tsc.c 32 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263
  1. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  2. #include <linux/kernel.h>
  3. #include <linux/sched.h>
  4. #include <linux/init.h>
  5. #include <linux/module.h>
  6. #include <linux/timer.h>
  7. #include <linux/acpi_pmtmr.h>
  8. #include <linux/cpufreq.h>
  9. #include <linux/delay.h>
  10. #include <linux/clocksource.h>
  11. #include <linux/percpu.h>
  12. #include <linux/timex.h>
  13. #include <linux/static_key.h>
  14. #include <asm/hpet.h>
  15. #include <asm/timer.h>
  16. #include <asm/vgtod.h>
  17. #include <asm/time.h>
  18. #include <asm/delay.h>
  19. #include <asm/hypervisor.h>
  20. #include <asm/nmi.h>
  21. #include <asm/x86_init.h>
  22. #include <asm/geode.h>
  23. unsigned int __read_mostly cpu_khz; /* TSC clocks / usec, not used here */
  24. EXPORT_SYMBOL(cpu_khz);
  25. unsigned int __read_mostly tsc_khz;
  26. EXPORT_SYMBOL(tsc_khz);
  27. /*
  28. * TSC can be unstable due to cpufreq or due to unsynced TSCs
  29. */
  30. static int __read_mostly tsc_unstable;
  31. /* native_sched_clock() is called before tsc_init(), so
  32. we must start with the TSC soft disabled to prevent
  33. erroneous rdtsc usage on !cpu_has_tsc processors */
  34. static int __read_mostly tsc_disabled = -1;
  35. static DEFINE_STATIC_KEY_FALSE(__use_tsc);
  36. int tsc_clocksource_reliable;
  37. /*
  38. * Use a ring-buffer like data structure, where a writer advances the head by
  39. * writing a new data entry and a reader advances the tail when it observes a
  40. * new entry.
  41. *
  42. * Writers are made to wait on readers until there's space to write a new
  43. * entry.
  44. *
  45. * This means that we can always use an {offset, mul} pair to compute a ns
  46. * value that is 'roughly' in the right direction, even if we're writing a new
  47. * {offset, mul} pair during the clock read.
  48. *
  49. * The down-side is that we can no longer guarantee strict monotonicity anymore
  50. * (assuming the TSC was that to begin with), because while we compute the
  51. * intersection point of the two clock slopes and make sure the time is
  52. * continuous at the point of switching; we can no longer guarantee a reader is
  53. * strictly before or after the switch point.
  54. *
  55. * It does mean a reader no longer needs to disable IRQs in order to avoid
  56. * CPU-Freq updates messing with his times, and similarly an NMI reader will
  57. * no longer run the risk of hitting half-written state.
  58. */
  59. struct cyc2ns {
  60. struct cyc2ns_data data[2]; /* 0 + 2*24 = 48 */
  61. struct cyc2ns_data *head; /* 48 + 8 = 56 */
  62. struct cyc2ns_data *tail; /* 56 + 8 = 64 */
  63. }; /* exactly fits one cacheline */
  64. static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns);
  65. struct cyc2ns_data *cyc2ns_read_begin(void)
  66. {
  67. struct cyc2ns_data *head;
  68. preempt_disable();
  69. head = this_cpu_read(cyc2ns.head);
  70. /*
  71. * Ensure we observe the entry when we observe the pointer to it.
  72. * matches the wmb from cyc2ns_write_end().
  73. */
  74. smp_read_barrier_depends();
  75. head->__count++;
  76. barrier();
  77. return head;
  78. }
  79. void cyc2ns_read_end(struct cyc2ns_data *head)
  80. {
  81. barrier();
  82. /*
  83. * If we're the outer most nested read; update the tail pointer
  84. * when we're done. This notifies possible pending writers
  85. * that we've observed the head pointer and that the other
  86. * entry is now free.
  87. */
  88. if (!--head->__count) {
  89. /*
  90. * x86-TSO does not reorder writes with older reads;
  91. * therefore once this write becomes visible to another
  92. * cpu, we must be finished reading the cyc2ns_data.
  93. *
  94. * matches with cyc2ns_write_begin().
  95. */
  96. this_cpu_write(cyc2ns.tail, head);
  97. }
  98. preempt_enable();
  99. }
  100. /*
  101. * Begin writing a new @data entry for @cpu.
  102. *
  103. * Assumes some sort of write side lock; currently 'provided' by the assumption
  104. * that cpufreq will call its notifiers sequentially.
  105. */
  106. static struct cyc2ns_data *cyc2ns_write_begin(int cpu)
  107. {
  108. struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
  109. struct cyc2ns_data *data = c2n->data;
  110. if (data == c2n->head)
  111. data++;
  112. /* XXX send an IPI to @cpu in order to guarantee a read? */
  113. /*
  114. * When we observe the tail write from cyc2ns_read_end(),
  115. * the cpu must be done with that entry and its safe
  116. * to start writing to it.
  117. */
  118. while (c2n->tail == data)
  119. cpu_relax();
  120. return data;
  121. }
  122. static void cyc2ns_write_end(int cpu, struct cyc2ns_data *data)
  123. {
  124. struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
  125. /*
  126. * Ensure the @data writes are visible before we publish the
  127. * entry. Matches the data-depencency in cyc2ns_read_begin().
  128. */
  129. smp_wmb();
  130. ACCESS_ONCE(c2n->head) = data;
  131. }
  132. /*
  133. * Accelerators for sched_clock()
  134. * convert from cycles(64bits) => nanoseconds (64bits)
  135. * basic equation:
  136. * ns = cycles / (freq / ns_per_sec)
  137. * ns = cycles * (ns_per_sec / freq)
  138. * ns = cycles * (10^9 / (cpu_khz * 10^3))
  139. * ns = cycles * (10^6 / cpu_khz)
  140. *
  141. * Then we use scaling math (suggested by george@mvista.com) to get:
  142. * ns = cycles * (10^6 * SC / cpu_khz) / SC
  143. * ns = cycles * cyc2ns_scale / SC
  144. *
  145. * And since SC is a constant power of two, we can convert the div
  146. * into a shift. The larger SC is, the more accurate the conversion, but
  147. * cyc2ns_scale needs to be a 32-bit value so that 32-bit multiplication
  148. * (64-bit result) can be used.
  149. *
  150. * We can use khz divisor instead of mhz to keep a better precision.
  151. * (mathieu.desnoyers@polymtl.ca)
  152. *
  153. * -johnstul@us.ibm.com "math is hard, lets go shopping!"
  154. */
  155. static void cyc2ns_data_init(struct cyc2ns_data *data)
  156. {
  157. data->cyc2ns_mul = 0;
  158. data->cyc2ns_shift = 0;
  159. data->cyc2ns_offset = 0;
  160. data->__count = 0;
  161. }
  162. static void cyc2ns_init(int cpu)
  163. {
  164. struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
  165. cyc2ns_data_init(&c2n->data[0]);
  166. cyc2ns_data_init(&c2n->data[1]);
  167. c2n->head = c2n->data;
  168. c2n->tail = c2n->data;
  169. }
  170. static inline unsigned long long cycles_2_ns(unsigned long long cyc)
  171. {
  172. struct cyc2ns_data *data, *tail;
  173. unsigned long long ns;
  174. /*
  175. * See cyc2ns_read_*() for details; replicated in order to avoid
  176. * an extra few instructions that came with the abstraction.
  177. * Notable, it allows us to only do the __count and tail update
  178. * dance when its actually needed.
  179. */
  180. preempt_disable_notrace();
  181. data = this_cpu_read(cyc2ns.head);
  182. tail = this_cpu_read(cyc2ns.tail);
  183. if (likely(data == tail)) {
  184. ns = data->cyc2ns_offset;
  185. ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, data->cyc2ns_shift);
  186. } else {
  187. data->__count++;
  188. barrier();
  189. ns = data->cyc2ns_offset;
  190. ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, data->cyc2ns_shift);
  191. barrier();
  192. if (!--data->__count)
  193. this_cpu_write(cyc2ns.tail, data);
  194. }
  195. preempt_enable_notrace();
  196. return ns;
  197. }
  198. static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu)
  199. {
  200. unsigned long long tsc_now, ns_now;
  201. struct cyc2ns_data *data;
  202. unsigned long flags;
  203. local_irq_save(flags);
  204. sched_clock_idle_sleep_event();
  205. if (!cpu_khz)
  206. goto done;
  207. data = cyc2ns_write_begin(cpu);
  208. tsc_now = rdtsc();
  209. ns_now = cycles_2_ns(tsc_now);
  210. /*
  211. * Compute a new multiplier as per the above comment and ensure our
  212. * time function is continuous; see the comment near struct
  213. * cyc2ns_data.
  214. */
  215. clocks_calc_mult_shift(&data->cyc2ns_mul, &data->cyc2ns_shift, cpu_khz,
  216. NSEC_PER_MSEC, 0);
  217. /*
  218. * cyc2ns_shift is exported via arch_perf_update_userpage() where it is
  219. * not expected to be greater than 31 due to the original published
  220. * conversion algorithm shifting a 32-bit value (now specifies a 64-bit
  221. * value) - refer perf_event_mmap_page documentation in perf_event.h.
  222. */
  223. if (data->cyc2ns_shift == 32) {
  224. data->cyc2ns_shift = 31;
  225. data->cyc2ns_mul >>= 1;
  226. }
  227. data->cyc2ns_offset = ns_now -
  228. mul_u64_u32_shr(tsc_now, data->cyc2ns_mul, data->cyc2ns_shift);
  229. cyc2ns_write_end(cpu, data);
  230. done:
  231. sched_clock_idle_wakeup_event(0);
  232. local_irq_restore(flags);
  233. }
  234. /*
  235. * Scheduler clock - returns current time in nanosec units.
  236. */
  237. u64 native_sched_clock(void)
  238. {
  239. if (static_branch_likely(&__use_tsc)) {
  240. u64 tsc_now = rdtsc();
  241. /* return the value in ns */
  242. return cycles_2_ns(tsc_now);
  243. }
  244. /*
  245. * Fall back to jiffies if there's no TSC available:
  246. * ( But note that we still use it if the TSC is marked
  247. * unstable. We do this because unlike Time Of Day,
  248. * the scheduler clock tolerates small errors and it's
  249. * very important for it to be as fast as the platform
  250. * can achieve it. )
  251. */
  252. /* No locking but a rare wrong value is not a big deal: */
  253. return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
  254. }
  255. /*
  256. * Generate a sched_clock if you already have a TSC value.
  257. */
  258. u64 native_sched_clock_from_tsc(u64 tsc)
  259. {
  260. return cycles_2_ns(tsc);
  261. }
  262. /* We need to define a real function for sched_clock, to override the
  263. weak default version */
  264. #ifdef CONFIG_PARAVIRT
  265. unsigned long long sched_clock(void)
  266. {
  267. return paravirt_sched_clock();
  268. }
  269. #else
  270. unsigned long long
  271. sched_clock(void) __attribute__((alias("native_sched_clock")));
  272. #endif
  273. int check_tsc_unstable(void)
  274. {
  275. return tsc_unstable;
  276. }
  277. EXPORT_SYMBOL_GPL(check_tsc_unstable);
  278. int check_tsc_disabled(void)
  279. {
  280. return tsc_disabled;
  281. }
  282. EXPORT_SYMBOL_GPL(check_tsc_disabled);
  283. #ifdef CONFIG_X86_TSC
  284. int __init notsc_setup(char *str)
  285. {
  286. pr_warn("Kernel compiled with CONFIG_X86_TSC, cannot disable TSC completely\n");
  287. tsc_disabled = 1;
  288. return 1;
  289. }
  290. #else
  291. /*
  292. * disable flag for tsc. Takes effect by clearing the TSC cpu flag
  293. * in cpu/common.c
  294. */
  295. int __init notsc_setup(char *str)
  296. {
  297. setup_clear_cpu_cap(X86_FEATURE_TSC);
  298. return 1;
  299. }
  300. #endif
  301. __setup("notsc", notsc_setup);
  302. static int no_sched_irq_time;
  303. static int __init tsc_setup(char *str)
  304. {
  305. if (!strcmp(str, "reliable"))
  306. tsc_clocksource_reliable = 1;
  307. if (!strncmp(str, "noirqtime", 9))
  308. no_sched_irq_time = 1;
  309. if (!strcmp(str, "unstable"))
  310. mark_tsc_unstable("boot parameter");
  311. return 1;
  312. }
  313. __setup("tsc=", tsc_setup);
  314. #define MAX_RETRIES 5
  315. #define SMI_TRESHOLD 50000
  316. /*
  317. * Read TSC and the reference counters. Take care of SMI disturbance
  318. */
  319. static u64 tsc_read_refs(u64 *p, int hpet)
  320. {
  321. u64 t1, t2;
  322. int i;
  323. for (i = 0; i < MAX_RETRIES; i++) {
  324. t1 = get_cycles();
  325. if (hpet)
  326. *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
  327. else
  328. *p = acpi_pm_read_early();
  329. t2 = get_cycles();
  330. if ((t2 - t1) < SMI_TRESHOLD)
  331. return t2;
  332. }
  333. return ULLONG_MAX;
  334. }
  335. /*
  336. * Calculate the TSC frequency from HPET reference
  337. */
  338. static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
  339. {
  340. u64 tmp;
  341. if (hpet2 < hpet1)
  342. hpet2 += 0x100000000ULL;
  343. hpet2 -= hpet1;
  344. tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
  345. do_div(tmp, 1000000);
  346. deltatsc = div64_u64(deltatsc, tmp);
  347. return (unsigned long) deltatsc;
  348. }
  349. /*
  350. * Calculate the TSC frequency from PMTimer reference
  351. */
  352. static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
  353. {
  354. u64 tmp;
  355. if (!pm1 && !pm2)
  356. return ULONG_MAX;
  357. if (pm2 < pm1)
  358. pm2 += (u64)ACPI_PM_OVRRUN;
  359. pm2 -= pm1;
  360. tmp = pm2 * 1000000000LL;
  361. do_div(tmp, PMTMR_TICKS_PER_SEC);
  362. do_div(deltatsc, tmp);
  363. return (unsigned long) deltatsc;
  364. }
  365. #define CAL_MS 10
  366. #define CAL_LATCH (PIT_TICK_RATE / (1000 / CAL_MS))
  367. #define CAL_PIT_LOOPS 1000
  368. #define CAL2_MS 50
  369. #define CAL2_LATCH (PIT_TICK_RATE / (1000 / CAL2_MS))
  370. #define CAL2_PIT_LOOPS 5000
  371. /*
  372. * Try to calibrate the TSC against the Programmable
  373. * Interrupt Timer and return the frequency of the TSC
  374. * in kHz.
  375. *
  376. * Return ULONG_MAX on failure to calibrate.
  377. */
  378. static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
  379. {
  380. u64 tsc, t1, t2, delta;
  381. unsigned long tscmin, tscmax;
  382. int pitcnt;
  383. /* Set the Gate high, disable speaker */
  384. outb((inb(0x61) & ~0x02) | 0x01, 0x61);
  385. /*
  386. * Setup CTC channel 2* for mode 0, (interrupt on terminal
  387. * count mode), binary count. Set the latch register to 50ms
  388. * (LSB then MSB) to begin countdown.
  389. */
  390. outb(0xb0, 0x43);
  391. outb(latch & 0xff, 0x42);
  392. outb(latch >> 8, 0x42);
  393. tsc = t1 = t2 = get_cycles();
  394. pitcnt = 0;
  395. tscmax = 0;
  396. tscmin = ULONG_MAX;
  397. while ((inb(0x61) & 0x20) == 0) {
  398. t2 = get_cycles();
  399. delta = t2 - tsc;
  400. tsc = t2;
  401. if ((unsigned long) delta < tscmin)
  402. tscmin = (unsigned int) delta;
  403. if ((unsigned long) delta > tscmax)
  404. tscmax = (unsigned int) delta;
  405. pitcnt++;
  406. }
  407. /*
  408. * Sanity checks:
  409. *
  410. * If we were not able to read the PIT more than loopmin
  411. * times, then we have been hit by a massive SMI
  412. *
  413. * If the maximum is 10 times larger than the minimum,
  414. * then we got hit by an SMI as well.
  415. */
  416. if (pitcnt < loopmin || tscmax > 10 * tscmin)
  417. return ULONG_MAX;
  418. /* Calculate the PIT value */
  419. delta = t2 - t1;
  420. do_div(delta, ms);
  421. return delta;
  422. }
  423. /*
  424. * This reads the current MSB of the PIT counter, and
  425. * checks if we are running on sufficiently fast and
  426. * non-virtualized hardware.
  427. *
  428. * Our expectations are:
  429. *
  430. * - the PIT is running at roughly 1.19MHz
  431. *
  432. * - each IO is going to take about 1us on real hardware,
  433. * but we allow it to be much faster (by a factor of 10) or
  434. * _slightly_ slower (ie we allow up to a 2us read+counter
  435. * update - anything else implies a unacceptably slow CPU
  436. * or PIT for the fast calibration to work.
  437. *
  438. * - with 256 PIT ticks to read the value, we have 214us to
  439. * see the same MSB (and overhead like doing a single TSC
  440. * read per MSB value etc).
  441. *
  442. * - We're doing 2 reads per loop (LSB, MSB), and we expect
  443. * them each to take about a microsecond on real hardware.
  444. * So we expect a count value of around 100. But we'll be
  445. * generous, and accept anything over 50.
  446. *
  447. * - if the PIT is stuck, and we see *many* more reads, we
  448. * return early (and the next caller of pit_expect_msb()
  449. * then consider it a failure when they don't see the
  450. * next expected value).
  451. *
  452. * These expectations mean that we know that we have seen the
  453. * transition from one expected value to another with a fairly
  454. * high accuracy, and we didn't miss any events. We can thus
  455. * use the TSC value at the transitions to calculate a pretty
  456. * good value for the TSC frequencty.
  457. */
  458. static inline int pit_verify_msb(unsigned char val)
  459. {
  460. /* Ignore LSB */
  461. inb(0x42);
  462. return inb(0x42) == val;
  463. }
  464. static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
  465. {
  466. int count;
  467. u64 tsc = 0, prev_tsc = 0;
  468. for (count = 0; count < 50000; count++) {
  469. if (!pit_verify_msb(val))
  470. break;
  471. prev_tsc = tsc;
  472. tsc = get_cycles();
  473. }
  474. *deltap = get_cycles() - prev_tsc;
  475. *tscp = tsc;
  476. /*
  477. * We require _some_ success, but the quality control
  478. * will be based on the error terms on the TSC values.
  479. */
  480. return count > 5;
  481. }
  482. /*
  483. * How many MSB values do we want to see? We aim for
  484. * a maximum error rate of 500ppm (in practice the
  485. * real error is much smaller), but refuse to spend
  486. * more than 50ms on it.
  487. */
  488. #define MAX_QUICK_PIT_MS 50
  489. #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
  490. static unsigned long quick_pit_calibrate(void)
  491. {
  492. int i;
  493. u64 tsc, delta;
  494. unsigned long d1, d2;
  495. /* Set the Gate high, disable speaker */
  496. outb((inb(0x61) & ~0x02) | 0x01, 0x61);
  497. /*
  498. * Counter 2, mode 0 (one-shot), binary count
  499. *
  500. * NOTE! Mode 2 decrements by two (and then the
  501. * output is flipped each time, giving the same
  502. * final output frequency as a decrement-by-one),
  503. * so mode 0 is much better when looking at the
  504. * individual counts.
  505. */
  506. outb(0xb0, 0x43);
  507. /* Start at 0xffff */
  508. outb(0xff, 0x42);
  509. outb(0xff, 0x42);
  510. /*
  511. * The PIT starts counting at the next edge, so we
  512. * need to delay for a microsecond. The easiest way
  513. * to do that is to just read back the 16-bit counter
  514. * once from the PIT.
  515. */
  516. pit_verify_msb(0);
  517. if (pit_expect_msb(0xff, &tsc, &d1)) {
  518. for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
  519. if (!pit_expect_msb(0xff-i, &delta, &d2))
  520. break;
  521. delta -= tsc;
  522. /*
  523. * Extrapolate the error and fail fast if the error will
  524. * never be below 500 ppm.
  525. */
  526. if (i == 1 &&
  527. d1 + d2 >= (delta * MAX_QUICK_PIT_ITERATIONS) >> 11)
  528. return 0;
  529. /*
  530. * Iterate until the error is less than 500 ppm
  531. */
  532. if (d1+d2 >= delta >> 11)
  533. continue;
  534. /*
  535. * Check the PIT one more time to verify that
  536. * all TSC reads were stable wrt the PIT.
  537. *
  538. * This also guarantees serialization of the
  539. * last cycle read ('d2') in pit_expect_msb.
  540. */
  541. if (!pit_verify_msb(0xfe - i))
  542. break;
  543. goto success;
  544. }
  545. }
  546. pr_info("Fast TSC calibration failed\n");
  547. return 0;
  548. success:
  549. /*
  550. * Ok, if we get here, then we've seen the
  551. * MSB of the PIT decrement 'i' times, and the
  552. * error has shrunk to less than 500 ppm.
  553. *
  554. * As a result, we can depend on there not being
  555. * any odd delays anywhere, and the TSC reads are
  556. * reliable (within the error).
  557. *
  558. * kHz = ticks / time-in-seconds / 1000;
  559. * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
  560. * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
  561. */
  562. delta *= PIT_TICK_RATE;
  563. do_div(delta, i*256*1000);
  564. pr_info("Fast TSC calibration using PIT\n");
  565. return delta;
  566. }
  567. /**
  568. * native_calibrate_tsc - calibrate the tsc on boot
  569. */
  570. unsigned long native_calibrate_tsc(void)
  571. {
  572. u64 tsc1, tsc2, delta, ref1, ref2;
  573. unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
  574. unsigned long flags, latch, ms, fast_calibrate;
  575. int hpet = is_hpet_enabled(), i, loopmin;
  576. /* Calibrate TSC using MSR for Intel Atom SoCs */
  577. local_irq_save(flags);
  578. fast_calibrate = try_msr_calibrate_tsc();
  579. local_irq_restore(flags);
  580. if (fast_calibrate)
  581. return fast_calibrate;
  582. local_irq_save(flags);
  583. fast_calibrate = quick_pit_calibrate();
  584. local_irq_restore(flags);
  585. if (fast_calibrate)
  586. return fast_calibrate;
  587. /*
  588. * Run 5 calibration loops to get the lowest frequency value
  589. * (the best estimate). We use two different calibration modes
  590. * here:
  591. *
  592. * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
  593. * load a timeout of 50ms. We read the time right after we
  594. * started the timer and wait until the PIT count down reaches
  595. * zero. In each wait loop iteration we read the TSC and check
  596. * the delta to the previous read. We keep track of the min
  597. * and max values of that delta. The delta is mostly defined
  598. * by the IO time of the PIT access, so we can detect when a
  599. * SMI/SMM disturbance happened between the two reads. If the
  600. * maximum time is significantly larger than the minimum time,
  601. * then we discard the result and have another try.
  602. *
  603. * 2) Reference counter. If available we use the HPET or the
  604. * PMTIMER as a reference to check the sanity of that value.
  605. * We use separate TSC readouts and check inside of the
  606. * reference read for a SMI/SMM disturbance. We dicard
  607. * disturbed values here as well. We do that around the PIT
  608. * calibration delay loop as we have to wait for a certain
  609. * amount of time anyway.
  610. */
  611. /* Preset PIT loop values */
  612. latch = CAL_LATCH;
  613. ms = CAL_MS;
  614. loopmin = CAL_PIT_LOOPS;
  615. for (i = 0; i < 3; i++) {
  616. unsigned long tsc_pit_khz;
  617. /*
  618. * Read the start value and the reference count of
  619. * hpet/pmtimer when available. Then do the PIT
  620. * calibration, which will take at least 50ms, and
  621. * read the end value.
  622. */
  623. local_irq_save(flags);
  624. tsc1 = tsc_read_refs(&ref1, hpet);
  625. tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
  626. tsc2 = tsc_read_refs(&ref2, hpet);
  627. local_irq_restore(flags);
  628. /* Pick the lowest PIT TSC calibration so far */
  629. tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
  630. /* hpet or pmtimer available ? */
  631. if (ref1 == ref2)
  632. continue;
  633. /* Check, whether the sampling was disturbed by an SMI */
  634. if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
  635. continue;
  636. tsc2 = (tsc2 - tsc1) * 1000000LL;
  637. if (hpet)
  638. tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
  639. else
  640. tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
  641. tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
  642. /* Check the reference deviation */
  643. delta = ((u64) tsc_pit_min) * 100;
  644. do_div(delta, tsc_ref_min);
  645. /*
  646. * If both calibration results are inside a 10% window
  647. * then we can be sure, that the calibration
  648. * succeeded. We break out of the loop right away. We
  649. * use the reference value, as it is more precise.
  650. */
  651. if (delta >= 90 && delta <= 110) {
  652. pr_info("PIT calibration matches %s. %d loops\n",
  653. hpet ? "HPET" : "PMTIMER", i + 1);
  654. return tsc_ref_min;
  655. }
  656. /*
  657. * Check whether PIT failed more than once. This
  658. * happens in virtualized environments. We need to
  659. * give the virtual PC a slightly longer timeframe for
  660. * the HPET/PMTIMER to make the result precise.
  661. */
  662. if (i == 1 && tsc_pit_min == ULONG_MAX) {
  663. latch = CAL2_LATCH;
  664. ms = CAL2_MS;
  665. loopmin = CAL2_PIT_LOOPS;
  666. }
  667. }
  668. /*
  669. * Now check the results.
  670. */
  671. if (tsc_pit_min == ULONG_MAX) {
  672. /* PIT gave no useful value */
  673. pr_warn("Unable to calibrate against PIT\n");
  674. /* We don't have an alternative source, disable TSC */
  675. if (!hpet && !ref1 && !ref2) {
  676. pr_notice("No reference (HPET/PMTIMER) available\n");
  677. return 0;
  678. }
  679. /* The alternative source failed as well, disable TSC */
  680. if (tsc_ref_min == ULONG_MAX) {
  681. pr_warn("HPET/PMTIMER calibration failed\n");
  682. return 0;
  683. }
  684. /* Use the alternative source */
  685. pr_info("using %s reference calibration\n",
  686. hpet ? "HPET" : "PMTIMER");
  687. return tsc_ref_min;
  688. }
  689. /* We don't have an alternative source, use the PIT calibration value */
  690. if (!hpet && !ref1 && !ref2) {
  691. pr_info("Using PIT calibration value\n");
  692. return tsc_pit_min;
  693. }
  694. /* The alternative source failed, use the PIT calibration value */
  695. if (tsc_ref_min == ULONG_MAX) {
  696. pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
  697. return tsc_pit_min;
  698. }
  699. /*
  700. * The calibration values differ too much. In doubt, we use
  701. * the PIT value as we know that there are PMTIMERs around
  702. * running at double speed. At least we let the user know:
  703. */
  704. pr_warn("PIT calibration deviates from %s: %lu %lu\n",
  705. hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
  706. pr_info("Using PIT calibration value\n");
  707. return tsc_pit_min;
  708. }
  709. int recalibrate_cpu_khz(void)
  710. {
  711. #ifndef CONFIG_SMP
  712. unsigned long cpu_khz_old = cpu_khz;
  713. if (cpu_has_tsc) {
  714. tsc_khz = x86_platform.calibrate_tsc();
  715. cpu_khz = tsc_khz;
  716. cpu_data(0).loops_per_jiffy =
  717. cpufreq_scale(cpu_data(0).loops_per_jiffy,
  718. cpu_khz_old, cpu_khz);
  719. return 0;
  720. } else
  721. return -ENODEV;
  722. #else
  723. return -ENODEV;
  724. #endif
  725. }
  726. EXPORT_SYMBOL(recalibrate_cpu_khz);
  727. static unsigned long long cyc2ns_suspend;
  728. void tsc_save_sched_clock_state(void)
  729. {
  730. if (!sched_clock_stable())
  731. return;
  732. cyc2ns_suspend = sched_clock();
  733. }
  734. /*
  735. * Even on processors with invariant TSC, TSC gets reset in some the
  736. * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
  737. * arbitrary value (still sync'd across cpu's) during resume from such sleep
  738. * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
  739. * that sched_clock() continues from the point where it was left off during
  740. * suspend.
  741. */
  742. void tsc_restore_sched_clock_state(void)
  743. {
  744. unsigned long long offset;
  745. unsigned long flags;
  746. int cpu;
  747. if (!sched_clock_stable())
  748. return;
  749. local_irq_save(flags);
  750. /*
  751. * We're comming out of suspend, there's no concurrency yet; don't
  752. * bother being nice about the RCU stuff, just write to both
  753. * data fields.
  754. */
  755. this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0);
  756. this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0);
  757. offset = cyc2ns_suspend - sched_clock();
  758. for_each_possible_cpu(cpu) {
  759. per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset;
  760. per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset;
  761. }
  762. local_irq_restore(flags);
  763. }
  764. #ifdef CONFIG_CPU_FREQ
  765. /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
  766. * changes.
  767. *
  768. * RED-PEN: On SMP we assume all CPUs run with the same frequency. It's
  769. * not that important because current Opteron setups do not support
  770. * scaling on SMP anyroads.
  771. *
  772. * Should fix up last_tsc too. Currently gettimeofday in the
  773. * first tick after the change will be slightly wrong.
  774. */
  775. static unsigned int ref_freq;
  776. static unsigned long loops_per_jiffy_ref;
  777. static unsigned long tsc_khz_ref;
  778. static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
  779. void *data)
  780. {
  781. struct cpufreq_freqs *freq = data;
  782. unsigned long *lpj;
  783. if (cpu_has(&cpu_data(freq->cpu), X86_FEATURE_CONSTANT_TSC))
  784. return 0;
  785. lpj = &boot_cpu_data.loops_per_jiffy;
  786. #ifdef CONFIG_SMP
  787. if (!(freq->flags & CPUFREQ_CONST_LOOPS))
  788. lpj = &cpu_data(freq->cpu).loops_per_jiffy;
  789. #endif
  790. if (!ref_freq) {
  791. ref_freq = freq->old;
  792. loops_per_jiffy_ref = *lpj;
  793. tsc_khz_ref = tsc_khz;
  794. }
  795. if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
  796. (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
  797. *lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
  798. tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
  799. if (!(freq->flags & CPUFREQ_CONST_LOOPS))
  800. mark_tsc_unstable("cpufreq changes");
  801. set_cyc2ns_scale(tsc_khz, freq->cpu);
  802. }
  803. return 0;
  804. }
  805. static struct notifier_block time_cpufreq_notifier_block = {
  806. .notifier_call = time_cpufreq_notifier
  807. };
  808. static int __init cpufreq_tsc(void)
  809. {
  810. if (!cpu_has_tsc)
  811. return 0;
  812. if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  813. return 0;
  814. cpufreq_register_notifier(&time_cpufreq_notifier_block,
  815. CPUFREQ_TRANSITION_NOTIFIER);
  816. return 0;
  817. }
  818. core_initcall(cpufreq_tsc);
  819. #endif /* CONFIG_CPU_FREQ */
  820. /* clocksource code */
  821. static struct clocksource clocksource_tsc;
  822. /*
  823. * We used to compare the TSC to the cycle_last value in the clocksource
  824. * structure to avoid a nasty time-warp. This can be observed in a
  825. * very small window right after one CPU updated cycle_last under
  826. * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
  827. * is smaller than the cycle_last reference value due to a TSC which
  828. * is slighty behind. This delta is nowhere else observable, but in
  829. * that case it results in a forward time jump in the range of hours
  830. * due to the unsigned delta calculation of the time keeping core
  831. * code, which is necessary to support wrapping clocksources like pm
  832. * timer.
  833. *
  834. * This sanity check is now done in the core timekeeping code.
  835. * checking the result of read_tsc() - cycle_last for being negative.
  836. * That works because CLOCKSOURCE_MASK(64) does not mask out any bit.
  837. */
  838. static cycle_t read_tsc(struct clocksource *cs)
  839. {
  840. return (cycle_t)rdtsc_ordered();
  841. }
  842. /*
  843. * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc()
  844. */
  845. static struct clocksource clocksource_tsc = {
  846. .name = "tsc",
  847. .rating = 300,
  848. .read = read_tsc,
  849. .mask = CLOCKSOURCE_MASK(64),
  850. .flags = CLOCK_SOURCE_IS_CONTINUOUS |
  851. CLOCK_SOURCE_MUST_VERIFY,
  852. .archdata = { .vclock_mode = VCLOCK_TSC },
  853. };
  854. void mark_tsc_unstable(char *reason)
  855. {
  856. if (!tsc_unstable) {
  857. tsc_unstable = 1;
  858. clear_sched_clock_stable();
  859. disable_sched_clock_irqtime();
  860. pr_info("Marking TSC unstable due to %s\n", reason);
  861. /* Change only the rating, when not registered */
  862. if (clocksource_tsc.mult)
  863. clocksource_mark_unstable(&clocksource_tsc);
  864. else {
  865. clocksource_tsc.flags |= CLOCK_SOURCE_UNSTABLE;
  866. clocksource_tsc.rating = 0;
  867. }
  868. }
  869. }
  870. EXPORT_SYMBOL_GPL(mark_tsc_unstable);
  871. static void __init check_system_tsc_reliable(void)
  872. {
  873. #if defined(CONFIG_MGEODEGX1) || defined(CONFIG_MGEODE_LX) || defined(CONFIG_X86_GENERIC)
  874. if (is_geode_lx()) {
  875. /* RTSC counts during suspend */
  876. #define RTSC_SUSP 0x100
  877. unsigned long res_low, res_high;
  878. rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
  879. /* Geode_LX - the OLPC CPU has a very reliable TSC */
  880. if (res_low & RTSC_SUSP)
  881. tsc_clocksource_reliable = 1;
  882. }
  883. #endif
  884. if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
  885. tsc_clocksource_reliable = 1;
  886. }
  887. /*
  888. * Make an educated guess if the TSC is trustworthy and synchronized
  889. * over all CPUs.
  890. */
  891. int unsynchronized_tsc(void)
  892. {
  893. if (!cpu_has_tsc || tsc_unstable)
  894. return 1;
  895. #ifdef CONFIG_SMP
  896. if (apic_is_clustered_box())
  897. return 1;
  898. #endif
  899. if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  900. return 0;
  901. if (tsc_clocksource_reliable)
  902. return 0;
  903. /*
  904. * Intel systems are normally all synchronized.
  905. * Exceptions must mark TSC as unstable:
  906. */
  907. if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
  908. /* assume multi socket systems are not synchronized: */
  909. if (num_possible_cpus() > 1)
  910. return 1;
  911. }
  912. return 0;
  913. }
  914. static void tsc_refine_calibration_work(struct work_struct *work);
  915. static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
  916. /**
  917. * tsc_refine_calibration_work - Further refine tsc freq calibration
  918. * @work - ignored.
  919. *
  920. * This functions uses delayed work over a period of a
  921. * second to further refine the TSC freq value. Since this is
  922. * timer based, instead of loop based, we don't block the boot
  923. * process while this longer calibration is done.
  924. *
  925. * If there are any calibration anomalies (too many SMIs, etc),
  926. * or the refined calibration is off by 1% of the fast early
  927. * calibration, we throw out the new calibration and use the
  928. * early calibration.
  929. */
  930. static void tsc_refine_calibration_work(struct work_struct *work)
  931. {
  932. static u64 tsc_start = -1, ref_start;
  933. static int hpet;
  934. u64 tsc_stop, ref_stop, delta;
  935. unsigned long freq;
  936. /* Don't bother refining TSC on unstable systems */
  937. if (check_tsc_unstable())
  938. goto out;
  939. /*
  940. * Since the work is started early in boot, we may be
  941. * delayed the first time we expire. So set the workqueue
  942. * again once we know timers are working.
  943. */
  944. if (tsc_start == -1) {
  945. /*
  946. * Only set hpet once, to avoid mixing hardware
  947. * if the hpet becomes enabled later.
  948. */
  949. hpet = is_hpet_enabled();
  950. schedule_delayed_work(&tsc_irqwork, HZ);
  951. tsc_start = tsc_read_refs(&ref_start, hpet);
  952. return;
  953. }
  954. tsc_stop = tsc_read_refs(&ref_stop, hpet);
  955. /* hpet or pmtimer available ? */
  956. if (ref_start == ref_stop)
  957. goto out;
  958. /* Check, whether the sampling was disturbed by an SMI */
  959. if (tsc_start == ULLONG_MAX || tsc_stop == ULLONG_MAX)
  960. goto out;
  961. delta = tsc_stop - tsc_start;
  962. delta *= 1000000LL;
  963. if (hpet)
  964. freq = calc_hpet_ref(delta, ref_start, ref_stop);
  965. else
  966. freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
  967. /* Make sure we're within 1% */
  968. if (abs(tsc_khz - freq) > tsc_khz/100)
  969. goto out;
  970. tsc_khz = freq;
  971. pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
  972. (unsigned long)tsc_khz / 1000,
  973. (unsigned long)tsc_khz % 1000);
  974. out:
  975. clocksource_register_khz(&clocksource_tsc, tsc_khz);
  976. }
  977. static int __init init_tsc_clocksource(void)
  978. {
  979. if (!cpu_has_tsc || tsc_disabled > 0 || !tsc_khz)
  980. return 0;
  981. if (tsc_clocksource_reliable)
  982. clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
  983. /* lower the rating if we already know its unstable: */
  984. if (check_tsc_unstable()) {
  985. clocksource_tsc.rating = 0;
  986. clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
  987. }
  988. if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
  989. clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
  990. /*
  991. * Trust the results of the earlier calibration on systems
  992. * exporting a reliable TSC.
  993. */
  994. if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE)) {
  995. clocksource_register_khz(&clocksource_tsc, tsc_khz);
  996. return 0;
  997. }
  998. schedule_delayed_work(&tsc_irqwork, 0);
  999. return 0;
  1000. }
  1001. /*
  1002. * We use device_initcall here, to ensure we run after the hpet
  1003. * is fully initialized, which may occur at fs_initcall time.
  1004. */
  1005. device_initcall(init_tsc_clocksource);
  1006. void __init tsc_init(void)
  1007. {
  1008. u64 lpj;
  1009. int cpu;
  1010. x86_init.timers.tsc_pre_init();
  1011. if (!cpu_has_tsc) {
  1012. setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
  1013. return;
  1014. }
  1015. tsc_khz = x86_platform.calibrate_tsc();
  1016. cpu_khz = tsc_khz;
  1017. if (!tsc_khz) {
  1018. mark_tsc_unstable("could not calculate TSC khz");
  1019. setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
  1020. return;
  1021. }
  1022. pr_info("Detected %lu.%03lu MHz processor\n",
  1023. (unsigned long)cpu_khz / 1000,
  1024. (unsigned long)cpu_khz % 1000);
  1025. /*
  1026. * Secondary CPUs do not run through tsc_init(), so set up
  1027. * all the scale factors for all CPUs, assuming the same
  1028. * speed as the bootup CPU. (cpufreq notifiers will fix this
  1029. * up if their speed diverges)
  1030. */
  1031. for_each_possible_cpu(cpu) {
  1032. cyc2ns_init(cpu);
  1033. set_cyc2ns_scale(cpu_khz, cpu);
  1034. }
  1035. if (tsc_disabled > 0)
  1036. return;
  1037. /* now allow native_sched_clock() to use rdtsc */
  1038. tsc_disabled = 0;
  1039. static_branch_enable(&__use_tsc);
  1040. if (!no_sched_irq_time)
  1041. enable_sched_clock_irqtime();
  1042. lpj = ((u64)tsc_khz * 1000);
  1043. do_div(lpj, HZ);
  1044. lpj_fine = lpj;
  1045. use_tsc_delay();
  1046. if (unsynchronized_tsc())
  1047. mark_tsc_unstable("TSCs unsynchronized");
  1048. check_system_tsc_reliable();
  1049. }
  1050. #ifdef CONFIG_SMP
  1051. /*
  1052. * If we have a constant TSC and are using the TSC for the delay loop,
  1053. * we can skip clock calibration if another cpu in the same socket has already
  1054. * been calibrated. This assumes that CONSTANT_TSC applies to all
  1055. * cpus in the socket - this should be a safe assumption.
  1056. */
  1057. unsigned long calibrate_delay_is_known(void)
  1058. {
  1059. int i, cpu = smp_processor_id();
  1060. if (!tsc_disabled && !cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC))
  1061. return 0;
  1062. for_each_online_cpu(i)
  1063. if (cpu_data(i).phys_proc_id == cpu_data(cpu).phys_proc_id)
  1064. return cpu_data(i).loops_per_jiffy;
  1065. return 0;
  1066. }
  1067. #endif