE;
  200. ai->atom_size = PAGE_SIZE;
  201. ai->alloc_size = PERCPU_PAGE_SIZE;
  202. /*
  203. * CPUs are put into groups according to node. Walk cpu_map
  204. * and create new groups at node boundaries.
  205. */
  206. prev_node = -1;
  207. ai->nr_groups = 0;
  208. for (unit = 0; unit < nr_units; unit++) {
  209. cpu = cpu_map[unit];
  210. node = node_cpuid[cpu].nid;
  211. if (node == prev_node) {
  212. gi->nr_units++;
  213. continue;
  214. }
  215. prev_node = node;
  216. gi = &ai->groups[ai->nr_groups++];
  217. gi->nr_units = 1;
  218. gi->base_offset = __per_cpu_offset[cpu] + base_offset;
  219. gi->cpu_map = &cpu_map[unit];
  220. }
  221. rc = pcpu_setup_first_chunk(ai, base);
  222. if (rc)
  223. panic("failed to setup percpu area (err=%d)", rc);
  224. pcpu_free_alloc_info(ai);
  225. }
  226. #endif
  227. /**
  228. * fill_pernode - initialize pernode data.
  229. * @node: the node id.
  230. * @pernode: physical address of pernode data
  231. * @pernodesize: size of the pernode data
  232. */
  233. static void __init fill_pernode(int node, unsigned long pernode,
  234. unsigned long pernodesize)
  235. {
  236. void *cpu_data;
  237. int cpus = early_nr_cpus_node(node);
  238. struct bootmem_data *bdp = &bootmem_node_data[node];
  239. mem_data[node].pernode_addr = pernode;
  240. mem_data[node].pernode_size = pernodesize;
  241. memset(__va(pernode), 0, pernodesize);
  242. cpu_data = (void *)pernode;
  243. pernode += PERCPU_PAGE_SIZE * cpus;
  244. pernode += node * L1_CACHE_BYTES;
  245. pgdat_list[node] = __va(pernode);
  246. pernode += L1_CACHE_ALIGN(sizeof(pg_data_t));
  247. mem_data[node].node_data = __va(pernode);
  248. pernode += L1_CACHE_ALIGN(sizeof(struct ia64_node_data));
  249. pgdat_list[node]->bdata = bdp;
  250. pernode += L1_CACHE_ALIGN(sizeof(pg_data_t));
  251. cpu_data = per_cpu_node_setup(cpu_data, node);
  252. return;
  253. }
  254. /**
  255. * find_pernode_space - allocate memory for memory map and per-node structures
  256. * @start: physical start of range
  257. * @len: length of range
  258. * @node: node where this range resides
  259. *
  260. * This routine reserves space for the per-cpu data struct, the list of
  261. * pg_data_ts and the per-node data struct. Each node will have something like
  262. * the following in the first chunk of addr. space large enough to hold it.
  263. *
  264. * ________________________
  265. * | |
  266. * |~~~~~~~~~~~~~~~~~~~~~~~~| <-- NODEDATA_ALIGN(start, node) for the first
  267. * | PERCPU_PAGE_SIZE * | start and length big enough
  268. * | cpus_on_this_node | Node 0 will also have entries for all non-existent cpus.
  269. * |------------------------|
  270. * | local pg_data_t * |
  271. * |------------------------|
  272. * | local ia64_node_data |
  273. * |------------------------|
  274. * | ??? |
  275. * |________________________|
  276. *
  277. * Once this space has been set aside, the bootmem maps are initialized. We
  278. * could probably move the allocation of the per-cpu and ia64_node_data space
  279. * outside of this function and use alloc_bootmem_node(), but doing it here
  280. * is straightforward and we get the alignments we want so...
  281. */
  282. static int __init find_pernode_space(unsigned long start, unsigned long len,
  283. int node)
  284. {
  285. unsigned long spfn, epfn;
  286. unsigned long pernodesize = 0, pernode, pages, mapsize;
  287. struct bootmem_data *bdp = &bootmem_node_data[node];
  288. spfn = start >> PAGE_SHIFT;
  289. epfn = (start + len) >> PAGE_SHIFT;
  290. pages = bdp->node_low_pfn - bdp->node_min_pfn;
  291. mapsize = bootmem_bootmap_pages(pages) << PAGE_SHIFT;
  292. /*
  293. * Make sure this memory falls within this node's usable memory
  294. * since we may have thrown some away in build_maps().
  295. */
  296. if (spfn < bdp->node_min_pfn || epfn > bdp->node_low_pfn)
  297. return 0;
  298. /* Don't setup this node's local space twice... */
  299. if (mem_data[node].pernode_addr)
  300. return 0;
  301. /*
  302. * Calculate total size needed, incl. what's necessary
  303. * for good alignment and alias prevention.
  304. */
  305. pernodesize = compute_pernodesize(node);
  306. pernode = NODEDATA_ALIGN(start, node);
  307. /* Is this range big enough for what we want to store here? */
  308. if (start + len > (pernode + pernodesize + mapsize))
  309. fill_pernode(node, pernode, pernodesize);
  310. return 0;
  311. }
  312. /**
  313. * free_node_bootmem - free bootmem allocator memory for use
  314. * @start: physical start of range
  315. * @len: length of range
  316. * @node: node where this range resides
  317. *
  318. * Simply calls the bootmem allocator to free the specified ranged from
  319. * the given pg_data_t's bdata struct. After this function has been called
  320. * for all the entries in the EFI memory map, the bootmem allocator will
  321. * be ready to service allocation requests.
  322. */
  323. static int __init free_node_bootmem(unsigned long start, unsigned long len,
  324. int node)
  325. {
  326. free_bootmem_node(pgdat_list[node], start, len);
  327. return 0;
  328. }
  329. /**
  330. * reserve_pernode_space - reserve memory for per-node space
  331. *
  332. * Reserve the space used by the bootmem maps & per-node space in the boot
  333. * allocator so that when we actually create the real mem maps we don't
  334. * use their memory.
  335. */
  336. static void __init reserve_pernode_space(void)
  337. {
  338. unsigned long base, size, pages;
  339. struct bootmem_data *bdp;
  340. int node;
  341. for_each_online_node(node) {
  342. pg_data_t *pdp = pgdat_list[node];
  343. if (node_isset(node, memory_less_mask))
  344. continue;
  345. bdp = pdp->bdata;
  346. /* First the bootmem_map itself */
  347. pages = bdp->node_low_pfn - bdp->node_min_pfn;
  348. size = bootmem_bootmap_pages(pages) << PAGE_SHIFT;
  349. base = __pa(bdp->node_bootmem_map);
  350. reserve_bootmem_node(pdp, base, size, BOOTMEM_DEFAULT);
  351. /* Now the per-node space */
  352. size = mem_data[node].pernode_size;
  353. base = __pa(mem_data[node].pernode_addr);
  354. reserve_bootmem_node(pdp, base, size, BOOTMEM_DEFAULT);
  355. }
  356. }
  357. static void __meminit scatter_node_data(void)
  358. {
  359. pg_data_t **dst;
  360. int node;
  361. /*
  362. * for_each_online_node() can't be used at here.
  363. * node_online_map is not set for hot-added nodes at this time,
  364. * because we are halfway through initialization of the new node's
  365. * structures. If for_each_online_node() is used, a new node's
  366. * pg_data_ptrs will be not initialized. Instead of using it,
  367. * pgdat_list[] is checked.
  368. */
  369. for_each_node(node) {
  370. if (pgdat_list[node]) {
  371. dst = LOCAL_DATA_ADDR(pgdat_list[node])->pg_data_ptrs;
  372. memcpy(dst, pgdat_list, sizeof(pgdat_list));
  373. }
  374. }
  375. }
  376. /**
  377. * initialize_pernode_data - fixup per-cpu & per-node pointers
  378. *
  379. * Each node's per-node area has a copy of the global pg_data_t list, so
  380. * we copy that to each node here, as well as setting the per-cpu pointer
  381. * to the local node data structure. The active_cpus field of the per-node
  382. * structure gets setup by the platform_cpu_init() function later.
  383. */
  384. static void __init initialize_pernode_data(void)
  385. {
  386. int cpu, node;
  387. scatter_node_data();
  388. #ifdef CONFIG_SMP
  389. /* Set the node_data pointer for each per-cpu struct */
  390. for_each_possible_early_cpu(cpu) {
  391. node = node_cpuid[cpu].nid;
  392. per_cpu(ia64_cpu_info, cpu).node_data =
  393. mem_data[node].node_data;
  394. }
  395. #else
  396. {
  397. struct cpuinfo_ia64 *cpu0_cpu_info;
  398. cpu = 0;
  399. node = node_cpuid[cpu].nid;
  400. cpu0_cpu_info = (struct cpuinfo_ia64 *)(__phys_per_cpu_start +
  401. ((char *)&ia64_cpu_info - __per_cpu_start));
  402. cpu0_cpu_info->node_data = mem_data[node].node_data;
  403. }
  404. #endif /* CONFIG_SMP */
  405. }
  406. /**
  407. * memory_less_node_alloc - * attempt to allocate memory on the best NUMA slit
  408. * node but fall back to any other node when __alloc_bootmem_node fails
  409. * for best.
  410. * @nid: node id
  411. * @pernodesize: size of this node's pernode data
  412. */
  413. static void __init *memory_less_node_alloc(int nid, unsigned long pernodesize)
  414. {
  415. void *ptr = NULL;
  416. u8 best = 0xff;
  417. int bestnode = -1, node, anynode = 0;
  418. for_each_online_node(node) {
  419. if (node_isset(node, memory_less_mask))
  420. continue;
  421. else if (node_distance(nid, node) < best) {
  422. best = node_distance(nid, node);
  423. bestnode = node;
  424. }
  425. anynode = node;
  426. }
  427. if (bestnode == -1)
  428. bestnode = anynode;
  429. ptr = __alloc_bootmem_node(pgdat_list[bestnode], pernodesize,
  430. PERCPU_PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
  431. return ptr;
  432. }
  433. /**
  434. * memory_less_nodes - allocate and initialize CPU only nodes pernode
  435. * information.
  436. */
  437. static void __init memory_less_nodes(void)
  438. {
  439. unsigned long pernodesize;
  440. void *pernode;
  441. int node;
  442. for_each_node_mask(node, memory_less_mask) {
  443. pernodesize = compute_pernodesize(node);
  444. pernode = memory_less_node_alloc(node, pernodesize);
  445. fill_pernode(node, __pa(pernode), pernodesize);
  446. }
  447. return;
  448. }
  449. /**
  450. * find_memory - walk the EFI memory map and setup the bootmem allocator
  451. *
  452. * Called early in boot to setup the bootmem allocator, and to
  453. * allocate the per-cpu and per-node structures.
  454. */
  455. void __init find_memory(void)
  456. {
  457. int node;
  458. reserve_memory();
  459. if (num_online_nodes() == 0) {
  460. printk(KERN_ERR "node info missing!\n");
  461. node_set_online(0);
  462. }
  463. nodes_or(memory_less_mask, memory_less_mask, node_online_map);
  464. min_low_pfn = -1;
  465. max_low_pfn = 0;
  466. /* These actually end up getting called by call_pernode_memory() */
  467. efi_memmap_walk(filter_rsvd_memory, build_node_maps);
  468. efi_memmap_walk(filter_rsvd_memory, find_pernode_space);
  469. efi_memmap_walk(find_max_min_low_pfn, NULL);
  470. for_each_online_node(node)
  471. if (bootmem_node_data[node].node_low_pfn) {
  472. node_clear(node, memory_less_mask);
  473. mem_data[node].min_pfn = ~0UL;
  474. }
  475. efi_memmap_walk(filter_memory, register_active_ranges);
  476. /*
  477. * Initialize the boot memory maps in reverse order since that's
  478. * what the bootmem allocator expects
  479. */
  480. for (node = MAX_NUMNODES - 1; node >= 0; node--) {
  481. unsigned long pernode, pernodesize, map;
  482. struct bootmem_data *bdp;
  483. if (!node_online(node))
  484. continue;
  485. else if (node_isset(node, memory_less_mask))
  486. continue;
  487. bdp = &bootmem_node_data[node];
  488. pernode = mem_data[node].pernode_addr;
  489. pernodesize = mem_data[node].pernode_size;
  490. map = pernode + pernodesize;
  491. init_bootmem_node(pgdat_list[node],
  492. map>>PAGE_SHIFT,
  493. bdp->node_min_pfn,
  494. bdp->node_low_pfn);
  495. }
  496. efi_memmap_walk(filter_rsvd_memory, free_node_bootmem);
  497. reserve_pernode_space();
  498. memory_less_nodes();
  499. initialize_pernode_data();
  500. max_pfn = max_low_pfn;
  501. find_initrd();
  502. }
  503. #ifdef CONFIG_SMP
  504. /**
  505. * per_cpu_init - setup per-cpu variables
  506. *
  507. * find_pernode_space() does most of this already, we just need to set
  508. * local_per_cpu_offset
  509. */
  510. void *per_cpu_init(void)
  511. {
  512. int cpu;
  513. static int first_time = 1;
  514. if (first_time) {
  515. first_time = 0;
  516. for_each_possible_early_cpu(cpu)
  517. per_cpu(local_per_cpu_offset, cpu) = __per_cpu_offset[cpu];
  518. }
  519. return __per_cpu_start + __per_cpu_offset[smp_processor_id()];
  520. }
  521. #endif /* CONFIG_SMP */
  522. /**
  523. * call_pernode_memory - use SRAT to call callback functions with node info
  524. * @start: physical start of range
  525. * @len: length of range
  526. * @arg: function to call for each range
  527. *
  528. * efi_memmap_walk() knows nothing about layout of memory across nodes. Find
  529. * out to which node a block of memory belongs. Ignore memory that we cannot
  530. * identify, and split blocks that run across multiple nodes.
  531. *
  532. * Take this opportunity to round the start address up and the end address
  533. * down to page boundaries.
  534. */
  535. void call_pernode_memory(unsigned long start, unsigned long len, void *arg)
  536. {
  537. unsigned long rs, re, end = start + len;
  538. void (*func)(unsigned long, unsigned long, int);
  539. int i;
  540. start = PAGE_ALIGN(start);
  541. end &= PAGE_MASK;
  542. if (start >= end)
  543. return;
  544. func = arg;
  545. if (!num_node_memblks) {
  546. /* No SRAT table, so assume one node (node 0) */
  547. if (start < end)
  548. (*func)(start, end - start, 0);
  549. return;
  550. }
  551. for (i = 0; i < num_node_memblks; i++) {
  552. rs = max(start, node_memblk[i].start_paddr);
  553. re = min(end, node_memblk[i].start_paddr +
  554. node_memblk[i].size);
  555. if (rs < re)
  556. (*func)(rs, re - rs, node_memblk[i].nid);
  557. if (re == end)
  558. break;
  559. }
  560. }
  561. /**
  562. * count_node_pages - callback to build per-node memory info structures
  563. * @start: physical start of range
  564. * @len: length of range
  565. * @node: node where this range resides
  566. *
  567. * Each node has it's own number of physical pages, DMAable pages, start, and
  568. * end page frame number. This routine will be called by call_pernode_memory()
  569. * for each piece of usable memory and will setup these values for each node.
  570. * Very similar to build_maps().
  571. */
  572. static __init int count_node_pages(unsigned long start, unsigned long len, int node)
  573. {
  574. unsigned long end = start + len;
  575. #ifdef CONFIG_ZONE_DMA
  576. if (start <= __pa(MAX_DMA_ADDRESS))
  577. mem_data[node].num_dma_physpages +=
  578. (min(end, __pa(MAX_DMA_ADDRESS)) - start) >>PAGE_SHIFT;
  579. #endif
  580. start = GRANULEROUNDDOWN(start);
  581. end = GRANULEROUNDUP(end);
  582. mem_data[node].max_pfn = max(mem_data[node].max_pfn,
  583. end >> PAGE_SHIFT);
  584. mem_data[node].min_pfn = min(mem_data[node].min_pfn,
  585. start >> PAGE_SHIFT);
  586. return 0;
  587. }
  588. /**
  589. * paging_init - setup page tables
  590. *
  591. * paging_init() sets up the page tables for each node of the system and frees
  592. * the bootmem allocator memory for general use.
  593. */
  594. void __init paging_init(void)
  595. {
  596. unsigned long max_dma;
  597. unsigned long pfn_offset = 0;
  598. unsigned long max_pfn = 0;
  599. int node;
  600. unsigned long max_zone_pfns[MAX_NR_ZONES];
  601. max_dma = virt_to_phys((void *) MAX_DMA_ADDRESS) >> PAGE_SHIFT;
  602. efi_memmap_walk(filter_rsvd_memory, count_node_pages);
  603. sparse_memory_present_with_active_regions(MAX_NUMNODES);
  604. sparse_init();
  605. #ifdef CONFIG_VIRTUAL_MEM_MAP
  606. VMALLOC_END -= PAGE_ALIGN(ALIGN(max_low_pfn, MAX_ORDER_NR_PAGES) *
  607. sizeof(struct page));
  608. vmem_map = (struct page *) VMALLOC_END;
  609. efi_memmap_walk(create_mem_map_page_table, NULL);
  610. printk("Virtual mem_map starts at 0x%p\n", vmem_map);
  611. #endif
  612. for_each_online_node(node) {
  613. pfn_offset = mem_data[node].min_pfn;
  614. #ifdef CONFIG_VIRTUAL_MEM_MAP
  615. NODE_DATA(node)->node_mem_map = vmem_map + pfn_offset;
  616. #endif
  617. if (mem_data[node].max_pfn > max_pfn)
  618. max_pfn = mem_data[node].max_pfn;
  619. }
  620. memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
  621. #ifdef CONFIG_ZONE_DMA
  622. max_zone_pfns[ZONE_DMA] = max_dma;
  623. #endif
  624. max_zone_pfns[ZONE_NORMAL] = max_pfn;
  625. free_area_init_nodes(max_zone_pfns);
  626. zero_page_memmap_ptr = virt_to_page(ia64_imva(empty_zero_page));
  627. }
  628. #ifdef CONFIG_MEMORY_HOTPLUG
  629. pg_data_t *arch_alloc_nodedata(int nid)
  630. {
  631. unsigned long size = compute_pernodesize(nid);
  632. return kzalloc(size, GFP_KERNEL);
  633. }
  634. void arch_free_nodedata(pg_data_t *pgdat)
  635. {
  636. kfree(pgdat);
  637. }
  638. void arch_refresh_nodedata(int update_node, pg_data_t *update_pgdat)
  639. {
  640. pgdat_list[update_node] = update_pgdat;
  641. scatter_node_data();
  642. }
  643. #endif
  644. #ifdef CONFIG_SPARSEMEM_VMEMMAP
  645. int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node)
  646. {
  647. return vmemmap_populate_basepages(start, end, node);
  648. }
  649. void vmemmap_free(unsigned long start, unsigned long end)
  650. {
  651. }
  652. #endif