nmi.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543
  1. /*
  2. * Copyright (C) 1991, 1992 Linus Torvalds
  3. * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
  4. * Copyright (C) 2011 Don Zickus Red Hat, Inc.
  5. *
  6. * Pentium III FXSR, SSE support
  7. * Gareth Hughes <gareth@valinux.com>, May 2000
  8. */
  9. /*
  10. * Handle hardware traps and faults.
  11. */
  12. #include <linux/spinlock.h>
  13. #include <linux/kprobes.h>
  14. #include <linux/kdebug.h>
  15. #include <linux/nmi.h>
  16. #include <linux/debugfs.h>
  17. #include <linux/delay.h>
  18. #include <linux/hardirq.h>
  19. #include <linux/slab.h>
  20. #include <linux/export.h>
  21. #if defined(CONFIG_EDAC)
  22. #include <linux/edac.h>
  23. #endif
  24. #include <linux/atomic.h>
  25. #include <asm/traps.h>
  26. #include <asm/mach_traps.h>
  27. #include <asm/nmi.h>
  28. #include <asm/x86_init.h>
  29. #define CREATE_TRACE_POINTS
  30. #include <trace/events/nmi.h>
  31. struct nmi_desc {
  32. spinlock_t lock;
  33. struct list_head head;
  34. };
  35. static struct nmi_desc nmi_desc[NMI_MAX] =
  36. {
  37. {
  38. .lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[0].lock),
  39. .head = LIST_HEAD_INIT(nmi_desc[0].head),
  40. },
  41. {
  42. .lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[1].lock),
  43. .head = LIST_HEAD_INIT(nmi_desc[1].head),
  44. },
  45. {
  46. .lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[2].lock),
  47. .head = LIST_HEAD_INIT(nmi_desc[2].head),
  48. },
  49. {
  50. .lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[3].lock),
  51. .head = LIST_HEAD_INIT(nmi_desc[3].head),
  52. },
  53. };
  54. struct nmi_stats {
  55. unsigned int normal;
  56. unsigned int unknown;
  57. unsigned int external;
  58. unsigned int swallow;
  59. };
  60. static DEFINE_PER_CPU(struct nmi_stats, nmi_stats);
  61. static int ignore_nmis;
  62. int unknown_nmi_panic;
  63. /*
  64. * Prevent NMI reason port (0x61) being accessed simultaneously, can
  65. * only be used in NMI handler.
  66. */
  67. static DEFINE_RAW_SPINLOCK(nmi_reason_lock);
  68. static int __init setup_unknown_nmi_panic(char *str)
  69. {
  70. unknown_nmi_panic = 1;
  71. return 1;
  72. }
  73. __setup("unknown_nmi_panic", setup_unknown_nmi_panic);
  74. #define nmi_to_desc(type) (&nmi_desc[type])
  75. static u64 nmi_longest_ns = 1 * NSEC_PER_MSEC;
  76. static int __init nmi_warning_debugfs(void)
  77. {
  78. debugfs_create_u64("nmi_longest_ns", 0644,
  79. arch_debugfs_dir, &nmi_longest_ns);
  80. return 0;
  81. }
  82. fs_initcall(nmi_warning_debugfs);
  83. static void nmi_max_handler(struct irq_work *w)
  84. {
  85. struct nmiaction *a = container_of(w, struct nmiaction, irq_work);
  86. int remainder_ns, decimal_msecs;
  87. u64 whole_msecs = ACCESS_ONCE(a->max_duration);
  88. remainder_ns = do_div(whole_msecs, (1000 * 1000));
  89. decimal_msecs = remainder_ns / 1000;
  90. printk_ratelimited(KERN_INFO
  91. "INFO: NMI handler (%ps) took too long to run: %lld.%03d msecs\n",
  92. a->handler, whole_msecs, decimal_msecs);
  93. }
  94. static int nmi_handle(unsigned int type, struct pt_regs *regs)
  95. {
  96. struct nmi_desc *desc = nmi_to_desc(type);
  97. struct nmiaction *a;
  98. int handled=0;
  99. rcu_read_lock();
  100. /*
  101. * NMIs are edge-triggered, which means if you have enough
  102. * of them concurrently, you can lose some because only one
  103. * can be latched at any given time. Walk the whole list
  104. * to handle those situations.
  105. */
  106. list_for_each_entry_rcu(a, &desc->head, list) {
  107. int thishandled;
  108. u64 delta;
  109. delta = sched_clock();
  110. thishandled = a->handler(type, regs);
  111. handled += thishandled;
  112. delta = sched_clock() - delta;
  113. trace_nmi_handler(a->handler, (int)delta, thishandled);
  114. if (delta < nmi_longest_ns || delta < a->max_duration)
  115. continue;
  116. a->max_duration = delta;
  117. irq_work_queue(&a->irq_work);
  118. }
  119. rcu_read_unlock();
  120. /* return total number of NMI events handled */
  121. return handled;
  122. }
  123. NOKPROBE_SYMBOL(nmi_handle);
  124. int __register_nmi_handler(unsigned int type, struct nmiaction *action)
  125. {
  126. struct nmi_desc *desc = nmi_to_desc(type);
  127. unsigned long flags;
  128. if (!action->handler)
  129. return -EINVAL;
  130. init_irq_work(&action->irq_work, nmi_max_handler);
  131. spin_lock_irqsave(&desc->lock, flags);
  132. /*
  133. * most handlers of type NMI_UNKNOWN never return because
  134. * they just assume the NMI is theirs. Just a sanity check
  135. * to manage expectations
  136. */
  137. WARN_ON_ONCE(type == NMI_UNKNOWN && !list_empty(&desc->head));
  138. WARN_ON_ONCE(type == NMI_SERR && !list_empty(&desc->head));
  139. WARN_ON_ONCE(type == NMI_IO_CHECK && !list_empty(&desc->head));
  140. /*
  141. * some handlers need to be executed first otherwise a fake
  142. * event confuses some handlers (kdump uses this flag)
  143. */
  144. if (action->flags & NMI_FLAG_FIRST)
  145. list_add_rcu(&action->list, &desc->head);
  146. else
  147. list_add_tail_rcu(&action->list, &desc->head);
  148. spin_unlock_irqrestore(&desc->lock, flags);
  149. return 0;
  150. }
  151. EXPORT_SYMBOL(__register_nmi_handler);
  152. void unregister_nmi_handler(unsigned int type, const char *name)
  153. {
  154. struct nmi_desc *desc = nmi_to_desc(type);
  155. struct nmiaction *n;
  156. unsigned long flags;
  157. spin_lock_irqsave(&desc->lock, flags);
  158. list_for_each_entry_rcu(n, &desc->head, list) {
  159. /*
  160. * the name passed in to describe the nmi handler
  161. * is used as the lookup key
  162. */
  163. if (!strcmp(n->name, name)) {
  164. WARN(in_nmi(),
  165. "Trying to free NMI (%s) from NMI context!\n", n->name);
  166. list_del_rcu(&n->list);
  167. break;
  168. }
  169. }
  170. spin_unlock_irqrestore(&desc->lock, flags);
  171. synchronize_rcu();
  172. }
  173. EXPORT_SYMBOL_GPL(unregister_nmi_handler);
  174. static void
  175. pci_serr_error(unsigned char reason, struct pt_regs *regs)
  176. {
  177. /* check to see if anyone registered against these types of errors */
  178. if (nmi_handle(NMI_SERR, regs))
  179. return;
  180. pr_emerg("NMI: PCI system error (SERR) for reason %02x on CPU %d.\n",
  181. reason, smp_processor_id());
  182. /*
  183. * On some machines, PCI SERR line is used to report memory
  184. * errors. EDAC makes use of it.
  185. */
  186. #if defined(CONFIG_EDAC)
  187. if (edac_handler_set()) {
  188. edac_atomic_assert_error();
  189. return;
  190. }
  191. #endif
  192. if (panic_on_unrecovered_nmi)
  193. panic("NMI: Not continuing");
  194. pr_emerg("Dazed and confused, but trying to continue\n");
  195. /* Clear and disable the PCI SERR error line. */
  196. reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_SERR;
  197. outb(reason, NMI_REASON_PORT);
  198. }
  199. NOKPROBE_SYMBOL(pci_serr_error);
  200. static void
  201. io_check_error(unsigned char reason, struct pt_regs *regs)
  202. {
  203. unsigned long i;
  204. /* check to see if anyone registered against these types of errors */
  205. if (nmi_handle(NMI_IO_CHECK, regs))
  206. return;
  207. pr_emerg(
  208. "NMI: IOCK error (debug interrupt?) for reason %02x on CPU %d.\n",
  209. reason, smp_processor_id());
  210. show_regs(regs);
  211. if (panic_on_io_nmi)
  212. panic("NMI IOCK error: Not continuing");
  213. /* Re-enable the IOCK line, wait for a few seconds */
  214. reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_IOCHK;
  215. outb(reason, NMI_REASON_PORT);
  216. i = 20000;
  217. while (--i) {
  218. touch_nmi_watchdog();
  219. udelay(100);
  220. }
  221. reason &= ~NMI_REASON_CLEAR_IOCHK;
  222. outb(reason, NMI_REASON_PORT);
  223. }
  224. NOKPROBE_SYMBOL(io_check_error);
  225. static void
  226. unknown_nmi_error(unsigned char reason, struct pt_regs *regs)
  227. {
  228. int handled;
  229. /*
  230. * Use 'false' as back-to-back NMIs are dealt with one level up.
  231. * Of course this makes having multiple 'unknown' handlers useless
  232. * as only the first one is ever run (unless it can actually determine
  233. * if it caused the NMI)
  234. */
  235. handled = nmi_handle(NMI_UNKNOWN, regs);
  236. if (handled) {
  237. __this_cpu_add(nmi_stats.unknown, handled);
  238. return;
  239. }
  240. __this_cpu_add(nmi_stats.unknown, 1);
  241. pr_emerg("Uhhuh. NMI received for unknown reason %02x on CPU %d.\n",
  242. reason, smp_processor_id());
  243. pr_emerg("Do you have a strange power saving mode enabled?\n");
  244. if (unknown_nmi_panic || panic_on_unrecovered_nmi)
  245. panic("NMI: Not continuing");
  246. pr_emerg("Dazed and confused, but trying to continue\n");
  247. }
  248. NOKPROBE_SYMBOL(unknown_nmi_error);
  249. static DEFINE_PER_CPU(bool, swallow_nmi);
  250. static DEFINE_PER_CPU(unsigned long, last_nmi_rip);
  251. static void default_do_nmi(struct pt_regs *regs)
  252. {
  253. unsigned char reason = 0;
  254. int handled;
  255. bool b2b = false;
  256. /*
  257. * CPU-specific NMI must be processed before non-CPU-specific
  258. * NMI, otherwise we may lose it, because the CPU-specific
  259. * NMI can not be detected/processed on other CPUs.
  260. */
  261. /*
  262. * Back-to-back NMIs are interesting because they can either
  263. * be two NMI or more than two NMIs (any thing over two is dropped
  264. * due to NMI being edge-triggered). If this is the second half
  265. * of the back-to-back NMI, assume we dropped things and process
  266. * more handlers. Otherwise reset the 'swallow' NMI behaviour
  267. */
  268. if (regs->ip == __this_cpu_read(last_nmi_rip))
  269. b2b = true;
  270. else
  271. __this_cpu_write(swallow_nmi, false);
  272. __this_cpu_write(last_nmi_rip, regs->ip);
  273. handled = nmi_handle(NMI_LOCAL, regs);
  274. __this_cpu_add(nmi_stats.normal, handled);
  275. if (handled) {
  276. /*
  277. * There are cases when a NMI handler handles multiple
  278. * events in the current NMI. One of these events may
  279. * be queued for in the next NMI. Because the event is
  280. * already handled, the next NMI will result in an unknown
  281. * NMI. Instead lets flag this for a potential NMI to
  282. * swallow.
  283. */
  284. if (handled > 1)
  285. __this_cpu_write(swallow_nmi, true);
  286. return;
  287. }
  288. /* Non-CPU-specific NMI: NMI sources can be processed on any CPU */
  289. raw_spin_lock(&nmi_reason_lock);
  290. reason = x86_platform.get_nmi_reason();
  291. if (reason & NMI_REASON_MASK) {
  292. if (reason & NMI_REASON_SERR)
  293. pci_serr_error(reason, regs);
  294. else if (reason & NMI_REASON_IOCHK)
  295. io_check_error(reason, regs);
  296. #ifdef CONFIG_X86_32
  297. /*
  298. * Reassert NMI in case it became active
  299. * meanwhile as it's edge-triggered:
  300. */
  301. reassert_nmi();
  302. #endif
  303. __this_cpu_add(nmi_stats.external, 1);
  304. raw_spin_unlock(&nmi_reason_lock);
  305. return;
  306. }
  307. raw_spin_unlock(&nmi_reason_lock);
  308. /*
  309. * Only one NMI can be latched at a time. To handle
  310. * this we may process multiple nmi handlers at once to
  311. * cover the case where an NMI is dropped. The downside
  312. * to this approach is we may process an NMI prematurely,
  313. * while its real NMI is sitting latched. This will cause
  314. * an unknown NMI on the next run of the NMI processing.
  315. *
  316. * We tried to flag that condition above, by setting the
  317. * swallow_nmi flag when we process more than one event.
  318. * This condition is also only present on the second half
  319. * of a back-to-back NMI, so we flag that condition too.
  320. *
  321. * If both are true, we assume we already processed this
  322. * NMI previously and we swallow it. Otherwise we reset
  323. * the logic.
  324. *
  325. * There are scenarios where we may accidentally swallow
  326. * a 'real' unknown NMI. For example, while processing
  327. * a perf NMI another perf NMI comes in along with a
  328. * 'real' unknown NMI. These two NMIs get combined into
  329. * one (as descibed above). When the next NMI gets
  330. * processed, it will be flagged by perf as handled, but
  331. * noone will know that there was a 'real' unknown NMI sent
  332. * also. As a result it gets swallowed. Or if the first
  333. * perf NMI returns two events handled then the second
  334. * NMI will get eaten by the logic below, again losing a
  335. * 'real' unknown NMI. But this is the best we can do
  336. * for now.
  337. */
  338. if (b2b && __this_cpu_read(swallow_nmi))
  339. __this_cpu_add(nmi_stats.swallow, 1);
  340. else
  341. unknown_nmi_error(reason, regs);
  342. }
  343. NOKPROBE_SYMBOL(default_do_nmi);
  344. /*
  345. * NMIs can page fault or hit breakpoints which will cause it to lose
  346. * its NMI context with the CPU when the breakpoint or page fault does an IRET.
  347. *
  348. * As a result, NMIs can nest if NMIs get unmasked due an IRET during
  349. * NMI processing. On x86_64, the asm glue protects us from nested NMIs
  350. * if the outer NMI came from kernel mode, but we can still nest if the
  351. * outer NMI came from user mode.
  352. *
  353. * To handle these nested NMIs, we have three states:
  354. *
  355. * 1) not running
  356. * 2) executing
  357. * 3) latched
  358. *
  359. * When no NMI is in progress, it is in the "not running" state.
  360. * When an NMI comes in, it goes into the "executing" state.
  361. * Normally, if another NMI is triggered, it does not interrupt
  362. * the running NMI and the HW will simply latch it so that when
  363. * the first NMI finishes, it will restart the second NMI.
  364. * (Note, the latch is binary, thus multiple NMIs triggering,
  365. * when one is running, are ignored. Only one NMI is restarted.)
  366. *
  367. * If an NMI executes an iret, another NMI can preempt it. We do not
  368. * want to allow this new NMI to run, but we want to execute it when the
  369. * first one finishes. We set the state to "latched", and the exit of
  370. * the first NMI will perform a dec_return, if the result is zero
  371. * (NOT_RUNNING), then it will simply exit the NMI handler. If not, the
  372. * dec_return would have set the state to NMI_EXECUTING (what we want it
  373. * to be when we are running). In this case, we simply jump back to
  374. * rerun the NMI handler again, and restart the 'latched' NMI.
  375. *
  376. * No trap (breakpoint or page fault) should be hit before nmi_restart,
  377. * thus there is no race between the first check of state for NOT_RUNNING
  378. * and setting it to NMI_EXECUTING. The HW will prevent nested NMIs
  379. * at this point.
  380. *
  381. * In case the NMI takes a page fault, we need to save off the CR2
  382. * because the NMI could have preempted another page fault and corrupt
  383. * the CR2 that is about to be read. As nested NMIs must be restarted
  384. * and they can not take breakpoints or page faults, the update of the
  385. * CR2 must be done before converting the nmi state back to NOT_RUNNING.
  386. * Otherwise, there would be a race of another nested NMI coming in
  387. * after setting state to NOT_RUNNING but before updating the nmi_cr2.
  388. */
  389. enum nmi_states {
  390. NMI_NOT_RUNNING = 0,
  391. NMI_EXECUTING,
  392. NMI_LATCHED,
  393. };
  394. static DEFINE_PER_CPU(enum nmi_states, nmi_state);
  395. static DEFINE_PER_CPU(unsigned long, nmi_cr2);
  396. #ifdef CONFIG_X86_64
  397. /*
  398. * In x86_64, we need to handle breakpoint -> NMI -> breakpoint. Without
  399. * some care, the inner breakpoint will clobber the outer breakpoint's
  400. * stack.
  401. *
  402. * If a breakpoint is being processed, and the debug stack is being
  403. * used, if an NMI comes in and also hits a breakpoint, the stack
  404. * pointer will be set to the same fixed address as the breakpoint that
  405. * was interrupted, causing that stack to be corrupted. To handle this
  406. * case, check if the stack that was interrupted is the debug stack, and
  407. * if so, change the IDT so that new breakpoints will use the current
  408. * stack and not switch to the fixed address. On return of the NMI,
  409. * switch back to the original IDT.
  410. */
  411. static DEFINE_PER_CPU(int, update_debug_stack);
  412. #endif
  413. dotraplinkage notrace void
  414. do_nmi(struct pt_regs *regs, long error_code)
  415. {
  416. if (this_cpu_read(nmi_state) != NMI_NOT_RUNNING) {
  417. this_cpu_write(nmi_state, NMI_LATCHED);
  418. return;
  419. }
  420. this_cpu_write(nmi_state, NMI_EXECUTING);
  421. this_cpu_write(nmi_cr2, read_cr2());
  422. nmi_restart:
  423. #ifdef CONFIG_X86_64
  424. /*
  425. * If we interrupted a breakpoint, it is possible that
  426. * the nmi handler will have breakpoints too. We need to
  427. * change the IDT such that breakpoints that happen here
  428. * continue to use the NMI stack.
  429. */
  430. if (unlikely(is_debug_stack(regs->sp))) {
  431. debug_stack_set_zero();
  432. this_cpu_write(update_debug_stack, 1);
  433. }
  434. #endif
  435. nmi_enter();
  436. inc_irq_stat(__nmi_count);
  437. if (!ignore_nmis)
  438. default_do_nmi(regs);
  439. nmi_exit();
  440. #ifdef CONFIG_X86_64
  441. if (unlikely(this_cpu_read(update_debug_stack))) {
  442. debug_stack_reset();
  443. this_cpu_write(update_debug_stack, 0);
  444. }
  445. #endif
  446. if (unlikely(this_cpu_read(nmi_cr2) != read_cr2()))
  447. write_cr2(this_cpu_read(nmi_cr2));
  448. if (this_cpu_dec_return(nmi_state))
  449. goto nmi_restart;
  450. }
  451. NOKPROBE_SYMBOL(do_nmi);
  452. void stop_nmi(void)
  453. {
  454. ignore_nmis++;
  455. }
  456. void restart_nmi(void)
  457. {
  458. ignore_nmis--;
  459. }
  460. /* reset the back-to-back NMI logic */
  461. void local_touch_nmi(void)
  462. {
  463. __this_cpu_write(last_nmi_rip, 0);
  464. }
  465. EXPORT_SYMBOL_GPL(local_touch_nmi);