123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219 |
- /*
- fp_trig.c: floating-point math routines for the Linux-m68k
- floating point emulator.
- Copyright (c) 1998-1999 David Huggins-Daines / Roman Zippel.
- I hereby give permission, free of charge, to copy, modify, and
- redistribute this software, in source or binary form, provided that
- the above copyright notice and the following disclaimer are included
- in all such copies.
- THIS SOFTWARE IS PROVIDED "AS IS", WITH ABSOLUTELY NO WARRANTY, REAL
- OR IMPLIED.
- */
- #include "fp_emu.h"
- static const struct fp_ext fp_one =
- {
- .exp = 0x3fff,
- };
- extern struct fp_ext *fp_fadd(struct fp_ext *dest, const struct fp_ext *src);
- extern struct fp_ext *fp_fdiv(struct fp_ext *dest, const struct fp_ext *src);
- struct fp_ext *
- fp_fsqrt(struct fp_ext *dest, struct fp_ext *src)
- {
- struct fp_ext tmp, src2;
- int i, exp;
- dprint(PINSTR, "fsqrt\n");
- fp_monadic_check(dest, src);
- if (IS_ZERO(dest))
- return dest;
- if (dest->sign) {
- fp_set_nan(dest);
- return dest;
- }
- if (IS_INF(dest))
- return dest;
- /*
- * sqrt(m) * 2^(p) , if e = 2*p
- * sqrt(m*2^e) =
- * sqrt(2*m) * 2^(p) , if e = 2*p + 1
- *
- * So we use the last bit of the exponent to decide whether to
- * use the m or 2*m.
- *
- * Since only the fractional part of the mantissa is stored and
- * the integer part is assumed to be one, we place a 1 or 2 into
- * the fixed point representation.
- */
- exp = dest->exp;
- dest->exp = 0x3FFF;
- if (!(exp & 1)) /* lowest bit of exponent is set */
- dest->exp++;
- fp_copy_ext(&src2, dest);
- /*
- * The taylor row around a for sqrt(x) is:
- * sqrt(x) = sqrt(a) + 1/(2*sqrt(a))*(x-a) + R
- * With a=1 this gives:
- * sqrt(x) = 1 + 1/2*(x-1)
- * = 1/2*(1+x)
- */
- fp_fadd(dest, &fp_one);
- dest->exp--; /* * 1/2 */
- /*
- * We now apply the newton rule to the function
- * f(x) := x^2 - r
- * which has a null point on x = sqrt(r).
- *
- * It gives:
- * x' := x - f(x)/f'(x)
- * = x - (x^2 -r)/(2*x)
- * = x - (x - r/x)/2
- * = (2*x - x + r/x)/2
- * = (x + r/x)/2
- */
- for (i = 0; i < 9; i++) {
- fp_copy_ext(&tmp, &src2);
- fp_fdiv(&tmp, dest);
- fp_fadd(dest, &tmp);
- dest->exp--;
- }
- dest->exp += (exp - 0x3FFF) / 2;
- return dest;
- }
- struct fp_ext *
- fp_fetoxm1(struct fp_ext *dest, struct fp_ext *src)
- {
- uprint("fetoxm1\n");
- fp_monadic_check(dest, src);
- return dest;
- }
- struct fp_ext *
- fp_fetox(struct fp_ext *dest, struct fp_ext *src)
- {
- uprint("fetox\n");
- fp_monadic_check(dest, src);
- return dest;
- }
- struct fp_ext *
- fp_ftwotox(struct fp_ext *dest, struct fp_ext *src)
- {
- uprint("ftwotox\n");
- fp_monadic_check(dest, src);
- return dest;
- }
- struct fp_ext *
- fp_ftentox(struct fp_ext *dest, struct fp_ext *src)
- {
- uprint("ftentox\n");
- fp_monadic_check(dest, src);
- return dest;
- }
- struct fp_ext *
- fp_flogn(struct fp_ext *dest, struct fp_ext *src)
- {
- uprint("flogn\n");
- fp_monadic_check(dest, src);
- return dest;
- }
- struct fp_ext *
- fp_flognp1(struct fp_ext *dest, struct fp_ext *src)
- {
- uprint("flognp1\n");
- fp_monadic_check(dest, src);
- return dest;
- }
- struct fp_ext *
- fp_flog10(struct fp_ext *dest, struct fp_ext *src)
- {
- uprint("flog10\n");
- fp_monadic_check(dest, src);
- return dest;
- }
- struct fp_ext *
- fp_flog2(struct fp_ext *dest, struct fp_ext *src)
- {
- uprint("flog2\n");
- fp_monadic_check(dest, src);
- return dest;
- }
- struct fp_ext *
- fp_fgetexp(struct fp_ext *dest, struct fp_ext *src)
- {
- dprint(PINSTR, "fgetexp\n");
- fp_monadic_check(dest, src);
- if (IS_INF(dest)) {
- fp_set_nan(dest);
- return dest;
- }
- if (IS_ZERO(dest))
- return dest;
- fp_conv_long2ext(dest, (int)dest->exp - 0x3FFF);
- fp_normalize_ext(dest);
- return dest;
- }
- struct fp_ext *
- fp_fgetman(struct fp_ext *dest, struct fp_ext *src)
- {
- dprint(PINSTR, "fgetman\n");
- fp_monadic_check(dest, src);
- if (IS_ZERO(dest))
- return dest;
- if (IS_INF(dest))
- return dest;
- dest->exp = 0x3FFF;
- return dest;
- }
|