123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506 |
- /*
- * Copyright (C) 1994 Linus Torvalds
- *
- * Pentium III FXSR, SSE support
- * General FPU state handling cleanups
- * Gareth Hughes <gareth@valinux.com>, May 2000
- */
- #include <asm/fpu/internal.h>
- #include <asm/fpu/regset.h>
- #include <asm/fpu/signal.h>
- #include <asm/traps.h>
- #include <linux/hardirq.h>
- /*
- * Represents the initial FPU state. It's mostly (but not completely) zeroes,
- * depending on the FPU hardware format:
- */
- union fpregs_state init_fpstate __read_mostly;
- /*
- * Track whether the kernel is using the FPU state
- * currently.
- *
- * This flag is used:
- *
- * - by IRQ context code to potentially use the FPU
- * if it's unused.
- *
- * - to debug kernel_fpu_begin()/end() correctness
- */
- static DEFINE_PER_CPU(bool, in_kernel_fpu);
- /*
- * Track which context is using the FPU on the CPU:
- */
- DEFINE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx);
- static void kernel_fpu_disable(void)
- {
- WARN_ON_FPU(this_cpu_read(in_kernel_fpu));
- this_cpu_write(in_kernel_fpu, true);
- }
- static void kernel_fpu_enable(void)
- {
- WARN_ON_FPU(!this_cpu_read(in_kernel_fpu));
- this_cpu_write(in_kernel_fpu, false);
- }
- static bool kernel_fpu_disabled(void)
- {
- return this_cpu_read(in_kernel_fpu);
- }
- static bool interrupted_kernel_fpu_idle(void)
- {
- return !kernel_fpu_disabled();
- }
- /*
- * Were we in user mode (or vm86 mode) when we were
- * interrupted?
- *
- * Doing kernel_fpu_begin/end() is ok if we are running
- * in an interrupt context from user mode - we'll just
- * save the FPU state as required.
- */
- static bool interrupted_user_mode(void)
- {
- struct pt_regs *regs = get_irq_regs();
- return regs && user_mode(regs);
- }
- /*
- * Can we use the FPU in kernel mode with the
- * whole "kernel_fpu_begin/end()" sequence?
- *
- * It's always ok in process context (ie "not interrupt")
- * but it is sometimes ok even from an irq.
- */
- bool irq_fpu_usable(void)
- {
- return !in_interrupt() ||
- interrupted_user_mode() ||
- interrupted_kernel_fpu_idle();
- }
- EXPORT_SYMBOL(irq_fpu_usable);
- void __kernel_fpu_begin(void)
- {
- struct fpu *fpu = ¤t->thread.fpu;
- WARN_ON_FPU(!irq_fpu_usable());
- kernel_fpu_disable();
- if (fpu->fpregs_active) {
- /*
- * Ignore return value -- we don't care if reg state
- * is clobbered.
- */
- copy_fpregs_to_fpstate(fpu);
- } else {
- this_cpu_write(fpu_fpregs_owner_ctx, NULL);
- }
- }
- EXPORT_SYMBOL(__kernel_fpu_begin);
- void __kernel_fpu_end(void)
- {
- struct fpu *fpu = ¤t->thread.fpu;
- if (fpu->fpregs_active)
- copy_kernel_to_fpregs(&fpu->state);
- kernel_fpu_enable();
- }
- EXPORT_SYMBOL(__kernel_fpu_end);
- void kernel_fpu_begin(void)
- {
- preempt_disable();
- __kernel_fpu_begin();
- }
- EXPORT_SYMBOL_GPL(kernel_fpu_begin);
- void kernel_fpu_end(void)
- {
- __kernel_fpu_end();
- preempt_enable();
- }
- EXPORT_SYMBOL_GPL(kernel_fpu_end);
- /*
- * CR0::TS save/restore functions:
- */
- int irq_ts_save(void)
- {
- /*
- * If in process context and not atomic, we can take a spurious DNA fault.
- * Otherwise, doing clts() in process context requires disabling preemption
- * or some heavy lifting like kernel_fpu_begin()
- */
- if (!in_atomic())
- return 0;
- if (read_cr0() & X86_CR0_TS) {
- clts();
- return 1;
- }
- return 0;
- }
- EXPORT_SYMBOL_GPL(irq_ts_save);
- void irq_ts_restore(int TS_state)
- {
- if (TS_state)
- stts();
- }
- EXPORT_SYMBOL_GPL(irq_ts_restore);
- /*
- * Save the FPU state (mark it for reload if necessary):
- *
- * This only ever gets called for the current task.
- */
- void fpu__save(struct fpu *fpu)
- {
- WARN_ON_FPU(fpu != ¤t->thread.fpu);
- preempt_disable();
- if (fpu->fpregs_active) {
- if (!copy_fpregs_to_fpstate(fpu)) {
- copy_kernel_to_fpregs(&fpu->state);
- }
- }
- preempt_enable();
- }
- EXPORT_SYMBOL_GPL(fpu__save);
- /*
- * Legacy x87 fpstate state init:
- */
- static inline void fpstate_init_fstate(struct fregs_state *fp)
- {
- fp->cwd = 0xffff037fu;
- fp->swd = 0xffff0000u;
- fp->twd = 0xffffffffu;
- fp->fos = 0xffff0000u;
- }
- void fpstate_init(union fpregs_state *state)
- {
- if (!cpu_has_fpu) {
- fpstate_init_soft(&state->soft);
- return;
- }
- memset(state, 0, xstate_size);
- if (cpu_has_fxsr)
- fpstate_init_fxstate(&state->fxsave);
- else
- fpstate_init_fstate(&state->fsave);
- }
- EXPORT_SYMBOL_GPL(fpstate_init);
- /*
- * Copy the current task's FPU state to a new task's FPU context.
- *
- * In both the 'eager' and the 'lazy' case we save hardware registers
- * directly to the destination buffer.
- */
- static void fpu_copy(struct fpu *dst_fpu, struct fpu *src_fpu)
- {
- WARN_ON_FPU(src_fpu != ¤t->thread.fpu);
- /*
- * Don't let 'init optimized' areas of the XSAVE area
- * leak into the child task:
- */
- memset(&dst_fpu->state.xsave, 0, xstate_size);
- /*
- * Save current FPU registers directly into the child
- * FPU context, without any memory-to-memory copying.
- *
- * If the FPU context got destroyed in the process (FNSAVE
- * done on old CPUs) then copy it back into the source
- * context and mark the current task for lazy restore.
- *
- * We have to do all this with preemption disabled,
- * mostly because of the FNSAVE case, because in that
- * case we must not allow preemption in the window
- * between the FNSAVE and us marking the context lazy.
- *
- * It shouldn't be an issue as even FNSAVE is plenty
- * fast in terms of critical section length.
- */
- preempt_disable();
- if (!copy_fpregs_to_fpstate(dst_fpu)) {
- memcpy(&src_fpu->state, &dst_fpu->state, xstate_size);
- copy_kernel_to_fpregs(&src_fpu->state);
- }
- preempt_enable();
- }
- int fpu__copy(struct fpu *dst_fpu, struct fpu *src_fpu)
- {
- dst_fpu->fpregs_active = 0;
- dst_fpu->last_cpu = -1;
- if (src_fpu->fpstate_active && cpu_has_fpu)
- fpu_copy(dst_fpu, src_fpu);
- return 0;
- }
- /*
- * Activate the current task's in-memory FPU context,
- * if it has not been used before:
- */
- void fpu__activate_curr(struct fpu *fpu)
- {
- WARN_ON_FPU(fpu != ¤t->thread.fpu);
- if (!fpu->fpstate_active) {
- fpstate_init(&fpu->state);
- /* Safe to do for the current task: */
- fpu->fpstate_active = 1;
- }
- }
- EXPORT_SYMBOL_GPL(fpu__activate_curr);
- /*
- * This function must be called before we read a task's fpstate.
- *
- * If the task has not used the FPU before then initialize its
- * fpstate.
- *
- * If the task has used the FPU before then save it.
- */
- void fpu__activate_fpstate_read(struct fpu *fpu)
- {
- /*
- * If fpregs are active (in the current CPU), then
- * copy them to the fpstate:
- */
- if (fpu->fpregs_active) {
- fpu__save(fpu);
- } else {
- if (!fpu->fpstate_active) {
- fpstate_init(&fpu->state);
- /* Safe to do for current and for stopped child tasks: */
- fpu->fpstate_active = 1;
- }
- }
- }
- /*
- * This function must be called before we write a task's fpstate.
- *
- * If the task has used the FPU before then unlazy it.
- * If the task has not used the FPU before then initialize its fpstate.
- *
- * After this function call, after registers in the fpstate are
- * modified and the child task has woken up, the child task will
- * restore the modified FPU state from the modified context. If we
- * didn't clear its lazy status here then the lazy in-registers
- * state pending on its former CPU could be restored, corrupting
- * the modifications.
- */
- void fpu__activate_fpstate_write(struct fpu *fpu)
- {
- /*
- * Only stopped child tasks can be used to modify the FPU
- * state in the fpstate buffer:
- */
- WARN_ON_FPU(fpu == ¤t->thread.fpu);
- if (fpu->fpstate_active) {
- /* Invalidate any lazy state: */
- fpu->last_cpu = -1;
- } else {
- fpstate_init(&fpu->state);
- /* Safe to do for stopped child tasks: */
- fpu->fpstate_active = 1;
- }
- }
- /*
- * 'fpu__restore()' is called to copy FPU registers from
- * the FPU fpstate to the live hw registers and to activate
- * access to the hardware registers, so that FPU instructions
- * can be used afterwards.
- *
- * Must be called with kernel preemption disabled (for example
- * with local interrupts disabled, as it is in the case of
- * do_device_not_available()).
- */
- void fpu__restore(struct fpu *fpu)
- {
- fpu__activate_curr(fpu);
- /* Avoid __kernel_fpu_begin() right after fpregs_activate() */
- kernel_fpu_disable();
- fpregs_activate(fpu);
- copy_kernel_to_fpregs(&fpu->state);
- kernel_fpu_enable();
- }
- EXPORT_SYMBOL_GPL(fpu__restore);
- /*
- * Drops current FPU state: deactivates the fpregs and
- * the fpstate. NOTE: it still leaves previous contents
- * in the fpregs in the eager-FPU case.
- *
- * This function can be used in cases where we know that
- * a state-restore is coming: either an explicit one,
- * or a reschedule.
- */
- void fpu__drop(struct fpu *fpu)
- {
- preempt_disable();
- if (fpu->fpregs_active) {
- /* Ignore delayed exceptions from user space */
- asm volatile("1: fwait\n"
- "2:\n"
- _ASM_EXTABLE(1b, 2b));
- fpregs_deactivate(fpu);
- }
- fpu->fpstate_active = 0;
- preempt_enable();
- }
- /*
- * Clear FPU registers by setting them up from
- * the init fpstate:
- */
- static inline void copy_init_fpstate_to_fpregs(void)
- {
- if (use_xsave())
- copy_kernel_to_xregs(&init_fpstate.xsave, -1);
- else if (static_cpu_has(X86_FEATURE_FXSR))
- copy_kernel_to_fxregs(&init_fpstate.fxsave);
- else
- copy_kernel_to_fregs(&init_fpstate.fsave);
- }
- /*
- * Clear the FPU state back to init state.
- *
- * Called by sys_execve(), by the signal handler code and by various
- * error paths.
- */
- void fpu__clear(struct fpu *fpu)
- {
- WARN_ON_FPU(fpu != ¤t->thread.fpu); /* Almost certainly an anomaly */
- if (!static_cpu_has(X86_FEATURE_FPU)) {
- /* FPU state will be reallocated lazily at the first use. */
- fpu__drop(fpu);
- } else {
- if (!fpu->fpstate_active) {
- fpu__activate_curr(fpu);
- user_fpu_begin();
- }
- copy_init_fpstate_to_fpregs();
- }
- }
- /*
- * x87 math exception handling:
- */
- static inline unsigned short get_fpu_cwd(struct fpu *fpu)
- {
- if (cpu_has_fxsr) {
- return fpu->state.fxsave.cwd;
- } else {
- return (unsigned short)fpu->state.fsave.cwd;
- }
- }
- static inline unsigned short get_fpu_swd(struct fpu *fpu)
- {
- if (cpu_has_fxsr) {
- return fpu->state.fxsave.swd;
- } else {
- return (unsigned short)fpu->state.fsave.swd;
- }
- }
- static inline unsigned short get_fpu_mxcsr(struct fpu *fpu)
- {
- if (cpu_has_xmm) {
- return fpu->state.fxsave.mxcsr;
- } else {
- return MXCSR_DEFAULT;
- }
- }
- int fpu__exception_code(struct fpu *fpu, int trap_nr)
- {
- int err;
- if (trap_nr == X86_TRAP_MF) {
- unsigned short cwd, swd;
- /*
- * (~cwd & swd) will mask out exceptions that are not set to unmasked
- * status. 0x3f is the exception bits in these regs, 0x200 is the
- * C1 reg you need in case of a stack fault, 0x040 is the stack
- * fault bit. We should only be taking one exception at a time,
- * so if this combination doesn't produce any single exception,
- * then we have a bad program that isn't synchronizing its FPU usage
- * and it will suffer the consequences since we won't be able to
- * fully reproduce the context of the exception
- */
- cwd = get_fpu_cwd(fpu);
- swd = get_fpu_swd(fpu);
- err = swd & ~cwd;
- } else {
- /*
- * The SIMD FPU exceptions are handled a little differently, as there
- * is only a single status/control register. Thus, to determine which
- * unmasked exception was caught we must mask the exception mask bits
- * at 0x1f80, and then use these to mask the exception bits at 0x3f.
- */
- unsigned short mxcsr = get_fpu_mxcsr(fpu);
- err = ~(mxcsr >> 7) & mxcsr;
- }
- if (err & 0x001) { /* Invalid op */
- /*
- * swd & 0x240 == 0x040: Stack Underflow
- * swd & 0x240 == 0x240: Stack Overflow
- * User must clear the SF bit (0x40) if set
- */
- return FPE_FLTINV;
- } else if (err & 0x004) { /* Divide by Zero */
- return FPE_FLTDIV;
- } else if (err & 0x008) { /* Overflow */
- return FPE_FLTOVF;
- } else if (err & 0x012) { /* Denormal, Underflow */
- return FPE_FLTUND;
- } else if (err & 0x020) { /* Precision */
- return FPE_FLTRES;
- }
- /*
- * If we're using IRQ 13, or supposedly even some trap
- * X86_TRAP_MF implementations, it's possible
- * we get a spurious trap, which is not an error.
- */
- return 0;
- }
|