process.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708
  1. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  2. #include <linux/errno.h>
  3. #include <linux/kernel.h>
  4. #include <linux/mm.h>
  5. #include <linux/smp.h>
  6. #include <linux/prctl.h>
  7. #include <linux/slab.h>
  8. #include <linux/sched.h>
  9. #include <linux/module.h>
  10. #include <linux/pm.h>
  11. #include <linux/tick.h>
  12. #include <linux/random.h>
  13. #include <linux/user-return-notifier.h>
  14. #include <linux/dmi.h>
  15. #include <linux/utsname.h>
  16. #include <linux/stackprotector.h>
  17. #include <linux/tick.h>
  18. #include <linux/cpuidle.h>
  19. #include <trace/events/power.h>
  20. #include <linux/hw_breakpoint.h>
  21. #include <asm/cpu.h>
  22. #include <asm/apic.h>
  23. #include <asm/syscalls.h>
  24. #include <asm/idle.h>
  25. #include <asm/uaccess.h>
  26. #include <asm/mwait.h>
  27. #include <asm/fpu/internal.h>
  28. #include <asm/debugreg.h>
  29. #include <asm/nmi.h>
  30. #include <asm/tlbflush.h>
  31. #include <asm/mce.h>
  32. #include <asm/vm86.h>
  33. #include <asm/spec-ctrl.h>
  34. /*
  35. * per-CPU TSS segments. Threads are completely 'soft' on Linux,
  36. * no more per-task TSS's. The TSS size is kept cacheline-aligned
  37. * so they are allowed to end up in the .data..cacheline_aligned
  38. * section. Since TSS's are completely CPU-local, we want them
  39. * on exact cacheline boundaries, to eliminate cacheline ping-pong.
  40. */
  41. __visible DEFINE_PER_CPU_SHARED_ALIGNED_USER_MAPPED(struct tss_struct, cpu_tss) = {
  42. .x86_tss = {
  43. .sp0 = TOP_OF_INIT_STACK,
  44. #ifdef CONFIG_X86_32
  45. .ss0 = __KERNEL_DS,
  46. .ss1 = __KERNEL_CS,
  47. .io_bitmap_base = INVALID_IO_BITMAP_OFFSET,
  48. #endif
  49. },
  50. #ifdef CONFIG_X86_32
  51. /*
  52. * Note that the .io_bitmap member must be extra-big. This is because
  53. * the CPU will access an additional byte beyond the end of the IO
  54. * permission bitmap. The extra byte must be all 1 bits, and must
  55. * be within the limit.
  56. */
  57. .io_bitmap = { [0 ... IO_BITMAP_LONGS] = ~0 },
  58. #endif
  59. };
  60. EXPORT_PER_CPU_SYMBOL(cpu_tss);
  61. #ifdef CONFIG_X86_64
  62. static DEFINE_PER_CPU(unsigned char, is_idle);
  63. static ATOMIC_NOTIFIER_HEAD(idle_notifier);
  64. void idle_notifier_register(struct notifier_block *n)
  65. {
  66. atomic_notifier_chain_register(&idle_notifier, n);
  67. }
  68. EXPORT_SYMBOL_GPL(idle_notifier_register);
  69. void idle_notifier_unregister(struct notifier_block *n)
  70. {
  71. atomic_notifier_chain_unregister(&idle_notifier, n);
  72. }
  73. EXPORT_SYMBOL_GPL(idle_notifier_unregister);
  74. #endif
  75. /*
  76. * this gets called so that we can store lazy state into memory and copy the
  77. * current task into the new thread.
  78. */
  79. int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
  80. {
  81. memcpy(dst, src, arch_task_struct_size);
  82. #ifdef CONFIG_VM86
  83. dst->thread.vm86 = NULL;
  84. #endif
  85. return fpu__copy(&dst->thread.fpu, &src->thread.fpu);
  86. }
  87. /*
  88. * Free current thread data structures etc..
  89. */
  90. void exit_thread(void)
  91. {
  92. struct task_struct *me = current;
  93. struct thread_struct *t = &me->thread;
  94. unsigned long *bp = t->io_bitmap_ptr;
  95. struct fpu *fpu = &t->fpu;
  96. if (bp) {
  97. struct tss_struct *tss = &per_cpu(cpu_tss, get_cpu());
  98. t->io_bitmap_ptr = NULL;
  99. clear_thread_flag(TIF_IO_BITMAP);
  100. /*
  101. * Careful, clear this in the TSS too:
  102. */
  103. memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
  104. t->io_bitmap_max = 0;
  105. put_cpu();
  106. kfree(bp);
  107. }
  108. free_vm86(t);
  109. fpu__drop(fpu);
  110. }
  111. void flush_thread(void)
  112. {
  113. struct task_struct *tsk = current;
  114. flush_ptrace_hw_breakpoint(tsk);
  115. memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
  116. fpu__clear(&tsk->thread.fpu);
  117. }
  118. void disable_TSC(void)
  119. {
  120. preempt_disable();
  121. if (!test_and_set_thread_flag(TIF_NOTSC))
  122. /*
  123. * Must flip the CPU state synchronously with
  124. * TIF_NOTSC in the current running context.
  125. */
  126. cr4_set_bits(X86_CR4_TSD);
  127. preempt_enable();
  128. }
  129. static void enable_TSC(void)
  130. {
  131. preempt_disable();
  132. if (test_and_clear_thread_flag(TIF_NOTSC))
  133. /*
  134. * Must flip the CPU state synchronously with
  135. * TIF_NOTSC in the current running context.
  136. */
  137. cr4_clear_bits(X86_CR4_TSD);
  138. preempt_enable();
  139. }
  140. int get_tsc_mode(unsigned long adr)
  141. {
  142. unsigned int val;
  143. if (test_thread_flag(TIF_NOTSC))
  144. val = PR_TSC_SIGSEGV;
  145. else
  146. val = PR_TSC_ENABLE;
  147. return put_user(val, (unsigned int __user *)adr);
  148. }
  149. int set_tsc_mode(unsigned int val)
  150. {
  151. if (val == PR_TSC_SIGSEGV)
  152. disable_TSC();
  153. else if (val == PR_TSC_ENABLE)
  154. enable_TSC();
  155. else
  156. return -EINVAL;
  157. return 0;
  158. }
  159. static inline void switch_to_bitmap(struct tss_struct *tss,
  160. struct thread_struct *prev,
  161. struct thread_struct *next,
  162. unsigned long tifp, unsigned long tifn)
  163. {
  164. if (tifn & _TIF_IO_BITMAP) {
  165. /*
  166. * Copy the relevant range of the IO bitmap.
  167. * Normally this is 128 bytes or less:
  168. */
  169. memcpy(tss->io_bitmap, next->io_bitmap_ptr,
  170. max(prev->io_bitmap_max, next->io_bitmap_max));
  171. } else if (tifp & _TIF_IO_BITMAP) {
  172. /*
  173. * Clear any possible leftover bits:
  174. */
  175. memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
  176. }
  177. }
  178. #ifdef CONFIG_SMP
  179. struct ssb_state {
  180. struct ssb_state *shared_state;
  181. raw_spinlock_t lock;
  182. unsigned int disable_state;
  183. unsigned long local_state;
  184. };
  185. #define LSTATE_SSB 0
  186. static DEFINE_PER_CPU(struct ssb_state, ssb_state);
  187. void speculative_store_bypass_ht_init(void)
  188. {
  189. struct ssb_state *st = this_cpu_ptr(&ssb_state);
  190. unsigned int this_cpu = smp_processor_id();
  191. unsigned int cpu;
  192. st->local_state = 0;
  193. /*
  194. * Shared state setup happens once on the first bringup
  195. * of the CPU. It's not destroyed on CPU hotunplug.
  196. */
  197. if (st->shared_state)
  198. return;
  199. raw_spin_lock_init(&st->lock);
  200. /*
  201. * Go over HT siblings and check whether one of them has set up the
  202. * shared state pointer already.
  203. */
  204. for_each_cpu(cpu, topology_sibling_cpumask(this_cpu)) {
  205. if (cpu == this_cpu)
  206. continue;
  207. if (!per_cpu(ssb_state, cpu).shared_state)
  208. continue;
  209. /* Link it to the state of the sibling: */
  210. st->shared_state = per_cpu(ssb_state, cpu).shared_state;
  211. return;
  212. }
  213. /*
  214. * First HT sibling to come up on the core. Link shared state of
  215. * the first HT sibling to itself. The siblings on the same core
  216. * which come up later will see the shared state pointer and link
  217. * themself to the state of this CPU.
  218. */
  219. st->shared_state = st;
  220. }
  221. /*
  222. * Logic is: First HT sibling enables SSBD for both siblings in the core
  223. * and last sibling to disable it, disables it for the whole core. This how
  224. * MSR_SPEC_CTRL works in "hardware":
  225. *
  226. * CORE_SPEC_CTRL = THREAD0_SPEC_CTRL | THREAD1_SPEC_CTRL
  227. */
  228. static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
  229. {
  230. struct ssb_state *st = this_cpu_ptr(&ssb_state);
  231. u64 msr = x86_amd_ls_cfg_base;
  232. if (!static_cpu_has(X86_FEATURE_ZEN)) {
  233. msr |= ssbd_tif_to_amd_ls_cfg(tifn);
  234. wrmsrl(MSR_AMD64_LS_CFG, msr);
  235. return;
  236. }
  237. if (tifn & _TIF_SSBD) {
  238. /*
  239. * Since this can race with prctl(), block reentry on the
  240. * same CPU.
  241. */
  242. if (__test_and_set_bit(LSTATE_SSB, &st->local_state))
  243. return;
  244. msr |= x86_amd_ls_cfg_ssbd_mask;
  245. raw_spin_lock(&st->shared_state->lock);
  246. /* First sibling enables SSBD: */
  247. if (!st->shared_state->disable_state)
  248. wrmsrl(MSR_AMD64_LS_CFG, msr);
  249. st->shared_state->disable_state++;
  250. raw_spin_unlock(&st->shared_state->lock);
  251. } else {
  252. if (!__test_and_clear_bit(LSTATE_SSB, &st->local_state))
  253. return;
  254. raw_spin_lock(&st->shared_state->lock);
  255. st->shared_state->disable_state--;
  256. if (!st->shared_state->disable_state)
  257. wrmsrl(MSR_AMD64_LS_CFG, msr);
  258. raw_spin_unlock(&st->shared_state->lock);
  259. }
  260. }
  261. #else
  262. static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
  263. {
  264. u64 msr = x86_amd_ls_cfg_base | ssbd_tif_to_amd_ls_cfg(tifn);
  265. wrmsrl(MSR_AMD64_LS_CFG, msr);
  266. }
  267. #endif
  268. static __always_inline void amd_set_ssb_virt_state(unsigned long tifn)
  269. {
  270. /*
  271. * SSBD has the same definition in SPEC_CTRL and VIRT_SPEC_CTRL,
  272. * so ssbd_tif_to_spec_ctrl() just works.
  273. */
  274. wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, ssbd_tif_to_spec_ctrl(tifn));
  275. }
  276. static __always_inline void intel_set_ssb_state(unsigned long tifn)
  277. {
  278. u64 msr = x86_spec_ctrl_base | ssbd_tif_to_spec_ctrl(tifn);
  279. wrmsrl(MSR_IA32_SPEC_CTRL, msr);
  280. }
  281. static __always_inline void __speculative_store_bypass_update(unsigned long tifn)
  282. {
  283. if (static_cpu_has(X86_FEATURE_VIRT_SSBD))
  284. amd_set_ssb_virt_state(tifn);
  285. else if (static_cpu_has(X86_FEATURE_LS_CFG_SSBD))
  286. amd_set_core_ssb_state(tifn);
  287. else
  288. intel_set_ssb_state(tifn);
  289. }
  290. void speculative_store_bypass_update(unsigned long tif)
  291. {
  292. preempt_disable();
  293. __speculative_store_bypass_update(tif);
  294. preempt_enable();
  295. }
  296. void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
  297. struct tss_struct *tss)
  298. {
  299. struct thread_struct *prev, *next;
  300. unsigned long tifp, tifn;
  301. prev = &prev_p->thread;
  302. next = &next_p->thread;
  303. tifn = READ_ONCE(task_thread_info(next_p)->flags);
  304. tifp = READ_ONCE(task_thread_info(prev_p)->flags);
  305. switch_to_bitmap(tss, prev, next, tifp, tifn);
  306. propagate_user_return_notify(prev_p, next_p);
  307. if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) &&
  308. arch_has_block_step()) {
  309. unsigned long debugctl, msk;
  310. rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
  311. debugctl &= ~DEBUGCTLMSR_BTF;
  312. msk = tifn & _TIF_BLOCKSTEP;
  313. debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT;
  314. wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
  315. }
  316. if ((tifp ^ tifn) & _TIF_NOTSC)
  317. cr4_toggle_bits(X86_CR4_TSD);
  318. if ((tifp ^ tifn) & _TIF_SSBD)
  319. __speculative_store_bypass_update(tifn);
  320. }
  321. /*
  322. * Idle related variables and functions
  323. */
  324. unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
  325. EXPORT_SYMBOL(boot_option_idle_override);
  326. static void (*x86_idle)(void);
  327. #ifndef CONFIG_SMP
  328. static inline void play_dead(void)
  329. {
  330. BUG();
  331. }
  332. #endif
  333. #ifdef CONFIG_X86_64
  334. void enter_idle(void)
  335. {
  336. this_cpu_write(is_idle, 1);
  337. atomic_notifier_call_chain(&idle_notifier, IDLE_START, NULL);
  338. }
  339. static void __exit_idle(void)
  340. {
  341. if (x86_test_and_clear_bit_percpu(0, is_idle) == 0)
  342. return;
  343. atomic_notifier_call_chain(&idle_notifier, IDLE_END, NULL);
  344. }
  345. /* Called from interrupts to signify idle end */
  346. void exit_idle(void)
  347. {
  348. /* idle loop has pid 0 */
  349. if (current->pid)
  350. return;
  351. __exit_idle();
  352. }
  353. #endif
  354. void arch_cpu_idle_enter(void)
  355. {
  356. local_touch_nmi();
  357. enter_idle();
  358. }
  359. void arch_cpu_idle_exit(void)
  360. {
  361. __exit_idle();
  362. }
  363. void arch_cpu_idle_dead(void)
  364. {
  365. play_dead();
  366. }
  367. /*
  368. * Called from the generic idle code.
  369. */
  370. void arch_cpu_idle(void)
  371. {
  372. x86_idle();
  373. }
  374. /*
  375. * We use this if we don't have any better idle routine..
  376. */
  377. void default_idle(void)
  378. {
  379. trace_cpu_idle_rcuidle(1, smp_processor_id());
  380. safe_halt();
  381. trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
  382. }
  383. #ifdef CONFIG_APM_MODULE
  384. EXPORT_SYMBOL(default_idle);
  385. #endif
  386. #ifdef CONFIG_XEN
  387. bool xen_set_default_idle(void)
  388. {
  389. bool ret = !!x86_idle;
  390. x86_idle = default_idle;
  391. return ret;
  392. }
  393. #endif
  394. void stop_this_cpu(void *dummy)
  395. {
  396. local_irq_disable();
  397. /*
  398. * Remove this CPU:
  399. */
  400. set_cpu_online(smp_processor_id(), false);
  401. disable_local_APIC();
  402. mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
  403. for (;;)
  404. halt();
  405. }
  406. bool amd_e400_c1e_detected;
  407. EXPORT_SYMBOL(amd_e400_c1e_detected);
  408. static cpumask_var_t amd_e400_c1e_mask;
  409. void amd_e400_remove_cpu(int cpu)
  410. {
  411. if (amd_e400_c1e_mask != NULL)
  412. cpumask_clear_cpu(cpu, amd_e400_c1e_mask);
  413. }
  414. /*
  415. * AMD Erratum 400 aware idle routine. We check for C1E active in the interrupt
  416. * pending message MSR. If we detect C1E, then we handle it the same
  417. * way as C3 power states (local apic timer and TSC stop)
  418. */
  419. static void amd_e400_idle(void)
  420. {
  421. if (!amd_e400_c1e_detected) {
  422. u32 lo, hi;
  423. rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
  424. if (lo & K8_INTP_C1E_ACTIVE_MASK) {
  425. amd_e400_c1e_detected = true;
  426. if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
  427. mark_tsc_unstable("TSC halt in AMD C1E");
  428. pr_info("System has AMD C1E enabled\n");
  429. }
  430. }
  431. if (amd_e400_c1e_detected) {
  432. int cpu = smp_processor_id();
  433. if (!cpumask_test_cpu(cpu, amd_e400_c1e_mask)) {
  434. cpumask_set_cpu(cpu, amd_e400_c1e_mask);
  435. /* Force broadcast so ACPI can not interfere. */
  436. tick_broadcast_force();
  437. pr_info("Switch to broadcast mode on CPU%d\n", cpu);
  438. }
  439. tick_broadcast_enter();
  440. default_idle();
  441. /*
  442. * The switch back from broadcast mode needs to be
  443. * called with interrupts disabled.
  444. */
  445. local_irq_disable();
  446. tick_broadcast_exit();
  447. local_irq_enable();
  448. } else
  449. default_idle();
  450. }
  451. /*
  452. * Intel Core2 and older machines prefer MWAIT over HALT for C1.
  453. * We can't rely on cpuidle installing MWAIT, because it will not load
  454. * on systems that support only C1 -- so the boot default must be MWAIT.
  455. *
  456. * Some AMD machines are the opposite, they depend on using HALT.
  457. *
  458. * So for default C1, which is used during boot until cpuidle loads,
  459. * use MWAIT-C1 on Intel HW that has it, else use HALT.
  460. */
  461. static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
  462. {
  463. if (c->x86_vendor != X86_VENDOR_INTEL)
  464. return 0;
  465. if (!cpu_has(c, X86_FEATURE_MWAIT))
  466. return 0;
  467. return 1;
  468. }
  469. /*
  470. * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
  471. * with interrupts enabled and no flags, which is backwards compatible with the
  472. * original MWAIT implementation.
  473. */
  474. static void mwait_idle(void)
  475. {
  476. if (!current_set_polling_and_test()) {
  477. trace_cpu_idle_rcuidle(1, smp_processor_id());
  478. if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
  479. smp_mb(); /* quirk */
  480. clflush((void *)&current_thread_info()->flags);
  481. smp_mb(); /* quirk */
  482. }
  483. __monitor((void *)&current_thread_info()->flags, 0, 0);
  484. if (!need_resched())
  485. __sti_mwait(0, 0);
  486. else
  487. local_irq_enable();
  488. trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
  489. } else {
  490. local_irq_enable();
  491. }
  492. __current_clr_polling();
  493. }
  494. void select_idle_routine(const struct cpuinfo_x86 *c)
  495. {
  496. #ifdef CONFIG_SMP
  497. if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
  498. pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
  499. #endif
  500. if (x86_idle || boot_option_idle_override == IDLE_POLL)
  501. return;
  502. if (cpu_has_bug(c, X86_BUG_AMD_APIC_C1E)) {
  503. /* E400: APIC timer interrupt does not wake up CPU from C1e */
  504. pr_info("using AMD E400 aware idle routine\n");
  505. x86_idle = amd_e400_idle;
  506. } else if (prefer_mwait_c1_over_halt(c)) {
  507. pr_info("using mwait in idle threads\n");
  508. x86_idle = mwait_idle;
  509. } else
  510. x86_idle = default_idle;
  511. }
  512. void __init init_amd_e400_c1e_mask(void)
  513. {
  514. /* If we're using amd_e400_idle, we need to allocate amd_e400_c1e_mask. */
  515. if (x86_idle == amd_e400_idle)
  516. zalloc_cpumask_var(&amd_e400_c1e_mask, GFP_KERNEL);
  517. }
  518. static int __init idle_setup(char *str)
  519. {
  520. if (!str)
  521. return -EINVAL;
  522. if (!strcmp(str, "poll")) {
  523. pr_info("using polling idle threads\n");
  524. boot_option_idle_override = IDLE_POLL;
  525. cpu_idle_poll_ctrl(true);
  526. } else if (!strcmp(str, "halt")) {
  527. /*
  528. * When the boot option of idle=halt is added, halt is
  529. * forced to be used for CPU idle. In such case CPU C2/C3
  530. * won't be used again.
  531. * To continue to load the CPU idle driver, don't touch
  532. * the boot_option_idle_override.
  533. */
  534. x86_idle = default_idle;
  535. boot_option_idle_override = IDLE_HALT;
  536. } else if (!strcmp(str, "nomwait")) {
  537. /*
  538. * If the boot option of "idle=nomwait" is added,
  539. * it means that mwait will be disabled for CPU C2/C3
  540. * states. In such case it won't touch the variable
  541. * of boot_option_idle_override.
  542. */
  543. boot_option_idle_override = IDLE_NOMWAIT;
  544. } else
  545. return -1;
  546. return 0;
  547. }
  548. early_param("idle", idle_setup);
  549. unsigned long arch_align_stack(unsigned long sp)
  550. {
  551. if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
  552. sp -= get_random_int() % 8192;
  553. return sp & ~0xf;
  554. }
  555. unsigned long arch_randomize_brk(struct mm_struct *mm)
  556. {
  557. unsigned long range_end = mm->brk + 0x02000000;
  558. return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
  559. }
  560. /*
  561. * Called from fs/proc with a reference on @p to find the function
  562. * which called into schedule(). This needs to be done carefully
  563. * because the task might wake up and we might look at a stack
  564. * changing under us.
  565. */
  566. unsigned long get_wchan(struct task_struct *p)
  567. {
  568. unsigned long start, bottom, top, sp, fp, ip;
  569. int count = 0;
  570. if (!p || p == current || p->state == TASK_RUNNING)
  571. return 0;
  572. start = (unsigned long)task_stack_page(p);
  573. if (!start)
  574. return 0;
  575. /*
  576. * Layout of the stack page:
  577. *
  578. * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long)
  579. * PADDING
  580. * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING
  581. * stack
  582. * ----------- bottom = start + sizeof(thread_info)
  583. * thread_info
  584. * ----------- start
  585. *
  586. * The tasks stack pointer points at the location where the
  587. * framepointer is stored. The data on the stack is:
  588. * ... IP FP ... IP FP
  589. *
  590. * We need to read FP and IP, so we need to adjust the upper
  591. * bound by another unsigned long.
  592. */
  593. top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;
  594. top -= 2 * sizeof(unsigned long);
  595. bottom = start + sizeof(struct thread_info);
  596. sp = READ_ONCE(p->thread.sp);
  597. if (sp < bottom || sp > top)
  598. return 0;
  599. fp = READ_ONCE_NOCHECK(*(unsigned long *)sp);
  600. do {
  601. if (fp < bottom || fp > top)
  602. return 0;
  603. ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long)));
  604. if (!in_sched_functions(ip))
  605. return ip;
  606. fp = READ_ONCE_NOCHECK(*(unsigned long *)fp);
  607. } while (count++ < 16 && p->state != TASK_RUNNING);
  608. return 0;
  609. }