book3s_hv_builtin.c 7.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285
  1. /*
  2. * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License, version 2, as
  6. * published by the Free Software Foundation.
  7. */
  8. #include <linux/cpu.h>
  9. #include <linux/kvm_host.h>
  10. #include <linux/preempt.h>
  11. #include <linux/export.h>
  12. #include <linux/sched.h>
  13. #include <linux/spinlock.h>
  14. #include <linux/init.h>
  15. #include <linux/memblock.h>
  16. #include <linux/sizes.h>
  17. #include <linux/cma.h>
  18. #include <linux/bitops.h>
  19. #include <asm/cputable.h>
  20. #include <asm/kvm_ppc.h>
  21. #include <asm/kvm_book3s.h>
  22. #include <asm/archrandom.h>
  23. #include <asm/xics.h>
  24. #include <asm/dbell.h>
  25. #include <asm/cputhreads.h>
  26. #define KVM_CMA_CHUNK_ORDER 18
  27. /*
  28. * Hash page table alignment on newer cpus(CPU_FTR_ARCH_206)
  29. * should be power of 2.
  30. */
  31. #define HPT_ALIGN_PAGES ((1 << 18) >> PAGE_SHIFT) /* 256k */
  32. /*
  33. * By default we reserve 5% of memory for hash pagetable allocation.
  34. */
  35. static unsigned long kvm_cma_resv_ratio = 5;
  36. static struct cma *kvm_cma;
  37. static int __init early_parse_kvm_cma_resv(char *p)
  38. {
  39. pr_debug("%s(%s)\n", __func__, p);
  40. if (!p)
  41. return -EINVAL;
  42. return kstrtoul(p, 0, &kvm_cma_resv_ratio);
  43. }
  44. early_param("kvm_cma_resv_ratio", early_parse_kvm_cma_resv);
  45. struct page *kvm_alloc_hpt(unsigned long nr_pages)
  46. {
  47. VM_BUG_ON(order_base_2(nr_pages) < KVM_CMA_CHUNK_ORDER - PAGE_SHIFT);
  48. return cma_alloc(kvm_cma, nr_pages, order_base_2(HPT_ALIGN_PAGES));
  49. }
  50. EXPORT_SYMBOL_GPL(kvm_alloc_hpt);
  51. void kvm_release_hpt(struct page *page, unsigned long nr_pages)
  52. {
  53. cma_release(kvm_cma, page, nr_pages);
  54. }
  55. EXPORT_SYMBOL_GPL(kvm_release_hpt);
  56. /**
  57. * kvm_cma_reserve() - reserve area for kvm hash pagetable
  58. *
  59. * This function reserves memory from early allocator. It should be
  60. * called by arch specific code once the memblock allocator
  61. * has been activated and all other subsystems have already allocated/reserved
  62. * memory.
  63. */
  64. void __init kvm_cma_reserve(void)
  65. {
  66. unsigned long align_size;
  67. struct memblock_region *reg;
  68. phys_addr_t selected_size = 0;
  69. /*
  70. * We need CMA reservation only when we are in HV mode
  71. */
  72. if (!cpu_has_feature(CPU_FTR_HVMODE))
  73. return;
  74. /*
  75. * We cannot use memblock_phys_mem_size() here, because
  76. * memblock_analyze() has not been called yet.
  77. */
  78. for_each_memblock(memory, reg)
  79. selected_size += memblock_region_memory_end_pfn(reg) -
  80. memblock_region_memory_base_pfn(reg);
  81. selected_size = (selected_size * kvm_cma_resv_ratio / 100) << PAGE_SHIFT;
  82. if (selected_size) {
  83. pr_debug("%s: reserving %ld MiB for global area\n", __func__,
  84. (unsigned long)selected_size / SZ_1M);
  85. align_size = HPT_ALIGN_PAGES << PAGE_SHIFT;
  86. cma_declare_contiguous(0, selected_size, 0, align_size,
  87. KVM_CMA_CHUNK_ORDER - PAGE_SHIFT, false, &kvm_cma);
  88. }
  89. }
  90. /*
  91. * Real-mode H_CONFER implementation.
  92. * We check if we are the only vcpu out of this virtual core
  93. * still running in the guest and not ceded. If so, we pop up
  94. * to the virtual-mode implementation; if not, just return to
  95. * the guest.
  96. */
  97. long int kvmppc_rm_h_confer(struct kvm_vcpu *vcpu, int target,
  98. unsigned int yield_count)
  99. {
  100. struct kvmppc_vcore *vc = local_paca->kvm_hstate.kvm_vcore;
  101. int ptid = local_paca->kvm_hstate.ptid;
  102. int threads_running;
  103. int threads_ceded;
  104. int threads_conferring;
  105. u64 stop = get_tb() + 10 * tb_ticks_per_usec;
  106. int rv = H_SUCCESS; /* => don't yield */
  107. set_bit(ptid, &vc->conferring_threads);
  108. while ((get_tb() < stop) && !VCORE_IS_EXITING(vc)) {
  109. threads_running = VCORE_ENTRY_MAP(vc);
  110. threads_ceded = vc->napping_threads;
  111. threads_conferring = vc->conferring_threads;
  112. if ((threads_ceded | threads_conferring) == threads_running) {
  113. rv = H_TOO_HARD; /* => do yield */
  114. break;
  115. }
  116. }
  117. clear_bit(ptid, &vc->conferring_threads);
  118. return rv;
  119. }
  120. /*
  121. * When running HV mode KVM we need to block certain operations while KVM VMs
  122. * exist in the system. We use a counter of VMs to track this.
  123. *
  124. * One of the operations we need to block is onlining of secondaries, so we
  125. * protect hv_vm_count with get/put_online_cpus().
  126. */
  127. static atomic_t hv_vm_count;
  128. void kvm_hv_vm_activated(void)
  129. {
  130. get_online_cpus();
  131. atomic_inc(&hv_vm_count);
  132. put_online_cpus();
  133. }
  134. EXPORT_SYMBOL_GPL(kvm_hv_vm_activated);
  135. void kvm_hv_vm_deactivated(void)
  136. {
  137. get_online_cpus();
  138. atomic_dec(&hv_vm_count);
  139. put_online_cpus();
  140. }
  141. EXPORT_SYMBOL_GPL(kvm_hv_vm_deactivated);
  142. bool kvm_hv_mode_active(void)
  143. {
  144. return atomic_read(&hv_vm_count) != 0;
  145. }
  146. extern int hcall_real_table[], hcall_real_table_end[];
  147. int kvmppc_hcall_impl_hv_realmode(unsigned long cmd)
  148. {
  149. cmd /= 4;
  150. if (cmd < hcall_real_table_end - hcall_real_table &&
  151. hcall_real_table[cmd])
  152. return 1;
  153. return 0;
  154. }
  155. EXPORT_SYMBOL_GPL(kvmppc_hcall_impl_hv_realmode);
  156. int kvmppc_hwrng_present(void)
  157. {
  158. return powernv_hwrng_present();
  159. }
  160. EXPORT_SYMBOL_GPL(kvmppc_hwrng_present);
  161. long kvmppc_h_random(struct kvm_vcpu *vcpu)
  162. {
  163. if (powernv_get_random_real_mode(&vcpu->arch.gpr[4]))
  164. return H_SUCCESS;
  165. return H_HARDWARE;
  166. }
  167. static inline void rm_writeb(unsigned long paddr, u8 val)
  168. {
  169. __asm__ __volatile__("stbcix %0,0,%1"
  170. : : "r" (val), "r" (paddr) : "memory");
  171. }
  172. /*
  173. * Send an interrupt or message to another CPU.
  174. * This can only be called in real mode.
  175. * The caller needs to include any barrier needed to order writes
  176. * to memory vs. the IPI/message.
  177. */
  178. void kvmhv_rm_send_ipi(int cpu)
  179. {
  180. unsigned long xics_phys;
  181. /* On POWER8 for IPIs to threads in the same core, use msgsnd */
  182. if (cpu_has_feature(CPU_FTR_ARCH_207S) &&
  183. cpu_first_thread_sibling(cpu) ==
  184. cpu_first_thread_sibling(raw_smp_processor_id())) {
  185. unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
  186. msg |= cpu_thread_in_core(cpu);
  187. __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
  188. return;
  189. }
  190. /* Else poke the target with an IPI */
  191. xics_phys = paca[cpu].kvm_hstate.xics_phys;
  192. rm_writeb(xics_phys + XICS_MFRR, IPI_PRIORITY);
  193. }
  194. /*
  195. * The following functions are called from the assembly code
  196. * in book3s_hv_rmhandlers.S.
  197. */
  198. static void kvmhv_interrupt_vcore(struct kvmppc_vcore *vc, int active)
  199. {
  200. int cpu = vc->pcpu;
  201. /* Order setting of exit map vs. msgsnd/IPI */
  202. smp_mb();
  203. for (; active; active >>= 1, ++cpu)
  204. if (active & 1)
  205. kvmhv_rm_send_ipi(cpu);
  206. }
  207. void kvmhv_commence_exit(int trap)
  208. {
  209. struct kvmppc_vcore *vc = local_paca->kvm_hstate.kvm_vcore;
  210. int ptid = local_paca->kvm_hstate.ptid;
  211. struct kvm_split_mode *sip = local_paca->kvm_hstate.kvm_split_mode;
  212. int me, ee, i;
  213. /* Set our bit in the threads-exiting-guest map in the 0xff00
  214. bits of vcore->entry_exit_map */
  215. me = 0x100 << ptid;
  216. do {
  217. ee = vc->entry_exit_map;
  218. } while (cmpxchg(&vc->entry_exit_map, ee, ee | me) != ee);
  219. /* Are we the first here? */
  220. if ((ee >> 8) != 0)
  221. return;
  222. /*
  223. * Trigger the other threads in this vcore to exit the guest.
  224. * If this is a hypervisor decrementer interrupt then they
  225. * will be already on their way out of the guest.
  226. */
  227. if (trap != BOOK3S_INTERRUPT_HV_DECREMENTER)
  228. kvmhv_interrupt_vcore(vc, ee & ~(1 << ptid));
  229. /*
  230. * If we are doing dynamic micro-threading, interrupt the other
  231. * subcores to pull them out of their guests too.
  232. */
  233. if (!sip)
  234. return;
  235. for (i = 0; i < MAX_SUBCORES; ++i) {
  236. vc = sip->master_vcs[i];
  237. if (!vc)
  238. break;
  239. do {
  240. ee = vc->entry_exit_map;
  241. /* Already asked to exit? */
  242. if ((ee >> 8) != 0)
  243. break;
  244. } while (cmpxchg(&vc->entry_exit_map, ee,
  245. ee | VCORE_EXIT_REQ) != ee);
  246. if ((ee >> 8) == 0)
  247. kvmhv_interrupt_vcore(vc, ee);
  248. }
  249. }