smp-bmips.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567
  1. /*
  2. * This file is subject to the terms and conditions of the GNU General Public
  3. * License. See the file "COPYING" in the main directory of this archive
  4. * for more details.
  5. *
  6. * Copyright (C) 2011 by Kevin Cernekee (cernekee@gmail.com)
  7. *
  8. * SMP support for BMIPS
  9. */
  10. #include <linux/init.h>
  11. #include <linux/sched.h>
  12. #include <linux/mm.h>
  13. #include <linux/delay.h>
  14. #include <linux/smp.h>
  15. #include <linux/interrupt.h>
  16. #include <linux/spinlock.h>
  17. #include <linux/cpu.h>
  18. #include <linux/cpumask.h>
  19. #include <linux/reboot.h>
  20. #include <linux/io.h>
  21. #include <linux/compiler.h>
  22. #include <linux/linkage.h>
  23. #include <linux/bug.h>
  24. #include <linux/kernel.h>
  25. #include <asm/time.h>
  26. #include <asm/pgtable.h>
  27. #include <asm/processor.h>
  28. #include <asm/bootinfo.h>
  29. #include <asm/pmon.h>
  30. #include <asm/cacheflush.h>
  31. #include <asm/tlbflush.h>
  32. #include <asm/mipsregs.h>
  33. #include <asm/bmips.h>
  34. #include <asm/traps.h>
  35. #include <asm/barrier.h>
  36. #include <asm/cpu-features.h>
  37. static int __maybe_unused max_cpus = 1;
  38. /* these may be configured by the platform code */
  39. int bmips_smp_enabled = 1;
  40. int bmips_cpu_offset;
  41. cpumask_t bmips_booted_mask;
  42. unsigned long bmips_tp1_irqs = IE_IRQ1;
  43. #define RESET_FROM_KSEG0 0x80080800
  44. #define RESET_FROM_KSEG1 0xa0080800
  45. static void bmips_set_reset_vec(int cpu, u32 val);
  46. #ifdef CONFIG_SMP
  47. /* initial $sp, $gp - used by arch/mips/kernel/bmips_vec.S */
  48. unsigned long bmips_smp_boot_sp;
  49. unsigned long bmips_smp_boot_gp;
  50. static void bmips43xx_send_ipi_single(int cpu, unsigned int action);
  51. static void bmips5000_send_ipi_single(int cpu, unsigned int action);
  52. static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id);
  53. static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id);
  54. /* SW interrupts 0,1 are used for interprocessor signaling */
  55. #define IPI0_IRQ (MIPS_CPU_IRQ_BASE + 0)
  56. #define IPI1_IRQ (MIPS_CPU_IRQ_BASE + 1)
  57. #define CPUNUM(cpu, shift) (((cpu) + bmips_cpu_offset) << (shift))
  58. #define ACTION_CLR_IPI(cpu, ipi) (0x2000 | CPUNUM(cpu, 9) | ((ipi) << 8))
  59. #define ACTION_SET_IPI(cpu, ipi) (0x3000 | CPUNUM(cpu, 9) | ((ipi) << 8))
  60. #define ACTION_BOOT_THREAD(cpu) (0x08 | CPUNUM(cpu, 0))
  61. static void __init bmips_smp_setup(void)
  62. {
  63. int i, cpu = 1, boot_cpu = 0;
  64. int cpu_hw_intr;
  65. switch (current_cpu_type()) {
  66. case CPU_BMIPS4350:
  67. case CPU_BMIPS4380:
  68. /* arbitration priority */
  69. clear_c0_brcm_cmt_ctrl(0x30);
  70. /* NBK and weak order flags */
  71. set_c0_brcm_config_0(0x30000);
  72. /* Find out if we are running on TP0 or TP1 */
  73. boot_cpu = !!(read_c0_brcm_cmt_local() & (1 << 31));
  74. /*
  75. * MIPS interrupts 0,1 (SW INT 0,1) cross over to the other
  76. * thread
  77. * MIPS interrupt 2 (HW INT 0) is the CPU0 L1 controller output
  78. * MIPS interrupt 3 (HW INT 1) is the CPU1 L1 controller output
  79. */
  80. if (boot_cpu == 0)
  81. cpu_hw_intr = 0x02;
  82. else
  83. cpu_hw_intr = 0x1d;
  84. change_c0_brcm_cmt_intr(0xf8018000,
  85. (cpu_hw_intr << 27) | (0x03 << 15));
  86. /* single core, 2 threads (2 pipelines) */
  87. max_cpus = 2;
  88. break;
  89. case CPU_BMIPS5000:
  90. /* enable raceless SW interrupts */
  91. set_c0_brcm_config(0x03 << 22);
  92. /* route HW interrupt 0 to CPU0, HW interrupt 1 to CPU1 */
  93. change_c0_brcm_mode(0x1f << 27, 0x02 << 27);
  94. /* N cores, 2 threads per core */
  95. max_cpus = (((read_c0_brcm_config() >> 6) & 0x03) + 1) << 1;
  96. /* clear any pending SW interrupts */
  97. for (i = 0; i < max_cpus; i++) {
  98. write_c0_brcm_action(ACTION_CLR_IPI(i, 0));
  99. write_c0_brcm_action(ACTION_CLR_IPI(i, 1));
  100. }
  101. break;
  102. default:
  103. max_cpus = 1;
  104. }
  105. if (!bmips_smp_enabled)
  106. max_cpus = 1;
  107. /* this can be overridden by the BSP */
  108. if (!board_ebase_setup)
  109. board_ebase_setup = &bmips_ebase_setup;
  110. __cpu_number_map[boot_cpu] = 0;
  111. __cpu_logical_map[0] = boot_cpu;
  112. for (i = 0; i < max_cpus; i++) {
  113. if (i != boot_cpu) {
  114. __cpu_number_map[i] = cpu;
  115. __cpu_logical_map[cpu] = i;
  116. cpu++;
  117. }
  118. set_cpu_possible(i, 1);
  119. set_cpu_present(i, 1);
  120. }
  121. }
  122. /*
  123. * IPI IRQ setup - runs on CPU0
  124. */
  125. static void bmips_prepare_cpus(unsigned int max_cpus)
  126. {
  127. irqreturn_t (*bmips_ipi_interrupt)(int irq, void *dev_id);
  128. switch (current_cpu_type()) {
  129. case CPU_BMIPS4350:
  130. case CPU_BMIPS4380:
  131. bmips_ipi_interrupt = bmips43xx_ipi_interrupt;
  132. break;
  133. case CPU_BMIPS5000:
  134. bmips_ipi_interrupt = bmips5000_ipi_interrupt;
  135. break;
  136. default:
  137. return;
  138. }
  139. if (request_irq(IPI0_IRQ, bmips_ipi_interrupt,
  140. IRQF_PERCPU | IRQF_NO_SUSPEND, "smp_ipi0", NULL))
  141. panic("Can't request IPI0 interrupt");
  142. if (request_irq(IPI1_IRQ, bmips_ipi_interrupt,
  143. IRQF_PERCPU | IRQF_NO_SUSPEND, "smp_ipi1", NULL))
  144. panic("Can't request IPI1 interrupt");
  145. }
  146. /*
  147. * Tell the hardware to boot CPUx - runs on CPU0
  148. */
  149. static void bmips_boot_secondary(int cpu, struct task_struct *idle)
  150. {
  151. bmips_smp_boot_sp = __KSTK_TOS(idle);
  152. bmips_smp_boot_gp = (unsigned long)task_thread_info(idle);
  153. mb();
  154. /*
  155. * Initial boot sequence for secondary CPU:
  156. * bmips_reset_nmi_vec @ a000_0000 ->
  157. * bmips_smp_entry ->
  158. * plat_wired_tlb_setup (cached function call; optional) ->
  159. * start_secondary (cached jump)
  160. *
  161. * Warm restart sequence:
  162. * play_dead WAIT loop ->
  163. * bmips_smp_int_vec @ BMIPS_WARM_RESTART_VEC ->
  164. * eret to play_dead ->
  165. * bmips_secondary_reentry ->
  166. * start_secondary
  167. */
  168. pr_info("SMP: Booting CPU%d...\n", cpu);
  169. if (cpumask_test_cpu(cpu, &bmips_booted_mask)) {
  170. /* kseg1 might not exist if this CPU enabled XKS01 */
  171. bmips_set_reset_vec(cpu, RESET_FROM_KSEG0);
  172. switch (current_cpu_type()) {
  173. case CPU_BMIPS4350:
  174. case CPU_BMIPS4380:
  175. bmips43xx_send_ipi_single(cpu, 0);
  176. break;
  177. case CPU_BMIPS5000:
  178. bmips5000_send_ipi_single(cpu, 0);
  179. break;
  180. }
  181. } else {
  182. bmips_set_reset_vec(cpu, RESET_FROM_KSEG1);
  183. switch (current_cpu_type()) {
  184. case CPU_BMIPS4350:
  185. case CPU_BMIPS4380:
  186. /* Reset slave TP1 if booting from TP0 */
  187. if (cpu_logical_map(cpu) == 1)
  188. set_c0_brcm_cmt_ctrl(0x01);
  189. break;
  190. case CPU_BMIPS5000:
  191. write_c0_brcm_action(ACTION_BOOT_THREAD(cpu));
  192. break;
  193. }
  194. cpumask_set_cpu(cpu, &bmips_booted_mask);
  195. }
  196. }
  197. /*
  198. * Early setup - runs on secondary CPU after cache probe
  199. */
  200. static void bmips_init_secondary(void)
  201. {
  202. switch (current_cpu_type()) {
  203. case CPU_BMIPS4350:
  204. case CPU_BMIPS4380:
  205. clear_c0_cause(smp_processor_id() ? C_SW1 : C_SW0);
  206. break;
  207. case CPU_BMIPS5000:
  208. write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), 0));
  209. break;
  210. }
  211. }
  212. /*
  213. * Late setup - runs on secondary CPU before entering the idle loop
  214. */
  215. static void bmips_smp_finish(void)
  216. {
  217. pr_info("SMP: CPU%d is running\n", smp_processor_id());
  218. /* make sure there won't be a timer interrupt for a little while */
  219. write_c0_compare(read_c0_count() + mips_hpt_frequency / HZ);
  220. irq_enable_hazard();
  221. set_c0_status(IE_SW0 | IE_SW1 | bmips_tp1_irqs | IE_IRQ5 | ST0_IE);
  222. irq_enable_hazard();
  223. }
  224. /*
  225. * BMIPS5000 raceless IPIs
  226. *
  227. * Each CPU has two inbound SW IRQs which are independent of all other CPUs.
  228. * IPI0 is used for SMP_RESCHEDULE_YOURSELF
  229. * IPI1 is used for SMP_CALL_FUNCTION
  230. */
  231. static void bmips5000_send_ipi_single(int cpu, unsigned int action)
  232. {
  233. write_c0_brcm_action(ACTION_SET_IPI(cpu, action == SMP_CALL_FUNCTION));
  234. }
  235. static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id)
  236. {
  237. int action = irq - IPI0_IRQ;
  238. write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), action));
  239. if (action == 0)
  240. scheduler_ipi();
  241. else
  242. generic_smp_call_function_interrupt();
  243. return IRQ_HANDLED;
  244. }
  245. static void bmips5000_send_ipi_mask(const struct cpumask *mask,
  246. unsigned int action)
  247. {
  248. unsigned int i;
  249. for_each_cpu(i, mask)
  250. bmips5000_send_ipi_single(i, action);
  251. }
  252. /*
  253. * BMIPS43xx racey IPIs
  254. *
  255. * We use one inbound SW IRQ for each CPU.
  256. *
  257. * A spinlock must be held in order to keep CPUx from accidentally clearing
  258. * an incoming IPI when it writes CP0 CAUSE to raise an IPI on CPUy. The
  259. * same spinlock is used to protect the action masks.
  260. */
  261. static DEFINE_SPINLOCK(ipi_lock);
  262. static DEFINE_PER_CPU(int, ipi_action_mask);
  263. static void bmips43xx_send_ipi_single(int cpu, unsigned int action)
  264. {
  265. unsigned long flags;
  266. spin_lock_irqsave(&ipi_lock, flags);
  267. set_c0_cause(cpu ? C_SW1 : C_SW0);
  268. per_cpu(ipi_action_mask, cpu) |= action;
  269. irq_enable_hazard();
  270. spin_unlock_irqrestore(&ipi_lock, flags);
  271. }
  272. static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id)
  273. {
  274. unsigned long flags;
  275. int action, cpu = irq - IPI0_IRQ;
  276. spin_lock_irqsave(&ipi_lock, flags);
  277. action = __this_cpu_read(ipi_action_mask);
  278. per_cpu(ipi_action_mask, cpu) = 0;
  279. clear_c0_cause(cpu ? C_SW1 : C_SW0);
  280. spin_unlock_irqrestore(&ipi_lock, flags);
  281. if (action & SMP_RESCHEDULE_YOURSELF)
  282. scheduler_ipi();
  283. if (action & SMP_CALL_FUNCTION)
  284. generic_smp_call_function_interrupt();
  285. return IRQ_HANDLED;
  286. }
  287. static void bmips43xx_send_ipi_mask(const struct cpumask *mask,
  288. unsigned int action)
  289. {
  290. unsigned int i;
  291. for_each_cpu(i, mask)
  292. bmips43xx_send_ipi_single(i, action);
  293. }
  294. #ifdef CONFIG_HOTPLUG_CPU
  295. static int bmips_cpu_disable(void)
  296. {
  297. unsigned int cpu = smp_processor_id();
  298. if (cpu == 0)
  299. return -EBUSY;
  300. pr_info("SMP: CPU%d is offline\n", cpu);
  301. set_cpu_online(cpu, false);
  302. cpumask_clear_cpu(cpu, &cpu_callin_map);
  303. clear_c0_status(IE_IRQ5);
  304. local_flush_tlb_all();
  305. local_flush_icache_range(0, ~0);
  306. return 0;
  307. }
  308. static void bmips_cpu_die(unsigned int cpu)
  309. {
  310. }
  311. void __ref play_dead(void)
  312. {
  313. idle_task_exit();
  314. /* flush data cache */
  315. _dma_cache_wback_inv(0, ~0);
  316. /*
  317. * Wakeup is on SW0 or SW1; disable everything else
  318. * Use BEV !IV (BMIPS_WARM_RESTART_VEC) to avoid the regular Linux
  319. * IRQ handlers; this clears ST0_IE and returns immediately.
  320. */
  321. clear_c0_cause(CAUSEF_IV | C_SW0 | C_SW1);
  322. change_c0_status(
  323. IE_IRQ5 | bmips_tp1_irqs | IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV,
  324. IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV);
  325. irq_disable_hazard();
  326. /*
  327. * wait for SW interrupt from bmips_boot_secondary(), then jump
  328. * back to start_secondary()
  329. */
  330. __asm__ __volatile__(
  331. " wait\n"
  332. " j bmips_secondary_reentry\n"
  333. : : : "memory");
  334. }
  335. #endif /* CONFIG_HOTPLUG_CPU */
  336. struct plat_smp_ops bmips43xx_smp_ops = {
  337. .smp_setup = bmips_smp_setup,
  338. .prepare_cpus = bmips_prepare_cpus,
  339. .boot_secondary = bmips_boot_secondary,
  340. .smp_finish = bmips_smp_finish,
  341. .init_secondary = bmips_init_secondary,
  342. .send_ipi_single = bmips43xx_send_ipi_single,
  343. .send_ipi_mask = bmips43xx_send_ipi_mask,
  344. #ifdef CONFIG_HOTPLUG_CPU
  345. .cpu_disable = bmips_cpu_disable,
  346. .cpu_die = bmips_cpu_die,
  347. #endif
  348. };
  349. struct plat_smp_ops bmips5000_smp_ops = {
  350. .smp_setup = bmips_smp_setup,
  351. .prepare_cpus = bmips_prepare_cpus,
  352. .boot_secondary = bmips_boot_secondary,
  353. .smp_finish = bmips_smp_finish,
  354. .init_secondary = bmips_init_secondary,
  355. .send_ipi_single = bmips5000_send_ipi_single,
  356. .send_ipi_mask = bmips5000_send_ipi_mask,
  357. #ifdef CONFIG_HOTPLUG_CPU
  358. .cpu_disable = bmips_cpu_disable,
  359. .cpu_die = bmips_cpu_die,
  360. #endif
  361. };
  362. #endif /* CONFIG_SMP */
  363. /***********************************************************************
  364. * BMIPS vector relocation
  365. * This is primarily used for SMP boot, but it is applicable to some
  366. * UP BMIPS systems as well.
  367. ***********************************************************************/
  368. static void bmips_wr_vec(unsigned long dst, char *start, char *end)
  369. {
  370. memcpy((void *)dst, start, end - start);
  371. dma_cache_wback(dst, end - start);
  372. local_flush_icache_range(dst, dst + (end - start));
  373. instruction_hazard();
  374. }
  375. static inline void bmips_nmi_handler_setup(void)
  376. {
  377. bmips_wr_vec(BMIPS_NMI_RESET_VEC, &bmips_reset_nmi_vec,
  378. &bmips_reset_nmi_vec_end);
  379. bmips_wr_vec(BMIPS_WARM_RESTART_VEC, &bmips_smp_int_vec,
  380. &bmips_smp_int_vec_end);
  381. }
  382. struct reset_vec_info {
  383. int cpu;
  384. u32 val;
  385. };
  386. static void bmips_set_reset_vec_remote(void *vinfo)
  387. {
  388. struct reset_vec_info *info = vinfo;
  389. int shift = info->cpu & 0x01 ? 16 : 0;
  390. u32 mask = ~(0xffff << shift), val = info->val >> 16;
  391. preempt_disable();
  392. if (smp_processor_id() > 0) {
  393. smp_call_function_single(0, &bmips_set_reset_vec_remote,
  394. info, 1);
  395. } else {
  396. if (info->cpu & 0x02) {
  397. /* BMIPS5200 "should" use mask/shift, but it's buggy */
  398. bmips_write_zscm_reg(0xa0, (val << 16) | val);
  399. bmips_read_zscm_reg(0xa0);
  400. } else {
  401. write_c0_brcm_bootvec((read_c0_brcm_bootvec() & mask) |
  402. (val << shift));
  403. }
  404. }
  405. preempt_enable();
  406. }
  407. static void bmips_set_reset_vec(int cpu, u32 val)
  408. {
  409. struct reset_vec_info info;
  410. if (current_cpu_type() == CPU_BMIPS5000) {
  411. /* this needs to run from CPU0 (which is always online) */
  412. info.cpu = cpu;
  413. info.val = val;
  414. bmips_set_reset_vec_remote(&info);
  415. } else {
  416. void __iomem *cbr = BMIPS_GET_CBR();
  417. if (cpu == 0)
  418. __raw_writel(val, cbr + BMIPS_RELO_VECTOR_CONTROL_0);
  419. else {
  420. if (current_cpu_type() != CPU_BMIPS4380)
  421. return;
  422. __raw_writel(val, cbr + BMIPS_RELO_VECTOR_CONTROL_1);
  423. }
  424. }
  425. __sync();
  426. back_to_back_c0_hazard();
  427. }
  428. void bmips_ebase_setup(void)
  429. {
  430. unsigned long new_ebase = ebase;
  431. BUG_ON(ebase != CKSEG0);
  432. switch (current_cpu_type()) {
  433. case CPU_BMIPS4350:
  434. /*
  435. * BMIPS4350 cannot relocate the normal vectors, but it
  436. * can relocate the BEV=1 vectors. So CPU1 starts up at
  437. * the relocated BEV=1, IV=0 general exception vector @
  438. * 0xa000_0380.
  439. *
  440. * set_uncached_handler() is used here because:
  441. * - CPU1 will run this from uncached space
  442. * - None of the cacheflush functions are set up yet
  443. */
  444. set_uncached_handler(BMIPS_WARM_RESTART_VEC - CKSEG0,
  445. &bmips_smp_int_vec, 0x80);
  446. __sync();
  447. return;
  448. case CPU_BMIPS3300:
  449. case CPU_BMIPS4380:
  450. /*
  451. * 0x8000_0000: reset/NMI (initially in kseg1)
  452. * 0x8000_0400: normal vectors
  453. */
  454. new_ebase = 0x80000400;
  455. bmips_set_reset_vec(0, RESET_FROM_KSEG0);
  456. break;
  457. case CPU_BMIPS5000:
  458. /*
  459. * 0x8000_0000: reset/NMI (initially in kseg1)
  460. * 0x8000_1000: normal vectors
  461. */
  462. new_ebase = 0x80001000;
  463. bmips_set_reset_vec(0, RESET_FROM_KSEG0);
  464. write_c0_ebase(new_ebase);
  465. break;
  466. default:
  467. return;
  468. }
  469. board_nmi_handler_setup = &bmips_nmi_handler_setup;
  470. ebase = new_ebase;
  471. }
  472. asmlinkage void __weak plat_wired_tlb_setup(void)
  473. {
  474. /*
  475. * Called when starting/restarting a secondary CPU.
  476. * Kernel stacks and other important data might only be accessible
  477. * once the wired entries are present.
  478. */
  479. }