mmu-hash64.h 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612
  1. #ifndef _ASM_POWERPC_MMU_HASH64_H_
  2. #define _ASM_POWERPC_MMU_HASH64_H_
  3. /*
  4. * PowerPC64 memory management structures
  5. *
  6. * Dave Engebretsen & Mike Corrigan <{engebret|mikejc}@us.ibm.com>
  7. * PPC64 rework.
  8. *
  9. * This program is free software; you can redistribute it and/or
  10. * modify it under the terms of the GNU General Public License
  11. * as published by the Free Software Foundation; either version
  12. * 2 of the License, or (at your option) any later version.
  13. */
  14. #include <asm/asm-compat.h>
  15. #include <asm/page.h>
  16. #include <asm/bug.h>
  17. /*
  18. * This is necessary to get the definition of PGTABLE_RANGE which we
  19. * need for various slices related matters. Note that this isn't the
  20. * complete pgtable.h but only a portion of it.
  21. */
  22. #include <asm/pgtable-ppc64.h>
  23. #include <asm/bug.h>
  24. #include <asm/processor.h>
  25. /*
  26. * SLB
  27. */
  28. #define SLB_NUM_BOLTED 3
  29. #define SLB_CACHE_ENTRIES 8
  30. #define SLB_MIN_SIZE 32
  31. /* Bits in the SLB ESID word */
  32. #define SLB_ESID_V ASM_CONST(0x0000000008000000) /* valid */
  33. /* Bits in the SLB VSID word */
  34. #define SLB_VSID_SHIFT 12
  35. #define SLB_VSID_SHIFT_1T 24
  36. #define SLB_VSID_SSIZE_SHIFT 62
  37. #define SLB_VSID_B ASM_CONST(0xc000000000000000)
  38. #define SLB_VSID_B_256M ASM_CONST(0x0000000000000000)
  39. #define SLB_VSID_B_1T ASM_CONST(0x4000000000000000)
  40. #define SLB_VSID_KS ASM_CONST(0x0000000000000800)
  41. #define SLB_VSID_KP ASM_CONST(0x0000000000000400)
  42. #define SLB_VSID_N ASM_CONST(0x0000000000000200) /* no-execute */
  43. #define SLB_VSID_L ASM_CONST(0x0000000000000100)
  44. #define SLB_VSID_C ASM_CONST(0x0000000000000080) /* class */
  45. #define SLB_VSID_LP ASM_CONST(0x0000000000000030)
  46. #define SLB_VSID_LP_00 ASM_CONST(0x0000000000000000)
  47. #define SLB_VSID_LP_01 ASM_CONST(0x0000000000000010)
  48. #define SLB_VSID_LP_10 ASM_CONST(0x0000000000000020)
  49. #define SLB_VSID_LP_11 ASM_CONST(0x0000000000000030)
  50. #define SLB_VSID_LLP (SLB_VSID_L|SLB_VSID_LP)
  51. #define SLB_VSID_KERNEL (SLB_VSID_KP)
  52. #define SLB_VSID_USER (SLB_VSID_KP|SLB_VSID_KS|SLB_VSID_C)
  53. #define SLBIE_C (0x08000000)
  54. #define SLBIE_SSIZE_SHIFT 25
  55. /*
  56. * Hash table
  57. */
  58. #define HPTES_PER_GROUP 8
  59. #define HPTE_V_SSIZE_SHIFT 62
  60. #define HPTE_V_AVPN_SHIFT 7
  61. #define HPTE_V_AVPN ASM_CONST(0x3fffffffffffff80)
  62. #define HPTE_V_AVPN_VAL(x) (((x) & HPTE_V_AVPN) >> HPTE_V_AVPN_SHIFT)
  63. #define HPTE_V_COMPARE(x,y) (!(((x) ^ (y)) & 0xffffffffffffff80UL))
  64. #define HPTE_V_BOLTED ASM_CONST(0x0000000000000010)
  65. #define HPTE_V_LOCK ASM_CONST(0x0000000000000008)
  66. #define HPTE_V_LARGE ASM_CONST(0x0000000000000004)
  67. #define HPTE_V_SECONDARY ASM_CONST(0x0000000000000002)
  68. #define HPTE_V_VALID ASM_CONST(0x0000000000000001)
  69. #define HPTE_R_PP0 ASM_CONST(0x8000000000000000)
  70. #define HPTE_R_TS ASM_CONST(0x4000000000000000)
  71. #define HPTE_R_KEY_HI ASM_CONST(0x3000000000000000)
  72. #define HPTE_R_RPN_SHIFT 12
  73. #define HPTE_R_RPN ASM_CONST(0x0ffffffffffff000)
  74. #define HPTE_R_PP ASM_CONST(0x0000000000000003)
  75. #define HPTE_R_N ASM_CONST(0x0000000000000004)
  76. #define HPTE_R_G ASM_CONST(0x0000000000000008)
  77. #define HPTE_R_M ASM_CONST(0x0000000000000010)
  78. #define HPTE_R_I ASM_CONST(0x0000000000000020)
  79. #define HPTE_R_W ASM_CONST(0x0000000000000040)
  80. #define HPTE_R_WIMG ASM_CONST(0x0000000000000078)
  81. #define HPTE_R_C ASM_CONST(0x0000000000000080)
  82. #define HPTE_R_R ASM_CONST(0x0000000000000100)
  83. #define HPTE_R_KEY_LO ASM_CONST(0x0000000000000e00)
  84. #define HPTE_V_1TB_SEG ASM_CONST(0x4000000000000000)
  85. #define HPTE_V_VRMA_MASK ASM_CONST(0x4001ffffff000000)
  86. /* Values for PP (assumes Ks=0, Kp=1) */
  87. #define PP_RWXX 0 /* Supervisor read/write, User none */
  88. #define PP_RWRX 1 /* Supervisor read/write, User read */
  89. #define PP_RWRW 2 /* Supervisor read/write, User read/write */
  90. #define PP_RXRX 3 /* Supervisor read, User read */
  91. #define PP_RXXX (HPTE_R_PP0 | 2) /* Supervisor read, user none */
  92. /* Fields for tlbiel instruction in architecture 2.06 */
  93. #define TLBIEL_INVAL_SEL_MASK 0xc00 /* invalidation selector */
  94. #define TLBIEL_INVAL_PAGE 0x000 /* invalidate a single page */
  95. #define TLBIEL_INVAL_SET_LPID 0x800 /* invalidate a set for current LPID */
  96. #define TLBIEL_INVAL_SET 0xc00 /* invalidate a set for all LPIDs */
  97. #define TLBIEL_INVAL_SET_MASK 0xfff000 /* set number to inval. */
  98. #define TLBIEL_INVAL_SET_SHIFT 12
  99. #define POWER7_TLB_SETS 128 /* # sets in POWER7 TLB */
  100. #define POWER8_TLB_SETS 512 /* # sets in POWER8 TLB */
  101. #ifndef __ASSEMBLY__
  102. struct hash_pte {
  103. __be64 v;
  104. __be64 r;
  105. };
  106. extern struct hash_pte *htab_address;
  107. extern unsigned long htab_size_bytes;
  108. extern unsigned long htab_hash_mask;
  109. /*
  110. * Page size definition
  111. *
  112. * shift : is the "PAGE_SHIFT" value for that page size
  113. * sllp : is a bit mask with the value of SLB L || LP to be or'ed
  114. * directly to a slbmte "vsid" value
  115. * penc : is the HPTE encoding mask for the "LP" field:
  116. *
  117. */
  118. struct mmu_psize_def
  119. {
  120. unsigned int shift; /* number of bits */
  121. int penc[MMU_PAGE_COUNT]; /* HPTE encoding */
  122. unsigned int tlbiel; /* tlbiel supported for that page size */
  123. unsigned long avpnm; /* bits to mask out in AVPN in the HPTE */
  124. unsigned long sllp; /* SLB L||LP (exact mask to use in slbmte) */
  125. };
  126. extern struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
  127. static inline int shift_to_mmu_psize(unsigned int shift)
  128. {
  129. int psize;
  130. for (psize = 0; psize < MMU_PAGE_COUNT; ++psize)
  131. if (mmu_psize_defs[psize].shift == shift)
  132. return psize;
  133. return -1;
  134. }
  135. static inline unsigned int mmu_psize_to_shift(unsigned int mmu_psize)
  136. {
  137. if (mmu_psize_defs[mmu_psize].shift)
  138. return mmu_psize_defs[mmu_psize].shift;
  139. BUG();
  140. }
  141. #endif /* __ASSEMBLY__ */
  142. /*
  143. * Segment sizes.
  144. * These are the values used by hardware in the B field of
  145. * SLB entries and the first dword of MMU hashtable entries.
  146. * The B field is 2 bits; the values 2 and 3 are unused and reserved.
  147. */
  148. #define MMU_SEGSIZE_256M 0
  149. #define MMU_SEGSIZE_1T 1
  150. /*
  151. * encode page number shift.
  152. * in order to fit the 78 bit va in a 64 bit variable we shift the va by
  153. * 12 bits. This enable us to address upto 76 bit va.
  154. * For hpt hash from a va we can ignore the page size bits of va and for
  155. * hpte encoding we ignore up to 23 bits of va. So ignoring lower 12 bits ensure
  156. * we work in all cases including 4k page size.
  157. */
  158. #define VPN_SHIFT 12
  159. /*
  160. * HPTE Large Page (LP) details
  161. */
  162. #define LP_SHIFT 12
  163. #define LP_BITS 8
  164. #define LP_MASK(i) ((0xFF >> (i)) << LP_SHIFT)
  165. #ifndef __ASSEMBLY__
  166. static inline int slb_vsid_shift(int ssize)
  167. {
  168. if (ssize == MMU_SEGSIZE_256M)
  169. return SLB_VSID_SHIFT;
  170. return SLB_VSID_SHIFT_1T;
  171. }
  172. static inline int segment_shift(int ssize)
  173. {
  174. if (ssize == MMU_SEGSIZE_256M)
  175. return SID_SHIFT;
  176. return SID_SHIFT_1T;
  177. }
  178. /*
  179. * The current system page and segment sizes
  180. */
  181. extern int mmu_linear_psize;
  182. extern int mmu_virtual_psize;
  183. extern int mmu_vmalloc_psize;
  184. extern int mmu_vmemmap_psize;
  185. extern int mmu_io_psize;
  186. extern int mmu_kernel_ssize;
  187. extern int mmu_highuser_ssize;
  188. extern u16 mmu_slb_size;
  189. extern unsigned long tce_alloc_start, tce_alloc_end;
  190. /*
  191. * If the processor supports 64k normal pages but not 64k cache
  192. * inhibited pages, we have to be prepared to switch processes
  193. * to use 4k pages when they create cache-inhibited mappings.
  194. * If this is the case, mmu_ci_restrictions will be set to 1.
  195. */
  196. extern int mmu_ci_restrictions;
  197. /*
  198. * This computes the AVPN and B fields of the first dword of a HPTE,
  199. * for use when we want to match an existing PTE. The bottom 7 bits
  200. * of the returned value are zero.
  201. */
  202. static inline unsigned long hpte_encode_avpn(unsigned long vpn, int psize,
  203. int ssize)
  204. {
  205. unsigned long v;
  206. /*
  207. * The AVA field omits the low-order 23 bits of the 78 bits VA.
  208. * These bits are not needed in the PTE, because the
  209. * low-order b of these bits are part of the byte offset
  210. * into the virtual page and, if b < 23, the high-order
  211. * 23-b of these bits are always used in selecting the
  212. * PTEGs to be searched
  213. */
  214. v = (vpn >> (23 - VPN_SHIFT)) & ~(mmu_psize_defs[psize].avpnm);
  215. v <<= HPTE_V_AVPN_SHIFT;
  216. v |= ((unsigned long) ssize) << HPTE_V_SSIZE_SHIFT;
  217. return v;
  218. }
  219. /*
  220. * This function sets the AVPN and L fields of the HPTE appropriately
  221. * using the base page size and actual page size.
  222. */
  223. static inline unsigned long hpte_encode_v(unsigned long vpn, int base_psize,
  224. int actual_psize, int ssize)
  225. {
  226. unsigned long v;
  227. v = hpte_encode_avpn(vpn, base_psize, ssize);
  228. if (actual_psize != MMU_PAGE_4K)
  229. v |= HPTE_V_LARGE;
  230. return v;
  231. }
  232. /*
  233. * This function sets the ARPN, and LP fields of the HPTE appropriately
  234. * for the page size. We assume the pa is already "clean" that is properly
  235. * aligned for the requested page size
  236. */
  237. static inline unsigned long hpte_encode_r(unsigned long pa, int base_psize,
  238. int actual_psize)
  239. {
  240. /* A 4K page needs no special encoding */
  241. if (actual_psize == MMU_PAGE_4K)
  242. return pa & HPTE_R_RPN;
  243. else {
  244. unsigned int penc = mmu_psize_defs[base_psize].penc[actual_psize];
  245. unsigned int shift = mmu_psize_defs[actual_psize].shift;
  246. return (pa & ~((1ul << shift) - 1)) | (penc << LP_SHIFT);
  247. }
  248. }
  249. /*
  250. * Build a VPN_SHIFT bit shifted va given VSID, EA and segment size.
  251. */
  252. static inline unsigned long hpt_vpn(unsigned long ea,
  253. unsigned long vsid, int ssize)
  254. {
  255. unsigned long mask;
  256. int s_shift = segment_shift(ssize);
  257. mask = (1ul << (s_shift - VPN_SHIFT)) - 1;
  258. return (vsid << (s_shift - VPN_SHIFT)) | ((ea >> VPN_SHIFT) & mask);
  259. }
  260. /*
  261. * This hashes a virtual address
  262. */
  263. static inline unsigned long hpt_hash(unsigned long vpn,
  264. unsigned int shift, int ssize)
  265. {
  266. int mask;
  267. unsigned long hash, vsid;
  268. /* VPN_SHIFT can be atmost 12 */
  269. if (ssize == MMU_SEGSIZE_256M) {
  270. mask = (1ul << (SID_SHIFT - VPN_SHIFT)) - 1;
  271. hash = (vpn >> (SID_SHIFT - VPN_SHIFT)) ^
  272. ((vpn & mask) >> (shift - VPN_SHIFT));
  273. } else {
  274. mask = (1ul << (SID_SHIFT_1T - VPN_SHIFT)) - 1;
  275. vsid = vpn >> (SID_SHIFT_1T - VPN_SHIFT);
  276. hash = vsid ^ (vsid << 25) ^
  277. ((vpn & mask) >> (shift - VPN_SHIFT)) ;
  278. }
  279. return hash & 0x7fffffffffUL;
  280. }
  281. #define HPTE_LOCAL_UPDATE 0x1
  282. #define HPTE_NOHPTE_UPDATE 0x2
  283. extern int __hash_page_4K(unsigned long ea, unsigned long access,
  284. unsigned long vsid, pte_t *ptep, unsigned long trap,
  285. unsigned long flags, int ssize, int subpage_prot);
  286. extern int __hash_page_64K(unsigned long ea, unsigned long access,
  287. unsigned long vsid, pte_t *ptep, unsigned long trap,
  288. unsigned long flags, int ssize);
  289. struct mm_struct;
  290. unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap);
  291. extern int hash_page_mm(struct mm_struct *mm, unsigned long ea,
  292. unsigned long access, unsigned long trap,
  293. unsigned long flags);
  294. extern int hash_page(unsigned long ea, unsigned long access, unsigned long trap,
  295. unsigned long dsisr);
  296. int __hash_page_huge(unsigned long ea, unsigned long access, unsigned long vsid,
  297. pte_t *ptep, unsigned long trap, unsigned long flags,
  298. int ssize, unsigned int shift, unsigned int mmu_psize);
  299. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  300. extern int __hash_page_thp(unsigned long ea, unsigned long access,
  301. unsigned long vsid, pmd_t *pmdp, unsigned long trap,
  302. unsigned long flags, int ssize, unsigned int psize);
  303. #else
  304. static inline int __hash_page_thp(unsigned long ea, unsigned long access,
  305. unsigned long vsid, pmd_t *pmdp,
  306. unsigned long trap, unsigned long flags,
  307. int ssize, unsigned int psize)
  308. {
  309. BUG();
  310. return -1;
  311. }
  312. #endif
  313. extern void hash_failure_debug(unsigned long ea, unsigned long access,
  314. unsigned long vsid, unsigned long trap,
  315. int ssize, int psize, int lpsize,
  316. unsigned long pte);
  317. extern int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
  318. unsigned long pstart, unsigned long prot,
  319. int psize, int ssize);
  320. int htab_remove_mapping(unsigned long vstart, unsigned long vend,
  321. int psize, int ssize);
  322. extern void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages);
  323. extern void demote_segment_4k(struct mm_struct *mm, unsigned long addr);
  324. extern void hpte_init_native(void);
  325. extern void hpte_init_lpar(void);
  326. extern void hpte_init_beat(void);
  327. extern void hpte_init_beat_v3(void);
  328. extern void slb_initialize(void);
  329. extern void slb_flush_and_rebolt(void);
  330. extern void slb_vmalloc_update(void);
  331. extern void slb_set_size(u16 size);
  332. #endif /* __ASSEMBLY__ */
  333. /*
  334. * VSID allocation (256MB segment)
  335. *
  336. * We first generate a 37-bit "proto-VSID". Proto-VSIDs are generated
  337. * from mmu context id and effective segment id of the address.
  338. *
  339. * For user processes max context id is limited to ((1ul << 19) - 5)
  340. * for kernel space, we use the top 4 context ids to map address as below
  341. * NOTE: each context only support 64TB now.
  342. * 0x7fffc - [ 0xc000000000000000 - 0xc0003fffffffffff ]
  343. * 0x7fffd - [ 0xd000000000000000 - 0xd0003fffffffffff ]
  344. * 0x7fffe - [ 0xe000000000000000 - 0xe0003fffffffffff ]
  345. * 0x7ffff - [ 0xf000000000000000 - 0xf0003fffffffffff ]
  346. *
  347. * The proto-VSIDs are then scrambled into real VSIDs with the
  348. * multiplicative hash:
  349. *
  350. * VSID = (proto-VSID * VSID_MULTIPLIER) % VSID_MODULUS
  351. *
  352. * VSID_MULTIPLIER is prime, so in particular it is
  353. * co-prime to VSID_MODULUS, making this a 1:1 scrambling function.
  354. * Because the modulus is 2^n-1 we can compute it efficiently without
  355. * a divide or extra multiply (see below). The scramble function gives
  356. * robust scattering in the hash table (at least based on some initial
  357. * results).
  358. *
  359. * We also consider VSID 0 special. We use VSID 0 for slb entries mapping
  360. * bad address. This enables us to consolidate bad address handling in
  361. * hash_page.
  362. *
  363. * We also need to avoid the last segment of the last context, because that
  364. * would give a protovsid of 0x1fffffffff. That will result in a VSID 0
  365. * because of the modulo operation in vsid scramble. But the vmemmap
  366. * (which is what uses region 0xf) will never be close to 64TB in size
  367. * (it's 56 bytes per page of system memory).
  368. */
  369. #define CONTEXT_BITS 19
  370. #define ESID_BITS 18
  371. #define ESID_BITS_1T 6
  372. /*
  373. * 256MB segment
  374. * The proto-VSID space has 2^(CONTEX_BITS + ESID_BITS) - 1 segments
  375. * available for user + kernel mapping. The top 4 contexts are used for
  376. * kernel mapping. Each segment contains 2^28 bytes. Each
  377. * context maps 2^46 bytes (64TB) so we can support 2^19-1 contexts
  378. * (19 == 37 + 28 - 46).
  379. */
  380. #define MAX_USER_CONTEXT ((ASM_CONST(1) << CONTEXT_BITS) - 5)
  381. /*
  382. * This should be computed such that protovosid * vsid_mulitplier
  383. * doesn't overflow 64 bits. It should also be co-prime to vsid_modulus
  384. */
  385. #define VSID_MULTIPLIER_256M ASM_CONST(12538073) /* 24-bit prime */
  386. #define VSID_BITS_256M (CONTEXT_BITS + ESID_BITS)
  387. #define VSID_MODULUS_256M ((1UL<<VSID_BITS_256M)-1)
  388. #define VSID_MULTIPLIER_1T ASM_CONST(12538073) /* 24-bit prime */
  389. #define VSID_BITS_1T (CONTEXT_BITS + ESID_BITS_1T)
  390. #define VSID_MODULUS_1T ((1UL<<VSID_BITS_1T)-1)
  391. #define USER_VSID_RANGE (1UL << (ESID_BITS + SID_SHIFT))
  392. /*
  393. * This macro generates asm code to compute the VSID scramble
  394. * function. Used in slb_allocate() and do_stab_bolted. The function
  395. * computed is: (protovsid*VSID_MULTIPLIER) % VSID_MODULUS
  396. *
  397. * rt = register continaing the proto-VSID and into which the
  398. * VSID will be stored
  399. * rx = scratch register (clobbered)
  400. *
  401. * - rt and rx must be different registers
  402. * - The answer will end up in the low VSID_BITS bits of rt. The higher
  403. * bits may contain other garbage, so you may need to mask the
  404. * result.
  405. */
  406. #define ASM_VSID_SCRAMBLE(rt, rx, size) \
  407. lis rx,VSID_MULTIPLIER_##size@h; \
  408. ori rx,rx,VSID_MULTIPLIER_##size@l; \
  409. mulld rt,rt,rx; /* rt = rt * MULTIPLIER */ \
  410. \
  411. srdi rx,rt,VSID_BITS_##size; \
  412. clrldi rt,rt,(64-VSID_BITS_##size); \
  413. add rt,rt,rx; /* add high and low bits */ \
  414. /* NOTE: explanation based on VSID_BITS_##size = 36 \
  415. * Now, r3 == VSID (mod 2^36-1), and lies between 0 and \
  416. * 2^36-1+2^28-1. That in particular means that if r3 >= \
  417. * 2^36-1, then r3+1 has the 2^36 bit set. So, if r3+1 has \
  418. * the bit clear, r3 already has the answer we want, if it \
  419. * doesn't, the answer is the low 36 bits of r3+1. So in all \
  420. * cases the answer is the low 36 bits of (r3 + ((r3+1) >> 36))*/\
  421. addi rx,rt,1; \
  422. srdi rx,rx,VSID_BITS_##size; /* extract 2^VSID_BITS bit */ \
  423. add rt,rt,rx
  424. /* 4 bits per slice and we have one slice per 1TB */
  425. #define SLICE_ARRAY_SIZE (PGTABLE_RANGE >> 41)
  426. #ifndef __ASSEMBLY__
  427. #ifdef CONFIG_PPC_SUBPAGE_PROT
  428. /*
  429. * For the sub-page protection option, we extend the PGD with one of
  430. * these. Basically we have a 3-level tree, with the top level being
  431. * the protptrs array. To optimize speed and memory consumption when
  432. * only addresses < 4GB are being protected, pointers to the first
  433. * four pages of sub-page protection words are stored in the low_prot
  434. * array.
  435. * Each page of sub-page protection words protects 1GB (4 bytes
  436. * protects 64k). For the 3-level tree, each page of pointers then
  437. * protects 8TB.
  438. */
  439. struct subpage_prot_table {
  440. unsigned long maxaddr; /* only addresses < this are protected */
  441. unsigned int **protptrs[(TASK_SIZE_USER64 >> 43)];
  442. unsigned int *low_prot[4];
  443. };
  444. #define SBP_L1_BITS (PAGE_SHIFT - 2)
  445. #define SBP_L2_BITS (PAGE_SHIFT - 3)
  446. #define SBP_L1_COUNT (1 << SBP_L1_BITS)
  447. #define SBP_L2_COUNT (1 << SBP_L2_BITS)
  448. #define SBP_L2_SHIFT (PAGE_SHIFT + SBP_L1_BITS)
  449. #define SBP_L3_SHIFT (SBP_L2_SHIFT + SBP_L2_BITS)
  450. extern void subpage_prot_free(struct mm_struct *mm);
  451. extern void subpage_prot_init_new_context(struct mm_struct *mm);
  452. #else
  453. static inline void subpage_prot_free(struct mm_struct *mm) {}
  454. static inline void subpage_prot_init_new_context(struct mm_struct *mm) { }
  455. #endif /* CONFIG_PPC_SUBPAGE_PROT */
  456. typedef unsigned long mm_context_id_t;
  457. struct spinlock;
  458. typedef struct {
  459. mm_context_id_t id;
  460. u16 user_psize; /* page size index */
  461. #ifdef CONFIG_PPC_MM_SLICES
  462. u64 low_slices_psize; /* SLB page size encodings */
  463. unsigned char high_slices_psize[SLICE_ARRAY_SIZE];
  464. #else
  465. u16 sllp; /* SLB page size encoding */
  466. #endif
  467. unsigned long vdso_base;
  468. #ifdef CONFIG_PPC_SUBPAGE_PROT
  469. struct subpage_prot_table spt;
  470. #endif /* CONFIG_PPC_SUBPAGE_PROT */
  471. #ifdef CONFIG_PPC_ICSWX
  472. struct spinlock *cop_lockp; /* guard acop and cop_pid */
  473. unsigned long acop; /* mask of enabled coprocessor types */
  474. unsigned int cop_pid; /* pid value used with coprocessors */
  475. #endif /* CONFIG_PPC_ICSWX */
  476. #ifdef CONFIG_PPC_64K_PAGES
  477. /* for 4K PTE fragment support */
  478. void *pte_frag;
  479. #endif
  480. #ifdef CONFIG_SPAPR_TCE_IOMMU
  481. struct list_head iommu_group_mem_list;
  482. #endif
  483. } mm_context_t;
  484. #if 0
  485. /*
  486. * The code below is equivalent to this function for arguments
  487. * < 2^VSID_BITS, which is all this should ever be called
  488. * with. However gcc is not clever enough to compute the
  489. * modulus (2^n-1) without a second multiply.
  490. */
  491. #define vsid_scramble(protovsid, size) \
  492. ((((protovsid) * VSID_MULTIPLIER_##size) % VSID_MODULUS_##size))
  493. #else /* 1 */
  494. #define vsid_scramble(protovsid, size) \
  495. ({ \
  496. unsigned long x; \
  497. x = (protovsid) * VSID_MULTIPLIER_##size; \
  498. x = (x >> VSID_BITS_##size) + (x & VSID_MODULUS_##size); \
  499. (x + ((x+1) >> VSID_BITS_##size)) & VSID_MODULUS_##size; \
  500. })
  501. #endif /* 1 */
  502. /* Returns the segment size indicator for a user address */
  503. static inline int user_segment_size(unsigned long addr)
  504. {
  505. /* Use 1T segments if possible for addresses >= 1T */
  506. if (addr >= (1UL << SID_SHIFT_1T))
  507. return mmu_highuser_ssize;
  508. return MMU_SEGSIZE_256M;
  509. }
  510. static inline unsigned long get_vsid(unsigned long context, unsigned long ea,
  511. int ssize)
  512. {
  513. /*
  514. * Bad address. We return VSID 0 for that
  515. */
  516. if ((ea & ~REGION_MASK) >= PGTABLE_RANGE)
  517. return 0;
  518. if (ssize == MMU_SEGSIZE_256M)
  519. return vsid_scramble((context << ESID_BITS)
  520. | (ea >> SID_SHIFT), 256M);
  521. return vsid_scramble((context << ESID_BITS_1T)
  522. | (ea >> SID_SHIFT_1T), 1T);
  523. }
  524. /*
  525. * This is only valid for addresses >= PAGE_OFFSET
  526. *
  527. * For kernel space, we use the top 4 context ids to map address as below
  528. * 0x7fffc - [ 0xc000000000000000 - 0xc0003fffffffffff ]
  529. * 0x7fffd - [ 0xd000000000000000 - 0xd0003fffffffffff ]
  530. * 0x7fffe - [ 0xe000000000000000 - 0xe0003fffffffffff ]
  531. * 0x7ffff - [ 0xf000000000000000 - 0xf0003fffffffffff ]
  532. */
  533. static inline unsigned long get_kernel_vsid(unsigned long ea, int ssize)
  534. {
  535. unsigned long context;
  536. /*
  537. * kernel take the top 4 context from the available range
  538. */
  539. context = (MAX_USER_CONTEXT) + ((ea >> 60) - 0xc) + 1;
  540. return get_vsid(context, ea, ssize);
  541. }
  542. #endif /* __ASSEMBLY__ */
  543. #endif /* _ASM_POWERPC_MMU_HASH64_H_ */