mmu.c 124 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  11. *
  12. * Authors:
  13. * Yaniv Kamay <yaniv@qumranet.com>
  14. * Avi Kivity <avi@qumranet.com>
  15. *
  16. * This work is licensed under the terms of the GNU GPL, version 2. See
  17. * the COPYING file in the top-level directory.
  18. *
  19. */
  20. #include "irq.h"
  21. #include "mmu.h"
  22. #include "x86.h"
  23. #include "kvm_cache_regs.h"
  24. #include "cpuid.h"
  25. #include <linux/kvm_host.h>
  26. #include <linux/types.h>
  27. #include <linux/string.h>
  28. #include <linux/mm.h>
  29. #include <linux/highmem.h>
  30. #include <linux/module.h>
  31. #include <linux/swap.h>
  32. #include <linux/hugetlb.h>
  33. #include <linux/compiler.h>
  34. #include <linux/srcu.h>
  35. #include <linux/slab.h>
  36. #include <linux/uaccess.h>
  37. #include <asm/page.h>
  38. #include <asm/cmpxchg.h>
  39. #include <asm/io.h>
  40. #include <asm/vmx.h>
  41. /*
  42. * When setting this variable to true it enables Two-Dimensional-Paging
  43. * where the hardware walks 2 page tables:
  44. * 1. the guest-virtual to guest-physical
  45. * 2. while doing 1. it walks guest-physical to host-physical
  46. * If the hardware supports that we don't need to do shadow paging.
  47. */
  48. bool tdp_enabled = false;
  49. enum {
  50. AUDIT_PRE_PAGE_FAULT,
  51. AUDIT_POST_PAGE_FAULT,
  52. AUDIT_PRE_PTE_WRITE,
  53. AUDIT_POST_PTE_WRITE,
  54. AUDIT_PRE_SYNC,
  55. AUDIT_POST_SYNC
  56. };
  57. #undef MMU_DEBUG
  58. #ifdef MMU_DEBUG
  59. static bool dbg = 0;
  60. module_param(dbg, bool, 0644);
  61. #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
  62. #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
  63. #define MMU_WARN_ON(x) WARN_ON(x)
  64. #else
  65. #define pgprintk(x...) do { } while (0)
  66. #define rmap_printk(x...) do { } while (0)
  67. #define MMU_WARN_ON(x) do { } while (0)
  68. #endif
  69. #define PTE_PREFETCH_NUM 8
  70. #define PT_FIRST_AVAIL_BITS_SHIFT 10
  71. #define PT64_SECOND_AVAIL_BITS_SHIFT 52
  72. #define PT64_LEVEL_BITS 9
  73. #define PT64_LEVEL_SHIFT(level) \
  74. (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
  75. #define PT64_INDEX(address, level)\
  76. (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
  77. #define PT32_LEVEL_BITS 10
  78. #define PT32_LEVEL_SHIFT(level) \
  79. (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
  80. #define PT32_LVL_OFFSET_MASK(level) \
  81. (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  82. * PT32_LEVEL_BITS))) - 1))
  83. #define PT32_INDEX(address, level)\
  84. (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
  85. #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
  86. #define PT64_DIR_BASE_ADDR_MASK \
  87. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
  88. #define PT64_LVL_ADDR_MASK(level) \
  89. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  90. * PT64_LEVEL_BITS))) - 1))
  91. #define PT64_LVL_OFFSET_MASK(level) \
  92. (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  93. * PT64_LEVEL_BITS))) - 1))
  94. #define PT32_BASE_ADDR_MASK PAGE_MASK
  95. #define PT32_DIR_BASE_ADDR_MASK \
  96. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
  97. #define PT32_LVL_ADDR_MASK(level) \
  98. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  99. * PT32_LEVEL_BITS))) - 1))
  100. #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
  101. | shadow_x_mask | shadow_nx_mask)
  102. #define ACC_EXEC_MASK 1
  103. #define ACC_WRITE_MASK PT_WRITABLE_MASK
  104. #define ACC_USER_MASK PT_USER_MASK
  105. #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
  106. #include <trace/events/kvm.h>
  107. #define CREATE_TRACE_POINTS
  108. #include "mmutrace.h"
  109. #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
  110. #define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
  111. #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
  112. /* make pte_list_desc fit well in cache line */
  113. #define PTE_LIST_EXT 3
  114. struct pte_list_desc {
  115. u64 *sptes[PTE_LIST_EXT];
  116. struct pte_list_desc *more;
  117. };
  118. struct kvm_shadow_walk_iterator {
  119. u64 addr;
  120. hpa_t shadow_addr;
  121. u64 *sptep;
  122. int level;
  123. unsigned index;
  124. };
  125. #define for_each_shadow_entry(_vcpu, _addr, _walker) \
  126. for (shadow_walk_init(&(_walker), _vcpu, _addr); \
  127. shadow_walk_okay(&(_walker)); \
  128. shadow_walk_next(&(_walker)))
  129. #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
  130. for (shadow_walk_init(&(_walker), _vcpu, _addr); \
  131. shadow_walk_okay(&(_walker)) && \
  132. ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
  133. __shadow_walk_next(&(_walker), spte))
  134. static struct kmem_cache *pte_list_desc_cache;
  135. static struct kmem_cache *mmu_page_header_cache;
  136. static struct percpu_counter kvm_total_used_mmu_pages;
  137. static u64 __read_mostly shadow_nx_mask;
  138. static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
  139. static u64 __read_mostly shadow_user_mask;
  140. static u64 __read_mostly shadow_accessed_mask;
  141. static u64 __read_mostly shadow_dirty_mask;
  142. static u64 __read_mostly shadow_mmio_mask;
  143. static void mmu_spte_set(u64 *sptep, u64 spte);
  144. static void mmu_free_roots(struct kvm_vcpu *vcpu);
  145. void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
  146. {
  147. shadow_mmio_mask = mmio_mask;
  148. }
  149. EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
  150. /*
  151. * the low bit of the generation number is always presumed to be zero.
  152. * This disables mmio caching during memslot updates. The concept is
  153. * similar to a seqcount but instead of retrying the access we just punt
  154. * and ignore the cache.
  155. *
  156. * spte bits 3-11 are used as bits 1-9 of the generation number,
  157. * the bits 52-61 are used as bits 10-19 of the generation number.
  158. */
  159. #define MMIO_SPTE_GEN_LOW_SHIFT 2
  160. #define MMIO_SPTE_GEN_HIGH_SHIFT 52
  161. #define MMIO_GEN_SHIFT 20
  162. #define MMIO_GEN_LOW_SHIFT 10
  163. #define MMIO_GEN_LOW_MASK ((1 << MMIO_GEN_LOW_SHIFT) - 2)
  164. #define MMIO_GEN_MASK ((1 << MMIO_GEN_SHIFT) - 1)
  165. static u64 generation_mmio_spte_mask(unsigned int gen)
  166. {
  167. u64 mask;
  168. WARN_ON(gen & ~MMIO_GEN_MASK);
  169. mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
  170. mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
  171. return mask;
  172. }
  173. static unsigned int get_mmio_spte_generation(u64 spte)
  174. {
  175. unsigned int gen;
  176. spte &= ~shadow_mmio_mask;
  177. gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
  178. gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
  179. return gen;
  180. }
  181. static unsigned int kvm_current_mmio_generation(struct kvm_vcpu *vcpu)
  182. {
  183. return kvm_vcpu_memslots(vcpu)->generation & MMIO_GEN_MASK;
  184. }
  185. static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
  186. unsigned access)
  187. {
  188. unsigned int gen = kvm_current_mmio_generation(vcpu);
  189. u64 mask = generation_mmio_spte_mask(gen);
  190. access &= ACC_WRITE_MASK | ACC_USER_MASK;
  191. mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;
  192. trace_mark_mmio_spte(sptep, gfn, access, gen);
  193. mmu_spte_set(sptep, mask);
  194. }
  195. static bool is_mmio_spte(u64 spte)
  196. {
  197. return (spte & shadow_mmio_mask) == shadow_mmio_mask;
  198. }
  199. static gfn_t get_mmio_spte_gfn(u64 spte)
  200. {
  201. u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
  202. return (spte & ~mask) >> PAGE_SHIFT;
  203. }
  204. static unsigned get_mmio_spte_access(u64 spte)
  205. {
  206. u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
  207. return (spte & ~mask) & ~PAGE_MASK;
  208. }
  209. static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
  210. pfn_t pfn, unsigned access)
  211. {
  212. if (unlikely(is_noslot_pfn(pfn))) {
  213. mark_mmio_spte(vcpu, sptep, gfn, access);
  214. return true;
  215. }
  216. return false;
  217. }
  218. static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
  219. {
  220. unsigned int kvm_gen, spte_gen;
  221. kvm_gen = kvm_current_mmio_generation(vcpu);
  222. spte_gen = get_mmio_spte_generation(spte);
  223. trace_check_mmio_spte(spte, kvm_gen, spte_gen);
  224. return likely(kvm_gen == spte_gen);
  225. }
  226. void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
  227. u64 dirty_mask, u64 nx_mask, u64 x_mask)
  228. {
  229. shadow_user_mask = user_mask;
  230. shadow_accessed_mask = accessed_mask;
  231. shadow_dirty_mask = dirty_mask;
  232. shadow_nx_mask = nx_mask;
  233. shadow_x_mask = x_mask;
  234. }
  235. EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
  236. static int is_cpuid_PSE36(void)
  237. {
  238. return 1;
  239. }
  240. static int is_nx(struct kvm_vcpu *vcpu)
  241. {
  242. return vcpu->arch.efer & EFER_NX;
  243. }
  244. static int is_shadow_present_pte(u64 pte)
  245. {
  246. return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
  247. }
  248. static int is_large_pte(u64 pte)
  249. {
  250. return pte & PT_PAGE_SIZE_MASK;
  251. }
  252. static int is_rmap_spte(u64 pte)
  253. {
  254. return is_shadow_present_pte(pte);
  255. }
  256. static int is_last_spte(u64 pte, int level)
  257. {
  258. if (level == PT_PAGE_TABLE_LEVEL)
  259. return 1;
  260. if (is_large_pte(pte))
  261. return 1;
  262. return 0;
  263. }
  264. static pfn_t spte_to_pfn(u64 pte)
  265. {
  266. return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  267. }
  268. static gfn_t pse36_gfn_delta(u32 gpte)
  269. {
  270. int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
  271. return (gpte & PT32_DIR_PSE36_MASK) << shift;
  272. }
  273. #ifdef CONFIG_X86_64
  274. static void __set_spte(u64 *sptep, u64 spte)
  275. {
  276. *sptep = spte;
  277. }
  278. static void __update_clear_spte_fast(u64 *sptep, u64 spte)
  279. {
  280. *sptep = spte;
  281. }
  282. static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
  283. {
  284. return xchg(sptep, spte);
  285. }
  286. static u64 __get_spte_lockless(u64 *sptep)
  287. {
  288. return ACCESS_ONCE(*sptep);
  289. }
  290. #else
  291. union split_spte {
  292. struct {
  293. u32 spte_low;
  294. u32 spte_high;
  295. };
  296. u64 spte;
  297. };
  298. static void count_spte_clear(u64 *sptep, u64 spte)
  299. {
  300. struct kvm_mmu_page *sp = page_header(__pa(sptep));
  301. if (is_shadow_present_pte(spte))
  302. return;
  303. /* Ensure the spte is completely set before we increase the count */
  304. smp_wmb();
  305. sp->clear_spte_count++;
  306. }
  307. static void __set_spte(u64 *sptep, u64 spte)
  308. {
  309. union split_spte *ssptep, sspte;
  310. ssptep = (union split_spte *)sptep;
  311. sspte = (union split_spte)spte;
  312. ssptep->spte_high = sspte.spte_high;
  313. /*
  314. * If we map the spte from nonpresent to present, We should store
  315. * the high bits firstly, then set present bit, so cpu can not
  316. * fetch this spte while we are setting the spte.
  317. */
  318. smp_wmb();
  319. ssptep->spte_low = sspte.spte_low;
  320. }
  321. static void __update_clear_spte_fast(u64 *sptep, u64 spte)
  322. {
  323. union split_spte *ssptep, sspte;
  324. ssptep = (union split_spte *)sptep;
  325. sspte = (union split_spte)spte;
  326. ssptep->spte_low = sspte.spte_low;
  327. /*
  328. * If we map the spte from present to nonpresent, we should clear
  329. * present bit firstly to avoid vcpu fetch the old high bits.
  330. */
  331. smp_wmb();
  332. ssptep->spte_high = sspte.spte_high;
  333. count_spte_clear(sptep, spte);
  334. }
  335. static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
  336. {
  337. union split_spte *ssptep, sspte, orig;
  338. ssptep = (union split_spte *)sptep;
  339. sspte = (union split_spte)spte;
  340. /* xchg acts as a barrier before the setting of the high bits */
  341. orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
  342. orig.spte_high = ssptep->spte_high;
  343. ssptep->spte_high = sspte.spte_high;
  344. count_spte_clear(sptep, spte);
  345. return orig.spte;
  346. }
  347. /*
  348. * The idea using the light way get the spte on x86_32 guest is from
  349. * gup_get_pte(arch/x86/mm/gup.c).
  350. *
  351. * An spte tlb flush may be pending, because kvm_set_pte_rmapp
  352. * coalesces them and we are running out of the MMU lock. Therefore
  353. * we need to protect against in-progress updates of the spte.
  354. *
  355. * Reading the spte while an update is in progress may get the old value
  356. * for the high part of the spte. The race is fine for a present->non-present
  357. * change (because the high part of the spte is ignored for non-present spte),
  358. * but for a present->present change we must reread the spte.
  359. *
  360. * All such changes are done in two steps (present->non-present and
  361. * non-present->present), hence it is enough to count the number of
  362. * present->non-present updates: if it changed while reading the spte,
  363. * we might have hit the race. This is done using clear_spte_count.
  364. */
  365. static u64 __get_spte_lockless(u64 *sptep)
  366. {
  367. struct kvm_mmu_page *sp = page_header(__pa(sptep));
  368. union split_spte spte, *orig = (union split_spte *)sptep;
  369. int count;
  370. retry:
  371. count = sp->clear_spte_count;
  372. smp_rmb();
  373. spte.spte_low = orig->spte_low;
  374. smp_rmb();
  375. spte.spte_high = orig->spte_high;
  376. smp_rmb();
  377. if (unlikely(spte.spte_low != orig->spte_low ||
  378. count != sp->clear_spte_count))
  379. goto retry;
  380. return spte.spte;
  381. }
  382. #endif
  383. static bool spte_is_locklessly_modifiable(u64 spte)
  384. {
  385. return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
  386. (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
  387. }
  388. static bool spte_has_volatile_bits(u64 spte)
  389. {
  390. /*
  391. * Always atomicly update spte if it can be updated
  392. * out of mmu-lock, it can ensure dirty bit is not lost,
  393. * also, it can help us to get a stable is_writable_pte()
  394. * to ensure tlb flush is not missed.
  395. */
  396. if (spte_is_locklessly_modifiable(spte))
  397. return true;
  398. if (!shadow_accessed_mask)
  399. return false;
  400. if (!is_shadow_present_pte(spte))
  401. return false;
  402. if ((spte & shadow_accessed_mask) &&
  403. (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
  404. return false;
  405. return true;
  406. }
  407. static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
  408. {
  409. return (old_spte & bit_mask) && !(new_spte & bit_mask);
  410. }
  411. static bool spte_is_bit_changed(u64 old_spte, u64 new_spte, u64 bit_mask)
  412. {
  413. return (old_spte & bit_mask) != (new_spte & bit_mask);
  414. }
  415. /* Rules for using mmu_spte_set:
  416. * Set the sptep from nonpresent to present.
  417. * Note: the sptep being assigned *must* be either not present
  418. * or in a state where the hardware will not attempt to update
  419. * the spte.
  420. */
  421. static void mmu_spte_set(u64 *sptep, u64 new_spte)
  422. {
  423. WARN_ON(is_shadow_present_pte(*sptep));
  424. __set_spte(sptep, new_spte);
  425. }
  426. /* Rules for using mmu_spte_update:
  427. * Update the state bits, it means the mapped pfn is not changged.
  428. *
  429. * Whenever we overwrite a writable spte with a read-only one we
  430. * should flush remote TLBs. Otherwise rmap_write_protect
  431. * will find a read-only spte, even though the writable spte
  432. * might be cached on a CPU's TLB, the return value indicates this
  433. * case.
  434. */
  435. static bool mmu_spte_update(u64 *sptep, u64 new_spte)
  436. {
  437. u64 old_spte = *sptep;
  438. bool ret = false;
  439. WARN_ON(!is_rmap_spte(new_spte));
  440. if (!is_shadow_present_pte(old_spte)) {
  441. mmu_spte_set(sptep, new_spte);
  442. return ret;
  443. }
  444. if (!spte_has_volatile_bits(old_spte))
  445. __update_clear_spte_fast(sptep, new_spte);
  446. else
  447. old_spte = __update_clear_spte_slow(sptep, new_spte);
  448. /*
  449. * For the spte updated out of mmu-lock is safe, since
  450. * we always atomicly update it, see the comments in
  451. * spte_has_volatile_bits().
  452. */
  453. if (spte_is_locklessly_modifiable(old_spte) &&
  454. !is_writable_pte(new_spte))
  455. ret = true;
  456. if (!shadow_accessed_mask)
  457. return ret;
  458. /*
  459. * Flush TLB when accessed/dirty bits are changed in the page tables,
  460. * to guarantee consistency between TLB and page tables.
  461. */
  462. if (spte_is_bit_changed(old_spte, new_spte,
  463. shadow_accessed_mask | shadow_dirty_mask))
  464. ret = true;
  465. if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
  466. kvm_set_pfn_accessed(spte_to_pfn(old_spte));
  467. if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
  468. kvm_set_pfn_dirty(spte_to_pfn(old_spte));
  469. return ret;
  470. }
  471. /*
  472. * Rules for using mmu_spte_clear_track_bits:
  473. * It sets the sptep from present to nonpresent, and track the
  474. * state bits, it is used to clear the last level sptep.
  475. */
  476. static int mmu_spte_clear_track_bits(u64 *sptep)
  477. {
  478. pfn_t pfn;
  479. u64 old_spte = *sptep;
  480. if (!spte_has_volatile_bits(old_spte))
  481. __update_clear_spte_fast(sptep, 0ull);
  482. else
  483. old_spte = __update_clear_spte_slow(sptep, 0ull);
  484. if (!is_rmap_spte(old_spte))
  485. return 0;
  486. pfn = spte_to_pfn(old_spte);
  487. /*
  488. * KVM does not hold the refcount of the page used by
  489. * kvm mmu, before reclaiming the page, we should
  490. * unmap it from mmu first.
  491. */
  492. WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
  493. if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
  494. kvm_set_pfn_accessed(pfn);
  495. if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
  496. kvm_set_pfn_dirty(pfn);
  497. return 1;
  498. }
  499. /*
  500. * Rules for using mmu_spte_clear_no_track:
  501. * Directly clear spte without caring the state bits of sptep,
  502. * it is used to set the upper level spte.
  503. */
  504. static void mmu_spte_clear_no_track(u64 *sptep)
  505. {
  506. __update_clear_spte_fast(sptep, 0ull);
  507. }
  508. static u64 mmu_spte_get_lockless(u64 *sptep)
  509. {
  510. return __get_spte_lockless(sptep);
  511. }
  512. static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
  513. {
  514. /*
  515. * Prevent page table teardown by making any free-er wait during
  516. * kvm_flush_remote_tlbs() IPI to all active vcpus.
  517. */
  518. local_irq_disable();
  519. vcpu->mode = READING_SHADOW_PAGE_TABLES;
  520. /*
  521. * Make sure a following spte read is not reordered ahead of the write
  522. * to vcpu->mode.
  523. */
  524. smp_mb();
  525. }
  526. static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
  527. {
  528. /*
  529. * Make sure the write to vcpu->mode is not reordered in front of
  530. * reads to sptes. If it does, kvm_commit_zap_page() can see us
  531. * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
  532. */
  533. smp_mb();
  534. vcpu->mode = OUTSIDE_GUEST_MODE;
  535. local_irq_enable();
  536. }
  537. static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
  538. struct kmem_cache *base_cache, int min)
  539. {
  540. void *obj;
  541. if (cache->nobjs >= min)
  542. return 0;
  543. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  544. obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
  545. if (!obj)
  546. return -ENOMEM;
  547. cache->objects[cache->nobjs++] = obj;
  548. }
  549. return 0;
  550. }
  551. static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
  552. {
  553. return cache->nobjs;
  554. }
  555. static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
  556. struct kmem_cache *cache)
  557. {
  558. while (mc->nobjs)
  559. kmem_cache_free(cache, mc->objects[--mc->nobjs]);
  560. }
  561. static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
  562. int min)
  563. {
  564. void *page;
  565. if (cache->nobjs >= min)
  566. return 0;
  567. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  568. page = (void *)__get_free_page(GFP_KERNEL);
  569. if (!page)
  570. return -ENOMEM;
  571. cache->objects[cache->nobjs++] = page;
  572. }
  573. return 0;
  574. }
  575. static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
  576. {
  577. while (mc->nobjs)
  578. free_page((unsigned long)mc->objects[--mc->nobjs]);
  579. }
  580. static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
  581. {
  582. int r;
  583. r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
  584. pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
  585. if (r)
  586. goto out;
  587. r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
  588. if (r)
  589. goto out;
  590. r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
  591. mmu_page_header_cache, 4);
  592. out:
  593. return r;
  594. }
  595. static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
  596. {
  597. mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
  598. pte_list_desc_cache);
  599. mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
  600. mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
  601. mmu_page_header_cache);
  602. }
  603. static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
  604. {
  605. void *p;
  606. BUG_ON(!mc->nobjs);
  607. p = mc->objects[--mc->nobjs];
  608. return p;
  609. }
  610. static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
  611. {
  612. return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
  613. }
  614. static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
  615. {
  616. kmem_cache_free(pte_list_desc_cache, pte_list_desc);
  617. }
  618. static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
  619. {
  620. if (!sp->role.direct)
  621. return sp->gfns[index];
  622. return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
  623. }
  624. static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
  625. {
  626. if (sp->role.direct)
  627. BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
  628. else
  629. sp->gfns[index] = gfn;
  630. }
  631. /*
  632. * Return the pointer to the large page information for a given gfn,
  633. * handling slots that are not large page aligned.
  634. */
  635. static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
  636. struct kvm_memory_slot *slot,
  637. int level)
  638. {
  639. unsigned long idx;
  640. idx = gfn_to_index(gfn, slot->base_gfn, level);
  641. return &slot->arch.lpage_info[level - 2][idx];
  642. }
  643. static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
  644. {
  645. struct kvm_memslots *slots;
  646. struct kvm_memory_slot *slot;
  647. struct kvm_lpage_info *linfo;
  648. gfn_t gfn;
  649. int i;
  650. gfn = sp->gfn;
  651. slots = kvm_memslots_for_spte_role(kvm, sp->role);
  652. slot = __gfn_to_memslot(slots, gfn);
  653. for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
  654. linfo = lpage_info_slot(gfn, slot, i);
  655. linfo->write_count += 1;
  656. }
  657. kvm->arch.indirect_shadow_pages++;
  658. }
  659. static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
  660. {
  661. struct kvm_memslots *slots;
  662. struct kvm_memory_slot *slot;
  663. struct kvm_lpage_info *linfo;
  664. gfn_t gfn;
  665. int i;
  666. gfn = sp->gfn;
  667. slots = kvm_memslots_for_spte_role(kvm, sp->role);
  668. slot = __gfn_to_memslot(slots, gfn);
  669. for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
  670. linfo = lpage_info_slot(gfn, slot, i);
  671. linfo->write_count -= 1;
  672. WARN_ON(linfo->write_count < 0);
  673. }
  674. kvm->arch.indirect_shadow_pages--;
  675. }
  676. static int __has_wrprotected_page(gfn_t gfn, int level,
  677. struct kvm_memory_slot *slot)
  678. {
  679. struct kvm_lpage_info *linfo;
  680. if (slot) {
  681. linfo = lpage_info_slot(gfn, slot, level);
  682. return linfo->write_count;
  683. }
  684. return 1;
  685. }
  686. static int has_wrprotected_page(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
  687. {
  688. struct kvm_memory_slot *slot;
  689. slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
  690. return __has_wrprotected_page(gfn, level, slot);
  691. }
  692. static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
  693. {
  694. unsigned long page_size;
  695. int i, ret = 0;
  696. page_size = kvm_host_page_size(kvm, gfn);
  697. for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
  698. if (page_size >= KVM_HPAGE_SIZE(i))
  699. ret = i;
  700. else
  701. break;
  702. }
  703. return ret;
  704. }
  705. static inline bool memslot_valid_for_gpte(struct kvm_memory_slot *slot,
  706. bool no_dirty_log)
  707. {
  708. if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
  709. return false;
  710. if (no_dirty_log && slot->dirty_bitmap)
  711. return false;
  712. return true;
  713. }
  714. static struct kvm_memory_slot *
  715. gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
  716. bool no_dirty_log)
  717. {
  718. struct kvm_memory_slot *slot;
  719. slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
  720. if (!memslot_valid_for_gpte(slot, no_dirty_log))
  721. slot = NULL;
  722. return slot;
  723. }
  724. static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn,
  725. bool *force_pt_level)
  726. {
  727. int host_level, level, max_level;
  728. struct kvm_memory_slot *slot;
  729. if (unlikely(*force_pt_level))
  730. return PT_PAGE_TABLE_LEVEL;
  731. slot = kvm_vcpu_gfn_to_memslot(vcpu, large_gfn);
  732. *force_pt_level = !memslot_valid_for_gpte(slot, true);
  733. if (unlikely(*force_pt_level))
  734. return PT_PAGE_TABLE_LEVEL;
  735. host_level = host_mapping_level(vcpu->kvm, large_gfn);
  736. if (host_level == PT_PAGE_TABLE_LEVEL)
  737. return host_level;
  738. max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
  739. for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
  740. if (__has_wrprotected_page(large_gfn, level, slot))
  741. break;
  742. return level - 1;
  743. }
  744. /*
  745. * Pte mapping structures:
  746. *
  747. * If pte_list bit zero is zero, then pte_list point to the spte.
  748. *
  749. * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
  750. * pte_list_desc containing more mappings.
  751. *
  752. * Returns the number of pte entries before the spte was added or zero if
  753. * the spte was not added.
  754. *
  755. */
  756. static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
  757. unsigned long *pte_list)
  758. {
  759. struct pte_list_desc *desc;
  760. int i, count = 0;
  761. if (!*pte_list) {
  762. rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
  763. *pte_list = (unsigned long)spte;
  764. } else if (!(*pte_list & 1)) {
  765. rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
  766. desc = mmu_alloc_pte_list_desc(vcpu);
  767. desc->sptes[0] = (u64 *)*pte_list;
  768. desc->sptes[1] = spte;
  769. *pte_list = (unsigned long)desc | 1;
  770. ++count;
  771. } else {
  772. rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
  773. desc = (struct pte_list_desc *)(*pte_list & ~1ul);
  774. while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
  775. desc = desc->more;
  776. count += PTE_LIST_EXT;
  777. }
  778. if (desc->sptes[PTE_LIST_EXT-1]) {
  779. desc->more = mmu_alloc_pte_list_desc(vcpu);
  780. desc = desc->more;
  781. }
  782. for (i = 0; desc->sptes[i]; ++i)
  783. ++count;
  784. desc->sptes[i] = spte;
  785. }
  786. return count;
  787. }
  788. static void
  789. pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
  790. int i, struct pte_list_desc *prev_desc)
  791. {
  792. int j;
  793. for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
  794. ;
  795. desc->sptes[i] = desc->sptes[j];
  796. desc->sptes[j] = NULL;
  797. if (j != 0)
  798. return;
  799. if (!prev_desc && !desc->more)
  800. *pte_list = (unsigned long)desc->sptes[0];
  801. else
  802. if (prev_desc)
  803. prev_desc->more = desc->more;
  804. else
  805. *pte_list = (unsigned long)desc->more | 1;
  806. mmu_free_pte_list_desc(desc);
  807. }
  808. static void pte_list_remove(u64 *spte, unsigned long *pte_list)
  809. {
  810. struct pte_list_desc *desc;
  811. struct pte_list_desc *prev_desc;
  812. int i;
  813. if (!*pte_list) {
  814. printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
  815. BUG();
  816. } else if (!(*pte_list & 1)) {
  817. rmap_printk("pte_list_remove: %p 1->0\n", spte);
  818. if ((u64 *)*pte_list != spte) {
  819. printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
  820. BUG();
  821. }
  822. *pte_list = 0;
  823. } else {
  824. rmap_printk("pte_list_remove: %p many->many\n", spte);
  825. desc = (struct pte_list_desc *)(*pte_list & ~1ul);
  826. prev_desc = NULL;
  827. while (desc) {
  828. for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
  829. if (desc->sptes[i] == spte) {
  830. pte_list_desc_remove_entry(pte_list,
  831. desc, i,
  832. prev_desc);
  833. return;
  834. }
  835. prev_desc = desc;
  836. desc = desc->more;
  837. }
  838. pr_err("pte_list_remove: %p many->many\n", spte);
  839. BUG();
  840. }
  841. }
  842. typedef void (*pte_list_walk_fn) (u64 *spte);
  843. static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
  844. {
  845. struct pte_list_desc *desc;
  846. int i;
  847. if (!*pte_list)
  848. return;
  849. if (!(*pte_list & 1))
  850. return fn((u64 *)*pte_list);
  851. desc = (struct pte_list_desc *)(*pte_list & ~1ul);
  852. while (desc) {
  853. for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
  854. fn(desc->sptes[i]);
  855. desc = desc->more;
  856. }
  857. }
  858. static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
  859. struct kvm_memory_slot *slot)
  860. {
  861. unsigned long idx;
  862. idx = gfn_to_index(gfn, slot->base_gfn, level);
  863. return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
  864. }
  865. /*
  866. * Take gfn and return the reverse mapping to it.
  867. */
  868. static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, struct kvm_mmu_page *sp)
  869. {
  870. struct kvm_memslots *slots;
  871. struct kvm_memory_slot *slot;
  872. slots = kvm_memslots_for_spte_role(kvm, sp->role);
  873. slot = __gfn_to_memslot(slots, gfn);
  874. return __gfn_to_rmap(gfn, sp->role.level, slot);
  875. }
  876. static bool rmap_can_add(struct kvm_vcpu *vcpu)
  877. {
  878. struct kvm_mmu_memory_cache *cache;
  879. cache = &vcpu->arch.mmu_pte_list_desc_cache;
  880. return mmu_memory_cache_free_objects(cache);
  881. }
  882. static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  883. {
  884. struct kvm_mmu_page *sp;
  885. unsigned long *rmapp;
  886. sp = page_header(__pa(spte));
  887. kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
  888. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp);
  889. return pte_list_add(vcpu, spte, rmapp);
  890. }
  891. static void rmap_remove(struct kvm *kvm, u64 *spte)
  892. {
  893. struct kvm_mmu_page *sp;
  894. gfn_t gfn;
  895. unsigned long *rmapp;
  896. sp = page_header(__pa(spte));
  897. gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
  898. rmapp = gfn_to_rmap(kvm, gfn, sp);
  899. pte_list_remove(spte, rmapp);
  900. }
  901. /*
  902. * Used by the following functions to iterate through the sptes linked by a
  903. * rmap. All fields are private and not assumed to be used outside.
  904. */
  905. struct rmap_iterator {
  906. /* private fields */
  907. struct pte_list_desc *desc; /* holds the sptep if not NULL */
  908. int pos; /* index of the sptep */
  909. };
  910. /*
  911. * Iteration must be started by this function. This should also be used after
  912. * removing/dropping sptes from the rmap link because in such cases the
  913. * information in the itererator may not be valid.
  914. *
  915. * Returns sptep if found, NULL otherwise.
  916. */
  917. static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
  918. {
  919. if (!rmap)
  920. return NULL;
  921. if (!(rmap & 1)) {
  922. iter->desc = NULL;
  923. return (u64 *)rmap;
  924. }
  925. iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
  926. iter->pos = 0;
  927. return iter->desc->sptes[iter->pos];
  928. }
  929. /*
  930. * Must be used with a valid iterator: e.g. after rmap_get_first().
  931. *
  932. * Returns sptep if found, NULL otherwise.
  933. */
  934. static u64 *rmap_get_next(struct rmap_iterator *iter)
  935. {
  936. if (iter->desc) {
  937. if (iter->pos < PTE_LIST_EXT - 1) {
  938. u64 *sptep;
  939. ++iter->pos;
  940. sptep = iter->desc->sptes[iter->pos];
  941. if (sptep)
  942. return sptep;
  943. }
  944. iter->desc = iter->desc->more;
  945. if (iter->desc) {
  946. iter->pos = 0;
  947. /* desc->sptes[0] cannot be NULL */
  948. return iter->desc->sptes[iter->pos];
  949. }
  950. }
  951. return NULL;
  952. }
  953. #define for_each_rmap_spte(_rmap_, _iter_, _spte_) \
  954. for (_spte_ = rmap_get_first(*_rmap_, _iter_); \
  955. _spte_ && ({BUG_ON(!is_shadow_present_pte(*_spte_)); 1;}); \
  956. _spte_ = rmap_get_next(_iter_))
  957. static void drop_spte(struct kvm *kvm, u64 *sptep)
  958. {
  959. if (mmu_spte_clear_track_bits(sptep))
  960. rmap_remove(kvm, sptep);
  961. }
  962. static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
  963. {
  964. if (is_large_pte(*sptep)) {
  965. WARN_ON(page_header(__pa(sptep))->role.level ==
  966. PT_PAGE_TABLE_LEVEL);
  967. drop_spte(kvm, sptep);
  968. --kvm->stat.lpages;
  969. return true;
  970. }
  971. return false;
  972. }
  973. static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
  974. {
  975. if (__drop_large_spte(vcpu->kvm, sptep))
  976. kvm_flush_remote_tlbs(vcpu->kvm);
  977. }
  978. /*
  979. * Write-protect on the specified @sptep, @pt_protect indicates whether
  980. * spte write-protection is caused by protecting shadow page table.
  981. *
  982. * Note: write protection is difference between dirty logging and spte
  983. * protection:
  984. * - for dirty logging, the spte can be set to writable at anytime if
  985. * its dirty bitmap is properly set.
  986. * - for spte protection, the spte can be writable only after unsync-ing
  987. * shadow page.
  988. *
  989. * Return true if tlb need be flushed.
  990. */
  991. static bool spte_write_protect(struct kvm *kvm, u64 *sptep, bool pt_protect)
  992. {
  993. u64 spte = *sptep;
  994. if (!is_writable_pte(spte) &&
  995. !(pt_protect && spte_is_locklessly_modifiable(spte)))
  996. return false;
  997. rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
  998. if (pt_protect)
  999. spte &= ~SPTE_MMU_WRITEABLE;
  1000. spte = spte & ~PT_WRITABLE_MASK;
  1001. return mmu_spte_update(sptep, spte);
  1002. }
  1003. static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
  1004. bool pt_protect)
  1005. {
  1006. u64 *sptep;
  1007. struct rmap_iterator iter;
  1008. bool flush = false;
  1009. for_each_rmap_spte(rmapp, &iter, sptep)
  1010. flush |= spte_write_protect(kvm, sptep, pt_protect);
  1011. return flush;
  1012. }
  1013. static bool spte_clear_dirty(struct kvm *kvm, u64 *sptep)
  1014. {
  1015. u64 spte = *sptep;
  1016. rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
  1017. spte &= ~shadow_dirty_mask;
  1018. return mmu_spte_update(sptep, spte);
  1019. }
  1020. static bool __rmap_clear_dirty(struct kvm *kvm, unsigned long *rmapp)
  1021. {
  1022. u64 *sptep;
  1023. struct rmap_iterator iter;
  1024. bool flush = false;
  1025. for_each_rmap_spte(rmapp, &iter, sptep)
  1026. flush |= spte_clear_dirty(kvm, sptep);
  1027. return flush;
  1028. }
  1029. static bool spte_set_dirty(struct kvm *kvm, u64 *sptep)
  1030. {
  1031. u64 spte = *sptep;
  1032. rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
  1033. spte |= shadow_dirty_mask;
  1034. return mmu_spte_update(sptep, spte);
  1035. }
  1036. static bool __rmap_set_dirty(struct kvm *kvm, unsigned long *rmapp)
  1037. {
  1038. u64 *sptep;
  1039. struct rmap_iterator iter;
  1040. bool flush = false;
  1041. for_each_rmap_spte(rmapp, &iter, sptep)
  1042. flush |= spte_set_dirty(kvm, sptep);
  1043. return flush;
  1044. }
  1045. /**
  1046. * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
  1047. * @kvm: kvm instance
  1048. * @slot: slot to protect
  1049. * @gfn_offset: start of the BITS_PER_LONG pages we care about
  1050. * @mask: indicates which pages we should protect
  1051. *
  1052. * Used when we do not need to care about huge page mappings: e.g. during dirty
  1053. * logging we do not have any such mappings.
  1054. */
  1055. static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
  1056. struct kvm_memory_slot *slot,
  1057. gfn_t gfn_offset, unsigned long mask)
  1058. {
  1059. unsigned long *rmapp;
  1060. while (mask) {
  1061. rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
  1062. PT_PAGE_TABLE_LEVEL, slot);
  1063. __rmap_write_protect(kvm, rmapp, false);
  1064. /* clear the first set bit */
  1065. mask &= mask - 1;
  1066. }
  1067. }
  1068. /**
  1069. * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages
  1070. * @kvm: kvm instance
  1071. * @slot: slot to clear D-bit
  1072. * @gfn_offset: start of the BITS_PER_LONG pages we care about
  1073. * @mask: indicates which pages we should clear D-bit
  1074. *
  1075. * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
  1076. */
  1077. void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
  1078. struct kvm_memory_slot *slot,
  1079. gfn_t gfn_offset, unsigned long mask)
  1080. {
  1081. unsigned long *rmapp;
  1082. while (mask) {
  1083. rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
  1084. PT_PAGE_TABLE_LEVEL, slot);
  1085. __rmap_clear_dirty(kvm, rmapp);
  1086. /* clear the first set bit */
  1087. mask &= mask - 1;
  1088. }
  1089. }
  1090. EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
  1091. /**
  1092. * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
  1093. * PT level pages.
  1094. *
  1095. * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
  1096. * enable dirty logging for them.
  1097. *
  1098. * Used when we do not need to care about huge page mappings: e.g. during dirty
  1099. * logging we do not have any such mappings.
  1100. */
  1101. void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
  1102. struct kvm_memory_slot *slot,
  1103. gfn_t gfn_offset, unsigned long mask)
  1104. {
  1105. if (kvm_x86_ops->enable_log_dirty_pt_masked)
  1106. kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
  1107. mask);
  1108. else
  1109. kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
  1110. }
  1111. static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
  1112. {
  1113. struct kvm_memory_slot *slot;
  1114. unsigned long *rmapp;
  1115. int i;
  1116. bool write_protected = false;
  1117. slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
  1118. for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
  1119. rmapp = __gfn_to_rmap(gfn, i, slot);
  1120. write_protected |= __rmap_write_protect(vcpu->kvm, rmapp, true);
  1121. }
  1122. return write_protected;
  1123. }
  1124. static bool kvm_zap_rmapp(struct kvm *kvm, unsigned long *rmapp)
  1125. {
  1126. u64 *sptep;
  1127. struct rmap_iterator iter;
  1128. bool flush = false;
  1129. while ((sptep = rmap_get_first(*rmapp, &iter))) {
  1130. BUG_ON(!(*sptep & PT_PRESENT_MASK));
  1131. rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
  1132. drop_spte(kvm, sptep);
  1133. flush = true;
  1134. }
  1135. return flush;
  1136. }
  1137. static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
  1138. struct kvm_memory_slot *slot, gfn_t gfn, int level,
  1139. unsigned long data)
  1140. {
  1141. return kvm_zap_rmapp(kvm, rmapp);
  1142. }
  1143. static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
  1144. struct kvm_memory_slot *slot, gfn_t gfn, int level,
  1145. unsigned long data)
  1146. {
  1147. u64 *sptep;
  1148. struct rmap_iterator iter;
  1149. int need_flush = 0;
  1150. u64 new_spte;
  1151. pte_t *ptep = (pte_t *)data;
  1152. pfn_t new_pfn;
  1153. WARN_ON(pte_huge(*ptep));
  1154. new_pfn = pte_pfn(*ptep);
  1155. restart:
  1156. for_each_rmap_spte(rmapp, &iter, sptep) {
  1157. rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
  1158. sptep, *sptep, gfn, level);
  1159. need_flush = 1;
  1160. if (pte_write(*ptep)) {
  1161. drop_spte(kvm, sptep);
  1162. goto restart;
  1163. } else {
  1164. new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
  1165. new_spte |= (u64)new_pfn << PAGE_SHIFT;
  1166. new_spte &= ~PT_WRITABLE_MASK;
  1167. new_spte &= ~SPTE_HOST_WRITEABLE;
  1168. new_spte &= ~shadow_accessed_mask;
  1169. mmu_spte_clear_track_bits(sptep);
  1170. mmu_spte_set(sptep, new_spte);
  1171. }
  1172. }
  1173. if (need_flush)
  1174. kvm_flush_remote_tlbs(kvm);
  1175. return 0;
  1176. }
  1177. struct slot_rmap_walk_iterator {
  1178. /* input fields. */
  1179. struct kvm_memory_slot *slot;
  1180. gfn_t start_gfn;
  1181. gfn_t end_gfn;
  1182. int start_level;
  1183. int end_level;
  1184. /* output fields. */
  1185. gfn_t gfn;
  1186. unsigned long *rmap;
  1187. int level;
  1188. /* private field. */
  1189. unsigned long *end_rmap;
  1190. };
  1191. static void
  1192. rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
  1193. {
  1194. iterator->level = level;
  1195. iterator->gfn = iterator->start_gfn;
  1196. iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
  1197. iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
  1198. iterator->slot);
  1199. }
  1200. static void
  1201. slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
  1202. struct kvm_memory_slot *slot, int start_level,
  1203. int end_level, gfn_t start_gfn, gfn_t end_gfn)
  1204. {
  1205. iterator->slot = slot;
  1206. iterator->start_level = start_level;
  1207. iterator->end_level = end_level;
  1208. iterator->start_gfn = start_gfn;
  1209. iterator->end_gfn = end_gfn;
  1210. rmap_walk_init_level(iterator, iterator->start_level);
  1211. }
  1212. static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
  1213. {
  1214. return !!iterator->rmap;
  1215. }
  1216. static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
  1217. {
  1218. if (++iterator->rmap <= iterator->end_rmap) {
  1219. iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
  1220. return;
  1221. }
  1222. if (++iterator->level > iterator->end_level) {
  1223. iterator->rmap = NULL;
  1224. return;
  1225. }
  1226. rmap_walk_init_level(iterator, iterator->level);
  1227. }
  1228. #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \
  1229. _start_gfn, _end_gfn, _iter_) \
  1230. for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \
  1231. _end_level_, _start_gfn, _end_gfn); \
  1232. slot_rmap_walk_okay(_iter_); \
  1233. slot_rmap_walk_next(_iter_))
  1234. static int kvm_handle_hva_range(struct kvm *kvm,
  1235. unsigned long start,
  1236. unsigned long end,
  1237. unsigned long data,
  1238. int (*handler)(struct kvm *kvm,
  1239. unsigned long *rmapp,
  1240. struct kvm_memory_slot *slot,
  1241. gfn_t gfn,
  1242. int level,
  1243. unsigned long data))
  1244. {
  1245. struct kvm_memslots *slots;
  1246. struct kvm_memory_slot *memslot;
  1247. struct slot_rmap_walk_iterator iterator;
  1248. int ret = 0;
  1249. int i;
  1250. for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
  1251. slots = __kvm_memslots(kvm, i);
  1252. kvm_for_each_memslot(memslot, slots) {
  1253. unsigned long hva_start, hva_end;
  1254. gfn_t gfn_start, gfn_end;
  1255. hva_start = max(start, memslot->userspace_addr);
  1256. hva_end = min(end, memslot->userspace_addr +
  1257. (memslot->npages << PAGE_SHIFT));
  1258. if (hva_start >= hva_end)
  1259. continue;
  1260. /*
  1261. * {gfn(page) | page intersects with [hva_start, hva_end)} =
  1262. * {gfn_start, gfn_start+1, ..., gfn_end-1}.
  1263. */
  1264. gfn_start = hva_to_gfn_memslot(hva_start, memslot);
  1265. gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
  1266. for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
  1267. PT_MAX_HUGEPAGE_LEVEL,
  1268. gfn_start, gfn_end - 1,
  1269. &iterator)
  1270. ret |= handler(kvm, iterator.rmap, memslot,
  1271. iterator.gfn, iterator.level, data);
  1272. }
  1273. }
  1274. return ret;
  1275. }
  1276. static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
  1277. unsigned long data,
  1278. int (*handler)(struct kvm *kvm, unsigned long *rmapp,
  1279. struct kvm_memory_slot *slot,
  1280. gfn_t gfn, int level,
  1281. unsigned long data))
  1282. {
  1283. return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
  1284. }
  1285. int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
  1286. {
  1287. return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
  1288. }
  1289. int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
  1290. {
  1291. return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
  1292. }
  1293. void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
  1294. {
  1295. kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
  1296. }
  1297. static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
  1298. struct kvm_memory_slot *slot, gfn_t gfn, int level,
  1299. unsigned long data)
  1300. {
  1301. u64 *sptep;
  1302. struct rmap_iterator uninitialized_var(iter);
  1303. int young = 0;
  1304. BUG_ON(!shadow_accessed_mask);
  1305. for_each_rmap_spte(rmapp, &iter, sptep)
  1306. if (*sptep & shadow_accessed_mask) {
  1307. young = 1;
  1308. clear_bit((ffs(shadow_accessed_mask) - 1),
  1309. (unsigned long *)sptep);
  1310. }
  1311. trace_kvm_age_page(gfn, level, slot, young);
  1312. return young;
  1313. }
  1314. static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
  1315. struct kvm_memory_slot *slot, gfn_t gfn,
  1316. int level, unsigned long data)
  1317. {
  1318. u64 *sptep;
  1319. struct rmap_iterator iter;
  1320. int young = 0;
  1321. /*
  1322. * If there's no access bit in the secondary pte set by the
  1323. * hardware it's up to gup-fast/gup to set the access bit in
  1324. * the primary pte or in the page structure.
  1325. */
  1326. if (!shadow_accessed_mask)
  1327. goto out;
  1328. for_each_rmap_spte(rmapp, &iter, sptep)
  1329. if (*sptep & shadow_accessed_mask) {
  1330. young = 1;
  1331. break;
  1332. }
  1333. out:
  1334. return young;
  1335. }
  1336. #define RMAP_RECYCLE_THRESHOLD 1000
  1337. static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  1338. {
  1339. unsigned long *rmapp;
  1340. struct kvm_mmu_page *sp;
  1341. sp = page_header(__pa(spte));
  1342. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp);
  1343. kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, gfn, sp->role.level, 0);
  1344. kvm_flush_remote_tlbs(vcpu->kvm);
  1345. }
  1346. int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
  1347. {
  1348. /*
  1349. * In case of absence of EPT Access and Dirty Bits supports,
  1350. * emulate the accessed bit for EPT, by checking if this page has
  1351. * an EPT mapping, and clearing it if it does. On the next access,
  1352. * a new EPT mapping will be established.
  1353. * This has some overhead, but not as much as the cost of swapping
  1354. * out actively used pages or breaking up actively used hugepages.
  1355. */
  1356. if (!shadow_accessed_mask) {
  1357. /*
  1358. * We are holding the kvm->mmu_lock, and we are blowing up
  1359. * shadow PTEs. MMU notifier consumers need to be kept at bay.
  1360. * This is correct as long as we don't decouple the mmu_lock
  1361. * protected regions (like invalidate_range_start|end does).
  1362. */
  1363. kvm->mmu_notifier_seq++;
  1364. return kvm_handle_hva_range(kvm, start, end, 0,
  1365. kvm_unmap_rmapp);
  1366. }
  1367. return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
  1368. }
  1369. int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
  1370. {
  1371. return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
  1372. }
  1373. #ifdef MMU_DEBUG
  1374. static int is_empty_shadow_page(u64 *spt)
  1375. {
  1376. u64 *pos;
  1377. u64 *end;
  1378. for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
  1379. if (is_shadow_present_pte(*pos)) {
  1380. printk(KERN_ERR "%s: %p %llx\n", __func__,
  1381. pos, *pos);
  1382. return 0;
  1383. }
  1384. return 1;
  1385. }
  1386. #endif
  1387. /*
  1388. * This value is the sum of all of the kvm instances's
  1389. * kvm->arch.n_used_mmu_pages values. We need a global,
  1390. * aggregate version in order to make the slab shrinker
  1391. * faster
  1392. */
  1393. static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
  1394. {
  1395. kvm->arch.n_used_mmu_pages += nr;
  1396. percpu_counter_add(&kvm_total_used_mmu_pages, nr);
  1397. }
  1398. static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
  1399. {
  1400. MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
  1401. hlist_del(&sp->hash_link);
  1402. list_del(&sp->link);
  1403. free_page((unsigned long)sp->spt);
  1404. if (!sp->role.direct)
  1405. free_page((unsigned long)sp->gfns);
  1406. kmem_cache_free(mmu_page_header_cache, sp);
  1407. }
  1408. static unsigned kvm_page_table_hashfn(gfn_t gfn)
  1409. {
  1410. return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
  1411. }
  1412. static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
  1413. struct kvm_mmu_page *sp, u64 *parent_pte)
  1414. {
  1415. if (!parent_pte)
  1416. return;
  1417. pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
  1418. }
  1419. static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
  1420. u64 *parent_pte)
  1421. {
  1422. pte_list_remove(parent_pte, &sp->parent_ptes);
  1423. }
  1424. static void drop_parent_pte(struct kvm_mmu_page *sp,
  1425. u64 *parent_pte)
  1426. {
  1427. mmu_page_remove_parent_pte(sp, parent_pte);
  1428. mmu_spte_clear_no_track(parent_pte);
  1429. }
  1430. static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
  1431. u64 *parent_pte, int direct)
  1432. {
  1433. struct kvm_mmu_page *sp;
  1434. sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
  1435. sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
  1436. if (!direct)
  1437. sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
  1438. set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
  1439. /*
  1440. * The active_mmu_pages list is the FIFO list, do not move the
  1441. * page until it is zapped. kvm_zap_obsolete_pages depends on
  1442. * this feature. See the comments in kvm_zap_obsolete_pages().
  1443. */
  1444. list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
  1445. sp->parent_ptes = 0;
  1446. mmu_page_add_parent_pte(vcpu, sp, parent_pte);
  1447. kvm_mod_used_mmu_pages(vcpu->kvm, +1);
  1448. return sp;
  1449. }
  1450. static void mark_unsync(u64 *spte);
  1451. static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
  1452. {
  1453. pte_list_walk(&sp->parent_ptes, mark_unsync);
  1454. }
  1455. static void mark_unsync(u64 *spte)
  1456. {
  1457. struct kvm_mmu_page *sp;
  1458. unsigned int index;
  1459. sp = page_header(__pa(spte));
  1460. index = spte - sp->spt;
  1461. if (__test_and_set_bit(index, sp->unsync_child_bitmap))
  1462. return;
  1463. if (sp->unsync_children++)
  1464. return;
  1465. kvm_mmu_mark_parents_unsync(sp);
  1466. }
  1467. static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
  1468. struct kvm_mmu_page *sp)
  1469. {
  1470. return 1;
  1471. }
  1472. static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  1473. {
  1474. }
  1475. static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
  1476. struct kvm_mmu_page *sp, u64 *spte,
  1477. const void *pte)
  1478. {
  1479. WARN_ON(1);
  1480. }
  1481. #define KVM_PAGE_ARRAY_NR 16
  1482. struct kvm_mmu_pages {
  1483. struct mmu_page_and_offset {
  1484. struct kvm_mmu_page *sp;
  1485. unsigned int idx;
  1486. } page[KVM_PAGE_ARRAY_NR];
  1487. unsigned int nr;
  1488. };
  1489. static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
  1490. int idx)
  1491. {
  1492. int i;
  1493. if (sp->unsync)
  1494. for (i=0; i < pvec->nr; i++)
  1495. if (pvec->page[i].sp == sp)
  1496. return 0;
  1497. pvec->page[pvec->nr].sp = sp;
  1498. pvec->page[pvec->nr].idx = idx;
  1499. pvec->nr++;
  1500. return (pvec->nr == KVM_PAGE_ARRAY_NR);
  1501. }
  1502. static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
  1503. struct kvm_mmu_pages *pvec)
  1504. {
  1505. int i, ret, nr_unsync_leaf = 0;
  1506. for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
  1507. struct kvm_mmu_page *child;
  1508. u64 ent = sp->spt[i];
  1509. if (!is_shadow_present_pte(ent) || is_large_pte(ent))
  1510. goto clear_child_bitmap;
  1511. child = page_header(ent & PT64_BASE_ADDR_MASK);
  1512. if (child->unsync_children) {
  1513. if (mmu_pages_add(pvec, child, i))
  1514. return -ENOSPC;
  1515. ret = __mmu_unsync_walk(child, pvec);
  1516. if (!ret)
  1517. goto clear_child_bitmap;
  1518. else if (ret > 0)
  1519. nr_unsync_leaf += ret;
  1520. else
  1521. return ret;
  1522. } else if (child->unsync) {
  1523. nr_unsync_leaf++;
  1524. if (mmu_pages_add(pvec, child, i))
  1525. return -ENOSPC;
  1526. } else
  1527. goto clear_child_bitmap;
  1528. continue;
  1529. clear_child_bitmap:
  1530. __clear_bit(i, sp->unsync_child_bitmap);
  1531. sp->unsync_children--;
  1532. WARN_ON((int)sp->unsync_children < 0);
  1533. }
  1534. return nr_unsync_leaf;
  1535. }
  1536. static int mmu_unsync_walk(struct kvm_mmu_page *sp,
  1537. struct kvm_mmu_pages *pvec)
  1538. {
  1539. if (!sp->unsync_children)
  1540. return 0;
  1541. mmu_pages_add(pvec, sp, 0);
  1542. return __mmu_unsync_walk(sp, pvec);
  1543. }
  1544. static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  1545. {
  1546. WARN_ON(!sp->unsync);
  1547. trace_kvm_mmu_sync_page(sp);
  1548. sp->unsync = 0;
  1549. --kvm->stat.mmu_unsync;
  1550. }
  1551. static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
  1552. struct list_head *invalid_list);
  1553. static void kvm_mmu_commit_zap_page(struct kvm *kvm,
  1554. struct list_head *invalid_list);
  1555. /*
  1556. * NOTE: we should pay more attention on the zapped-obsolete page
  1557. * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
  1558. * since it has been deleted from active_mmu_pages but still can be found
  1559. * at hast list.
  1560. *
  1561. * for_each_gfn_indirect_valid_sp has skipped that kind of page and
  1562. * kvm_mmu_get_page(), the only user of for_each_gfn_sp(), has skipped
  1563. * all the obsolete pages.
  1564. */
  1565. #define for_each_gfn_sp(_kvm, _sp, _gfn) \
  1566. hlist_for_each_entry(_sp, \
  1567. &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
  1568. if ((_sp)->gfn != (_gfn)) {} else
  1569. #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
  1570. for_each_gfn_sp(_kvm, _sp, _gfn) \
  1571. if ((_sp)->role.direct || (_sp)->role.invalid) {} else
  1572. /* @sp->gfn should be write-protected at the call site */
  1573. static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  1574. struct list_head *invalid_list, bool clear_unsync)
  1575. {
  1576. if (sp->role.cr4_pae != !!is_pae(vcpu)) {
  1577. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
  1578. return 1;
  1579. }
  1580. if (clear_unsync)
  1581. kvm_unlink_unsync_page(vcpu->kvm, sp);
  1582. if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
  1583. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
  1584. return 1;
  1585. }
  1586. kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
  1587. return 0;
  1588. }
  1589. static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
  1590. struct kvm_mmu_page *sp)
  1591. {
  1592. LIST_HEAD(invalid_list);
  1593. int ret;
  1594. ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
  1595. if (ret)
  1596. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1597. return ret;
  1598. }
  1599. #ifdef CONFIG_KVM_MMU_AUDIT
  1600. #include "mmu_audit.c"
  1601. #else
  1602. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
  1603. static void mmu_audit_disable(void) { }
  1604. #endif
  1605. static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  1606. struct list_head *invalid_list)
  1607. {
  1608. return __kvm_sync_page(vcpu, sp, invalid_list, true);
  1609. }
  1610. /* @gfn should be write-protected at the call site */
  1611. static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
  1612. {
  1613. struct kvm_mmu_page *s;
  1614. LIST_HEAD(invalid_list);
  1615. bool flush = false;
  1616. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
  1617. if (!s->unsync)
  1618. continue;
  1619. WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
  1620. kvm_unlink_unsync_page(vcpu->kvm, s);
  1621. if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
  1622. (vcpu->arch.mmu.sync_page(vcpu, s))) {
  1623. kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
  1624. continue;
  1625. }
  1626. flush = true;
  1627. }
  1628. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1629. if (flush)
  1630. kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
  1631. }
  1632. struct mmu_page_path {
  1633. struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
  1634. unsigned int idx[PT64_ROOT_LEVEL-1];
  1635. };
  1636. #define for_each_sp(pvec, sp, parents, i) \
  1637. for (i = mmu_pages_next(&pvec, &parents, -1), \
  1638. sp = pvec.page[i].sp; \
  1639. i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
  1640. i = mmu_pages_next(&pvec, &parents, i))
  1641. static int mmu_pages_next(struct kvm_mmu_pages *pvec,
  1642. struct mmu_page_path *parents,
  1643. int i)
  1644. {
  1645. int n;
  1646. for (n = i+1; n < pvec->nr; n++) {
  1647. struct kvm_mmu_page *sp = pvec->page[n].sp;
  1648. if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
  1649. parents->idx[0] = pvec->page[n].idx;
  1650. return n;
  1651. }
  1652. parents->parent[sp->role.level-2] = sp;
  1653. parents->idx[sp->role.level-1] = pvec->page[n].idx;
  1654. }
  1655. return n;
  1656. }
  1657. static void mmu_pages_clear_parents(struct mmu_page_path *parents)
  1658. {
  1659. struct kvm_mmu_page *sp;
  1660. unsigned int level = 0;
  1661. do {
  1662. unsigned int idx = parents->idx[level];
  1663. sp = parents->parent[level];
  1664. if (!sp)
  1665. return;
  1666. --sp->unsync_children;
  1667. WARN_ON((int)sp->unsync_children < 0);
  1668. __clear_bit(idx, sp->unsync_child_bitmap);
  1669. level++;
  1670. } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
  1671. }
  1672. static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
  1673. struct mmu_page_path *parents,
  1674. struct kvm_mmu_pages *pvec)
  1675. {
  1676. parents->parent[parent->role.level-1] = NULL;
  1677. pvec->nr = 0;
  1678. }
  1679. static void mmu_sync_children(struct kvm_vcpu *vcpu,
  1680. struct kvm_mmu_page *parent)
  1681. {
  1682. int i;
  1683. struct kvm_mmu_page *sp;
  1684. struct mmu_page_path parents;
  1685. struct kvm_mmu_pages pages;
  1686. LIST_HEAD(invalid_list);
  1687. kvm_mmu_pages_init(parent, &parents, &pages);
  1688. while (mmu_unsync_walk(parent, &pages)) {
  1689. bool protected = false;
  1690. for_each_sp(pages, sp, parents, i)
  1691. protected |= rmap_write_protect(vcpu, sp->gfn);
  1692. if (protected)
  1693. kvm_flush_remote_tlbs(vcpu->kvm);
  1694. for_each_sp(pages, sp, parents, i) {
  1695. kvm_sync_page(vcpu, sp, &invalid_list);
  1696. mmu_pages_clear_parents(&parents);
  1697. }
  1698. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1699. cond_resched_lock(&vcpu->kvm->mmu_lock);
  1700. kvm_mmu_pages_init(parent, &parents, &pages);
  1701. }
  1702. }
  1703. static void init_shadow_page_table(struct kvm_mmu_page *sp)
  1704. {
  1705. int i;
  1706. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  1707. sp->spt[i] = 0ull;
  1708. }
  1709. static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
  1710. {
  1711. sp->write_flooding_count = 0;
  1712. }
  1713. static void clear_sp_write_flooding_count(u64 *spte)
  1714. {
  1715. struct kvm_mmu_page *sp = page_header(__pa(spte));
  1716. __clear_sp_write_flooding_count(sp);
  1717. }
  1718. static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
  1719. {
  1720. return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
  1721. }
  1722. static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
  1723. gfn_t gfn,
  1724. gva_t gaddr,
  1725. unsigned level,
  1726. int direct,
  1727. unsigned access,
  1728. u64 *parent_pte)
  1729. {
  1730. union kvm_mmu_page_role role;
  1731. unsigned quadrant;
  1732. struct kvm_mmu_page *sp;
  1733. bool need_sync = false;
  1734. role = vcpu->arch.mmu.base_role;
  1735. role.level = level;
  1736. role.direct = direct;
  1737. if (role.direct)
  1738. role.cr4_pae = 0;
  1739. role.access = access;
  1740. if (!vcpu->arch.mmu.direct_map
  1741. && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
  1742. quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
  1743. quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
  1744. role.quadrant = quadrant;
  1745. }
  1746. for_each_gfn_sp(vcpu->kvm, sp, gfn) {
  1747. if (is_obsolete_sp(vcpu->kvm, sp))
  1748. continue;
  1749. if (!need_sync && sp->unsync)
  1750. need_sync = true;
  1751. if (sp->role.word != role.word)
  1752. continue;
  1753. if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
  1754. break;
  1755. mmu_page_add_parent_pte(vcpu, sp, parent_pte);
  1756. if (sp->unsync_children) {
  1757. kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
  1758. kvm_mmu_mark_parents_unsync(sp);
  1759. } else if (sp->unsync)
  1760. kvm_mmu_mark_parents_unsync(sp);
  1761. __clear_sp_write_flooding_count(sp);
  1762. trace_kvm_mmu_get_page(sp, false);
  1763. return sp;
  1764. }
  1765. ++vcpu->kvm->stat.mmu_cache_miss;
  1766. sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
  1767. if (!sp)
  1768. return sp;
  1769. sp->gfn = gfn;
  1770. sp->role = role;
  1771. hlist_add_head(&sp->hash_link,
  1772. &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
  1773. if (!direct) {
  1774. if (rmap_write_protect(vcpu, gfn))
  1775. kvm_flush_remote_tlbs(vcpu->kvm);
  1776. if (level > PT_PAGE_TABLE_LEVEL && need_sync)
  1777. kvm_sync_pages(vcpu, gfn);
  1778. account_shadowed(vcpu->kvm, sp);
  1779. }
  1780. sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
  1781. init_shadow_page_table(sp);
  1782. trace_kvm_mmu_get_page(sp, true);
  1783. return sp;
  1784. }
  1785. static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
  1786. struct kvm_vcpu *vcpu, u64 addr)
  1787. {
  1788. iterator->addr = addr;
  1789. iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
  1790. iterator->level = vcpu->arch.mmu.shadow_root_level;
  1791. if (iterator->level == PT64_ROOT_LEVEL &&
  1792. vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
  1793. !vcpu->arch.mmu.direct_map)
  1794. --iterator->level;
  1795. if (iterator->level == PT32E_ROOT_LEVEL) {
  1796. iterator->shadow_addr
  1797. = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
  1798. iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
  1799. --iterator->level;
  1800. if (!iterator->shadow_addr)
  1801. iterator->level = 0;
  1802. }
  1803. }
  1804. static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
  1805. {
  1806. if (iterator->level < PT_PAGE_TABLE_LEVEL)
  1807. return false;
  1808. iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
  1809. iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
  1810. return true;
  1811. }
  1812. static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
  1813. u64 spte)
  1814. {
  1815. if (is_last_spte(spte, iterator->level)) {
  1816. iterator->level = 0;
  1817. return;
  1818. }
  1819. iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
  1820. --iterator->level;
  1821. }
  1822. static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
  1823. {
  1824. return __shadow_walk_next(iterator, *iterator->sptep);
  1825. }
  1826. static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp, bool accessed)
  1827. {
  1828. u64 spte;
  1829. BUILD_BUG_ON(VMX_EPT_READABLE_MASK != PT_PRESENT_MASK ||
  1830. VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
  1831. spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
  1832. shadow_user_mask | shadow_x_mask;
  1833. if (accessed)
  1834. spte |= shadow_accessed_mask;
  1835. mmu_spte_set(sptep, spte);
  1836. }
  1837. static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1838. unsigned direct_access)
  1839. {
  1840. if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
  1841. struct kvm_mmu_page *child;
  1842. /*
  1843. * For the direct sp, if the guest pte's dirty bit
  1844. * changed form clean to dirty, it will corrupt the
  1845. * sp's access: allow writable in the read-only sp,
  1846. * so we should update the spte at this point to get
  1847. * a new sp with the correct access.
  1848. */
  1849. child = page_header(*sptep & PT64_BASE_ADDR_MASK);
  1850. if (child->role.access == direct_access)
  1851. return;
  1852. drop_parent_pte(child, sptep);
  1853. kvm_flush_remote_tlbs(vcpu->kvm);
  1854. }
  1855. }
  1856. static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
  1857. u64 *spte)
  1858. {
  1859. u64 pte;
  1860. struct kvm_mmu_page *child;
  1861. pte = *spte;
  1862. if (is_shadow_present_pte(pte)) {
  1863. if (is_last_spte(pte, sp->role.level)) {
  1864. drop_spte(kvm, spte);
  1865. if (is_large_pte(pte))
  1866. --kvm->stat.lpages;
  1867. } else {
  1868. child = page_header(pte & PT64_BASE_ADDR_MASK);
  1869. drop_parent_pte(child, spte);
  1870. }
  1871. return true;
  1872. }
  1873. if (is_mmio_spte(pte))
  1874. mmu_spte_clear_no_track(spte);
  1875. return false;
  1876. }
  1877. static void kvm_mmu_page_unlink_children(struct kvm *kvm,
  1878. struct kvm_mmu_page *sp)
  1879. {
  1880. unsigned i;
  1881. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  1882. mmu_page_zap_pte(kvm, sp, sp->spt + i);
  1883. }
  1884. static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
  1885. {
  1886. mmu_page_remove_parent_pte(sp, parent_pte);
  1887. }
  1888. static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
  1889. {
  1890. u64 *sptep;
  1891. struct rmap_iterator iter;
  1892. while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
  1893. drop_parent_pte(sp, sptep);
  1894. }
  1895. static int mmu_zap_unsync_children(struct kvm *kvm,
  1896. struct kvm_mmu_page *parent,
  1897. struct list_head *invalid_list)
  1898. {
  1899. int i, zapped = 0;
  1900. struct mmu_page_path parents;
  1901. struct kvm_mmu_pages pages;
  1902. if (parent->role.level == PT_PAGE_TABLE_LEVEL)
  1903. return 0;
  1904. kvm_mmu_pages_init(parent, &parents, &pages);
  1905. while (mmu_unsync_walk(parent, &pages)) {
  1906. struct kvm_mmu_page *sp;
  1907. for_each_sp(pages, sp, parents, i) {
  1908. kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
  1909. mmu_pages_clear_parents(&parents);
  1910. zapped++;
  1911. }
  1912. kvm_mmu_pages_init(parent, &parents, &pages);
  1913. }
  1914. return zapped;
  1915. }
  1916. static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
  1917. struct list_head *invalid_list)
  1918. {
  1919. int ret;
  1920. trace_kvm_mmu_prepare_zap_page(sp);
  1921. ++kvm->stat.mmu_shadow_zapped;
  1922. ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
  1923. kvm_mmu_page_unlink_children(kvm, sp);
  1924. kvm_mmu_unlink_parents(kvm, sp);
  1925. if (!sp->role.invalid && !sp->role.direct)
  1926. unaccount_shadowed(kvm, sp);
  1927. if (sp->unsync)
  1928. kvm_unlink_unsync_page(kvm, sp);
  1929. if (!sp->root_count) {
  1930. /* Count self */
  1931. ret++;
  1932. list_move(&sp->link, invalid_list);
  1933. kvm_mod_used_mmu_pages(kvm, -1);
  1934. } else {
  1935. list_move(&sp->link, &kvm->arch.active_mmu_pages);
  1936. /*
  1937. * The obsolete pages can not be used on any vcpus.
  1938. * See the comments in kvm_mmu_invalidate_zap_all_pages().
  1939. */
  1940. if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
  1941. kvm_reload_remote_mmus(kvm);
  1942. }
  1943. sp->role.invalid = 1;
  1944. return ret;
  1945. }
  1946. static void kvm_mmu_commit_zap_page(struct kvm *kvm,
  1947. struct list_head *invalid_list)
  1948. {
  1949. struct kvm_mmu_page *sp, *nsp;
  1950. if (list_empty(invalid_list))
  1951. return;
  1952. /*
  1953. * wmb: make sure everyone sees our modifications to the page tables
  1954. * rmb: make sure we see changes to vcpu->mode
  1955. */
  1956. smp_mb();
  1957. /*
  1958. * Wait for all vcpus to exit guest mode and/or lockless shadow
  1959. * page table walks.
  1960. */
  1961. kvm_flush_remote_tlbs(kvm);
  1962. list_for_each_entry_safe(sp, nsp, invalid_list, link) {
  1963. WARN_ON(!sp->role.invalid || sp->root_count);
  1964. kvm_mmu_free_page(sp);
  1965. }
  1966. }
  1967. static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
  1968. struct list_head *invalid_list)
  1969. {
  1970. struct kvm_mmu_page *sp;
  1971. if (list_empty(&kvm->arch.active_mmu_pages))
  1972. return false;
  1973. sp = list_entry(kvm->arch.active_mmu_pages.prev,
  1974. struct kvm_mmu_page, link);
  1975. kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
  1976. return true;
  1977. }
  1978. /*
  1979. * Changing the number of mmu pages allocated to the vm
  1980. * Note: if goal_nr_mmu_pages is too small, you will get dead lock
  1981. */
  1982. void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
  1983. {
  1984. LIST_HEAD(invalid_list);
  1985. spin_lock(&kvm->mmu_lock);
  1986. if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
  1987. /* Need to free some mmu pages to achieve the goal. */
  1988. while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
  1989. if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
  1990. break;
  1991. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  1992. goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
  1993. }
  1994. kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
  1995. spin_unlock(&kvm->mmu_lock);
  1996. }
  1997. int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
  1998. {
  1999. struct kvm_mmu_page *sp;
  2000. LIST_HEAD(invalid_list);
  2001. int r;
  2002. pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
  2003. r = 0;
  2004. spin_lock(&kvm->mmu_lock);
  2005. for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
  2006. pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
  2007. sp->role.word);
  2008. r = 1;
  2009. kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
  2010. }
  2011. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  2012. spin_unlock(&kvm->mmu_lock);
  2013. return r;
  2014. }
  2015. EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
  2016. static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  2017. {
  2018. trace_kvm_mmu_unsync_page(sp);
  2019. ++vcpu->kvm->stat.mmu_unsync;
  2020. sp->unsync = 1;
  2021. kvm_mmu_mark_parents_unsync(sp);
  2022. }
  2023. static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
  2024. {
  2025. struct kvm_mmu_page *s;
  2026. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
  2027. if (s->unsync)
  2028. continue;
  2029. WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
  2030. __kvm_unsync_page(vcpu, s);
  2031. }
  2032. }
  2033. static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
  2034. bool can_unsync)
  2035. {
  2036. struct kvm_mmu_page *s;
  2037. bool need_unsync = false;
  2038. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
  2039. if (!can_unsync)
  2040. return 1;
  2041. if (s->role.level != PT_PAGE_TABLE_LEVEL)
  2042. return 1;
  2043. if (!s->unsync)
  2044. need_unsync = true;
  2045. }
  2046. if (need_unsync)
  2047. kvm_unsync_pages(vcpu, gfn);
  2048. return 0;
  2049. }
  2050. static bool kvm_is_mmio_pfn(pfn_t pfn)
  2051. {
  2052. if (pfn_valid(pfn))
  2053. return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn));
  2054. return true;
  2055. }
  2056. static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  2057. unsigned pte_access, int level,
  2058. gfn_t gfn, pfn_t pfn, bool speculative,
  2059. bool can_unsync, bool host_writable)
  2060. {
  2061. u64 spte;
  2062. int ret = 0;
  2063. if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
  2064. return 0;
  2065. spte = PT_PRESENT_MASK;
  2066. if (!speculative)
  2067. spte |= shadow_accessed_mask;
  2068. if (pte_access & ACC_EXEC_MASK)
  2069. spte |= shadow_x_mask;
  2070. else
  2071. spte |= shadow_nx_mask;
  2072. if (pte_access & ACC_USER_MASK)
  2073. spte |= shadow_user_mask;
  2074. if (level > PT_PAGE_TABLE_LEVEL)
  2075. spte |= PT_PAGE_SIZE_MASK;
  2076. if (tdp_enabled)
  2077. spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
  2078. kvm_is_mmio_pfn(pfn));
  2079. if (host_writable)
  2080. spte |= SPTE_HOST_WRITEABLE;
  2081. else
  2082. pte_access &= ~ACC_WRITE_MASK;
  2083. spte |= (u64)pfn << PAGE_SHIFT;
  2084. if (pte_access & ACC_WRITE_MASK) {
  2085. /*
  2086. * Other vcpu creates new sp in the window between
  2087. * mapping_level() and acquiring mmu-lock. We can
  2088. * allow guest to retry the access, the mapping can
  2089. * be fixed if guest refault.
  2090. */
  2091. if (level > PT_PAGE_TABLE_LEVEL &&
  2092. has_wrprotected_page(vcpu, gfn, level))
  2093. goto done;
  2094. spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
  2095. /*
  2096. * Optimization: for pte sync, if spte was writable the hash
  2097. * lookup is unnecessary (and expensive). Write protection
  2098. * is responsibility of mmu_get_page / kvm_sync_page.
  2099. * Same reasoning can be applied to dirty page accounting.
  2100. */
  2101. if (!can_unsync && is_writable_pte(*sptep))
  2102. goto set_pte;
  2103. if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
  2104. pgprintk("%s: found shadow page for %llx, marking ro\n",
  2105. __func__, gfn);
  2106. ret = 1;
  2107. pte_access &= ~ACC_WRITE_MASK;
  2108. spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
  2109. }
  2110. }
  2111. if (pte_access & ACC_WRITE_MASK) {
  2112. kvm_vcpu_mark_page_dirty(vcpu, gfn);
  2113. spte |= shadow_dirty_mask;
  2114. }
  2115. set_pte:
  2116. if (mmu_spte_update(sptep, spte))
  2117. kvm_flush_remote_tlbs(vcpu->kvm);
  2118. done:
  2119. return ret;
  2120. }
  2121. static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  2122. unsigned pte_access, int write_fault, int *emulate,
  2123. int level, gfn_t gfn, pfn_t pfn, bool speculative,
  2124. bool host_writable)
  2125. {
  2126. int was_rmapped = 0;
  2127. int rmap_count;
  2128. pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
  2129. *sptep, write_fault, gfn);
  2130. if (is_rmap_spte(*sptep)) {
  2131. /*
  2132. * If we overwrite a PTE page pointer with a 2MB PMD, unlink
  2133. * the parent of the now unreachable PTE.
  2134. */
  2135. if (level > PT_PAGE_TABLE_LEVEL &&
  2136. !is_large_pte(*sptep)) {
  2137. struct kvm_mmu_page *child;
  2138. u64 pte = *sptep;
  2139. child = page_header(pte & PT64_BASE_ADDR_MASK);
  2140. drop_parent_pte(child, sptep);
  2141. kvm_flush_remote_tlbs(vcpu->kvm);
  2142. } else if (pfn != spte_to_pfn(*sptep)) {
  2143. pgprintk("hfn old %llx new %llx\n",
  2144. spte_to_pfn(*sptep), pfn);
  2145. drop_spte(vcpu->kvm, sptep);
  2146. kvm_flush_remote_tlbs(vcpu->kvm);
  2147. } else
  2148. was_rmapped = 1;
  2149. }
  2150. if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
  2151. true, host_writable)) {
  2152. if (write_fault)
  2153. *emulate = 1;
  2154. kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
  2155. }
  2156. if (unlikely(is_mmio_spte(*sptep) && emulate))
  2157. *emulate = 1;
  2158. pgprintk("%s: setting spte %llx\n", __func__, *sptep);
  2159. pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
  2160. is_large_pte(*sptep)? "2MB" : "4kB",
  2161. *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
  2162. *sptep, sptep);
  2163. if (!was_rmapped && is_large_pte(*sptep))
  2164. ++vcpu->kvm->stat.lpages;
  2165. if (is_shadow_present_pte(*sptep)) {
  2166. if (!was_rmapped) {
  2167. rmap_count = rmap_add(vcpu, sptep, gfn);
  2168. if (rmap_count > RMAP_RECYCLE_THRESHOLD)
  2169. rmap_recycle(vcpu, sptep, gfn);
  2170. }
  2171. }
  2172. kvm_release_pfn_clean(pfn);
  2173. }
  2174. static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
  2175. bool no_dirty_log)
  2176. {
  2177. struct kvm_memory_slot *slot;
  2178. slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
  2179. if (!slot)
  2180. return KVM_PFN_ERR_FAULT;
  2181. return gfn_to_pfn_memslot_atomic(slot, gfn);
  2182. }
  2183. static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
  2184. struct kvm_mmu_page *sp,
  2185. u64 *start, u64 *end)
  2186. {
  2187. struct page *pages[PTE_PREFETCH_NUM];
  2188. struct kvm_memory_slot *slot;
  2189. unsigned access = sp->role.access;
  2190. int i, ret;
  2191. gfn_t gfn;
  2192. gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
  2193. slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
  2194. if (!slot)
  2195. return -1;
  2196. ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
  2197. if (ret <= 0)
  2198. return -1;
  2199. for (i = 0; i < ret; i++, gfn++, start++)
  2200. mmu_set_spte(vcpu, start, access, 0, NULL,
  2201. sp->role.level, gfn, page_to_pfn(pages[i]),
  2202. true, true);
  2203. return 0;
  2204. }
  2205. static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
  2206. struct kvm_mmu_page *sp, u64 *sptep)
  2207. {
  2208. u64 *spte, *start = NULL;
  2209. int i;
  2210. WARN_ON(!sp->role.direct);
  2211. i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
  2212. spte = sp->spt + i;
  2213. for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
  2214. if (is_shadow_present_pte(*spte) || spte == sptep) {
  2215. if (!start)
  2216. continue;
  2217. if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
  2218. break;
  2219. start = NULL;
  2220. } else if (!start)
  2221. start = spte;
  2222. }
  2223. }
  2224. static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
  2225. {
  2226. struct kvm_mmu_page *sp;
  2227. /*
  2228. * Since it's no accessed bit on EPT, it's no way to
  2229. * distinguish between actually accessed translations
  2230. * and prefetched, so disable pte prefetch if EPT is
  2231. * enabled.
  2232. */
  2233. if (!shadow_accessed_mask)
  2234. return;
  2235. sp = page_header(__pa(sptep));
  2236. if (sp->role.level > PT_PAGE_TABLE_LEVEL)
  2237. return;
  2238. __direct_pte_prefetch(vcpu, sp, sptep);
  2239. }
  2240. static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
  2241. int map_writable, int level, gfn_t gfn, pfn_t pfn,
  2242. bool prefault)
  2243. {
  2244. struct kvm_shadow_walk_iterator iterator;
  2245. struct kvm_mmu_page *sp;
  2246. int emulate = 0;
  2247. gfn_t pseudo_gfn;
  2248. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2249. return 0;
  2250. for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
  2251. if (iterator.level == level) {
  2252. mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
  2253. write, &emulate, level, gfn, pfn,
  2254. prefault, map_writable);
  2255. direct_pte_prefetch(vcpu, iterator.sptep);
  2256. ++vcpu->stat.pf_fixed;
  2257. break;
  2258. }
  2259. drop_large_spte(vcpu, iterator.sptep);
  2260. if (!is_shadow_present_pte(*iterator.sptep)) {
  2261. u64 base_addr = iterator.addr;
  2262. base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
  2263. pseudo_gfn = base_addr >> PAGE_SHIFT;
  2264. sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
  2265. iterator.level - 1,
  2266. 1, ACC_ALL, iterator.sptep);
  2267. link_shadow_page(iterator.sptep, sp, true);
  2268. }
  2269. }
  2270. return emulate;
  2271. }
  2272. static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
  2273. {
  2274. siginfo_t info;
  2275. info.si_signo = SIGBUS;
  2276. info.si_errno = 0;
  2277. info.si_code = BUS_MCEERR_AR;
  2278. info.si_addr = (void __user *)address;
  2279. info.si_addr_lsb = PAGE_SHIFT;
  2280. send_sig_info(SIGBUS, &info, tsk);
  2281. }
  2282. static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
  2283. {
  2284. /*
  2285. * Do not cache the mmio info caused by writing the readonly gfn
  2286. * into the spte otherwise read access on readonly gfn also can
  2287. * caused mmio page fault and treat it as mmio access.
  2288. * Return 1 to tell kvm to emulate it.
  2289. */
  2290. if (pfn == KVM_PFN_ERR_RO_FAULT)
  2291. return 1;
  2292. if (pfn == KVM_PFN_ERR_HWPOISON) {
  2293. kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
  2294. return 0;
  2295. }
  2296. return -EFAULT;
  2297. }
  2298. static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
  2299. gfn_t *gfnp, pfn_t *pfnp, int *levelp)
  2300. {
  2301. pfn_t pfn = *pfnp;
  2302. gfn_t gfn = *gfnp;
  2303. int level = *levelp;
  2304. /*
  2305. * Check if it's a transparent hugepage. If this would be an
  2306. * hugetlbfs page, level wouldn't be set to
  2307. * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
  2308. * here.
  2309. */
  2310. if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
  2311. level == PT_PAGE_TABLE_LEVEL &&
  2312. PageTransCompound(pfn_to_page(pfn)) &&
  2313. !has_wrprotected_page(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
  2314. unsigned long mask;
  2315. /*
  2316. * mmu_notifier_retry was successful and we hold the
  2317. * mmu_lock here, so the pmd can't become splitting
  2318. * from under us, and in turn
  2319. * __split_huge_page_refcount() can't run from under
  2320. * us and we can safely transfer the refcount from
  2321. * PG_tail to PG_head as we switch the pfn to tail to
  2322. * head.
  2323. */
  2324. *levelp = level = PT_DIRECTORY_LEVEL;
  2325. mask = KVM_PAGES_PER_HPAGE(level) - 1;
  2326. VM_BUG_ON((gfn & mask) != (pfn & mask));
  2327. if (pfn & mask) {
  2328. gfn &= ~mask;
  2329. *gfnp = gfn;
  2330. kvm_release_pfn_clean(pfn);
  2331. pfn &= ~mask;
  2332. kvm_get_pfn(pfn);
  2333. *pfnp = pfn;
  2334. }
  2335. }
  2336. }
  2337. static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
  2338. pfn_t pfn, unsigned access, int *ret_val)
  2339. {
  2340. bool ret = true;
  2341. /* The pfn is invalid, report the error! */
  2342. if (unlikely(is_error_pfn(pfn))) {
  2343. *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
  2344. goto exit;
  2345. }
  2346. if (unlikely(is_noslot_pfn(pfn)))
  2347. vcpu_cache_mmio_info(vcpu, gva, gfn, access);
  2348. ret = false;
  2349. exit:
  2350. return ret;
  2351. }
  2352. static bool page_fault_can_be_fast(u32 error_code)
  2353. {
  2354. /*
  2355. * Do not fix the mmio spte with invalid generation number which
  2356. * need to be updated by slow page fault path.
  2357. */
  2358. if (unlikely(error_code & PFERR_RSVD_MASK))
  2359. return false;
  2360. /*
  2361. * #PF can be fast only if the shadow page table is present and it
  2362. * is caused by write-protect, that means we just need change the
  2363. * W bit of the spte which can be done out of mmu-lock.
  2364. */
  2365. if (!(error_code & PFERR_PRESENT_MASK) ||
  2366. !(error_code & PFERR_WRITE_MASK))
  2367. return false;
  2368. return true;
  2369. }
  2370. static bool
  2371. fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  2372. u64 *sptep, u64 spte)
  2373. {
  2374. gfn_t gfn;
  2375. WARN_ON(!sp->role.direct);
  2376. /*
  2377. * The gfn of direct spte is stable since it is calculated
  2378. * by sp->gfn.
  2379. */
  2380. gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
  2381. /*
  2382. * Theoretically we could also set dirty bit (and flush TLB) here in
  2383. * order to eliminate unnecessary PML logging. See comments in
  2384. * set_spte. But fast_page_fault is very unlikely to happen with PML
  2385. * enabled, so we do not do this. This might result in the same GPA
  2386. * to be logged in PML buffer again when the write really happens, and
  2387. * eventually to be called by mark_page_dirty twice. But it's also no
  2388. * harm. This also avoids the TLB flush needed after setting dirty bit
  2389. * so non-PML cases won't be impacted.
  2390. *
  2391. * Compare with set_spte where instead shadow_dirty_mask is set.
  2392. */
  2393. if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
  2394. kvm_vcpu_mark_page_dirty(vcpu, gfn);
  2395. return true;
  2396. }
  2397. /*
  2398. * Return value:
  2399. * - true: let the vcpu to access on the same address again.
  2400. * - false: let the real page fault path to fix it.
  2401. */
  2402. static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
  2403. u32 error_code)
  2404. {
  2405. struct kvm_shadow_walk_iterator iterator;
  2406. struct kvm_mmu_page *sp;
  2407. bool ret = false;
  2408. u64 spte = 0ull;
  2409. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2410. return false;
  2411. if (!page_fault_can_be_fast(error_code))
  2412. return false;
  2413. walk_shadow_page_lockless_begin(vcpu);
  2414. for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
  2415. if (!is_shadow_present_pte(spte) || iterator.level < level)
  2416. break;
  2417. /*
  2418. * If the mapping has been changed, let the vcpu fault on the
  2419. * same address again.
  2420. */
  2421. if (!is_rmap_spte(spte)) {
  2422. ret = true;
  2423. goto exit;
  2424. }
  2425. sp = page_header(__pa(iterator.sptep));
  2426. if (!is_last_spte(spte, sp->role.level))
  2427. goto exit;
  2428. /*
  2429. * Check if it is a spurious fault caused by TLB lazily flushed.
  2430. *
  2431. * Need not check the access of upper level table entries since
  2432. * they are always ACC_ALL.
  2433. */
  2434. if (is_writable_pte(spte)) {
  2435. ret = true;
  2436. goto exit;
  2437. }
  2438. /*
  2439. * Currently, to simplify the code, only the spte write-protected
  2440. * by dirty-log can be fast fixed.
  2441. */
  2442. if (!spte_is_locklessly_modifiable(spte))
  2443. goto exit;
  2444. /*
  2445. * Do not fix write-permission on the large spte since we only dirty
  2446. * the first page into the dirty-bitmap in fast_pf_fix_direct_spte()
  2447. * that means other pages are missed if its slot is dirty-logged.
  2448. *
  2449. * Instead, we let the slow page fault path create a normal spte to
  2450. * fix the access.
  2451. *
  2452. * See the comments in kvm_arch_commit_memory_region().
  2453. */
  2454. if (sp->role.level > PT_PAGE_TABLE_LEVEL)
  2455. goto exit;
  2456. /*
  2457. * Currently, fast page fault only works for direct mapping since
  2458. * the gfn is not stable for indirect shadow page.
  2459. * See Documentation/virtual/kvm/locking.txt to get more detail.
  2460. */
  2461. ret = fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte);
  2462. exit:
  2463. trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
  2464. spte, ret);
  2465. walk_shadow_page_lockless_end(vcpu);
  2466. return ret;
  2467. }
  2468. static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
  2469. gva_t gva, pfn_t *pfn, bool write, bool *writable);
  2470. static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
  2471. static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
  2472. gfn_t gfn, bool prefault)
  2473. {
  2474. int r;
  2475. int level;
  2476. bool force_pt_level = false;
  2477. pfn_t pfn;
  2478. unsigned long mmu_seq;
  2479. bool map_writable, write = error_code & PFERR_WRITE_MASK;
  2480. level = mapping_level(vcpu, gfn, &force_pt_level);
  2481. if (likely(!force_pt_level)) {
  2482. /*
  2483. * This path builds a PAE pagetable - so we can map
  2484. * 2mb pages at maximum. Therefore check if the level
  2485. * is larger than that.
  2486. */
  2487. if (level > PT_DIRECTORY_LEVEL)
  2488. level = PT_DIRECTORY_LEVEL;
  2489. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  2490. }
  2491. if (fast_page_fault(vcpu, v, level, error_code))
  2492. return 0;
  2493. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  2494. smp_rmb();
  2495. if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
  2496. return 0;
  2497. if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
  2498. return r;
  2499. spin_lock(&vcpu->kvm->mmu_lock);
  2500. if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
  2501. goto out_unlock;
  2502. make_mmu_pages_available(vcpu);
  2503. if (likely(!force_pt_level))
  2504. transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
  2505. r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
  2506. prefault);
  2507. spin_unlock(&vcpu->kvm->mmu_lock);
  2508. return r;
  2509. out_unlock:
  2510. spin_unlock(&vcpu->kvm->mmu_lock);
  2511. kvm_release_pfn_clean(pfn);
  2512. return 0;
  2513. }
  2514. static void mmu_free_roots(struct kvm_vcpu *vcpu)
  2515. {
  2516. int i;
  2517. struct kvm_mmu_page *sp;
  2518. LIST_HEAD(invalid_list);
  2519. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2520. return;
  2521. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
  2522. (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
  2523. vcpu->arch.mmu.direct_map)) {
  2524. hpa_t root = vcpu->arch.mmu.root_hpa;
  2525. spin_lock(&vcpu->kvm->mmu_lock);
  2526. sp = page_header(root);
  2527. --sp->root_count;
  2528. if (!sp->root_count && sp->role.invalid) {
  2529. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
  2530. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  2531. }
  2532. spin_unlock(&vcpu->kvm->mmu_lock);
  2533. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  2534. return;
  2535. }
  2536. spin_lock(&vcpu->kvm->mmu_lock);
  2537. for (i = 0; i < 4; ++i) {
  2538. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2539. if (root) {
  2540. root &= PT64_BASE_ADDR_MASK;
  2541. sp = page_header(root);
  2542. --sp->root_count;
  2543. if (!sp->root_count && sp->role.invalid)
  2544. kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
  2545. &invalid_list);
  2546. }
  2547. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  2548. }
  2549. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  2550. spin_unlock(&vcpu->kvm->mmu_lock);
  2551. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  2552. }
  2553. static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
  2554. {
  2555. int ret = 0;
  2556. if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
  2557. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  2558. ret = 1;
  2559. }
  2560. return ret;
  2561. }
  2562. static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
  2563. {
  2564. struct kvm_mmu_page *sp;
  2565. unsigned i;
  2566. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  2567. spin_lock(&vcpu->kvm->mmu_lock);
  2568. make_mmu_pages_available(vcpu);
  2569. sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
  2570. 1, ACC_ALL, NULL);
  2571. ++sp->root_count;
  2572. spin_unlock(&vcpu->kvm->mmu_lock);
  2573. vcpu->arch.mmu.root_hpa = __pa(sp->spt);
  2574. } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
  2575. for (i = 0; i < 4; ++i) {
  2576. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2577. MMU_WARN_ON(VALID_PAGE(root));
  2578. spin_lock(&vcpu->kvm->mmu_lock);
  2579. make_mmu_pages_available(vcpu);
  2580. sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
  2581. i << 30,
  2582. PT32_ROOT_LEVEL, 1, ACC_ALL,
  2583. NULL);
  2584. root = __pa(sp->spt);
  2585. ++sp->root_count;
  2586. spin_unlock(&vcpu->kvm->mmu_lock);
  2587. vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
  2588. }
  2589. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
  2590. } else
  2591. BUG();
  2592. return 0;
  2593. }
  2594. static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
  2595. {
  2596. struct kvm_mmu_page *sp;
  2597. u64 pdptr, pm_mask;
  2598. gfn_t root_gfn;
  2599. int i;
  2600. root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
  2601. if (mmu_check_root(vcpu, root_gfn))
  2602. return 1;
  2603. /*
  2604. * Do we shadow a long mode page table? If so we need to
  2605. * write-protect the guests page table root.
  2606. */
  2607. if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
  2608. hpa_t root = vcpu->arch.mmu.root_hpa;
  2609. MMU_WARN_ON(VALID_PAGE(root));
  2610. spin_lock(&vcpu->kvm->mmu_lock);
  2611. make_mmu_pages_available(vcpu);
  2612. sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
  2613. 0, ACC_ALL, NULL);
  2614. root = __pa(sp->spt);
  2615. ++sp->root_count;
  2616. spin_unlock(&vcpu->kvm->mmu_lock);
  2617. vcpu->arch.mmu.root_hpa = root;
  2618. return 0;
  2619. }
  2620. /*
  2621. * We shadow a 32 bit page table. This may be a legacy 2-level
  2622. * or a PAE 3-level page table. In either case we need to be aware that
  2623. * the shadow page table may be a PAE or a long mode page table.
  2624. */
  2625. pm_mask = PT_PRESENT_MASK;
  2626. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
  2627. pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
  2628. for (i = 0; i < 4; ++i) {
  2629. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2630. MMU_WARN_ON(VALID_PAGE(root));
  2631. if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
  2632. pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
  2633. if (!is_present_gpte(pdptr)) {
  2634. vcpu->arch.mmu.pae_root[i] = 0;
  2635. continue;
  2636. }
  2637. root_gfn = pdptr >> PAGE_SHIFT;
  2638. if (mmu_check_root(vcpu, root_gfn))
  2639. return 1;
  2640. }
  2641. spin_lock(&vcpu->kvm->mmu_lock);
  2642. make_mmu_pages_available(vcpu);
  2643. sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
  2644. PT32_ROOT_LEVEL, 0,
  2645. ACC_ALL, NULL);
  2646. root = __pa(sp->spt);
  2647. ++sp->root_count;
  2648. spin_unlock(&vcpu->kvm->mmu_lock);
  2649. vcpu->arch.mmu.pae_root[i] = root | pm_mask;
  2650. }
  2651. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
  2652. /*
  2653. * If we shadow a 32 bit page table with a long mode page
  2654. * table we enter this path.
  2655. */
  2656. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  2657. if (vcpu->arch.mmu.lm_root == NULL) {
  2658. /*
  2659. * The additional page necessary for this is only
  2660. * allocated on demand.
  2661. */
  2662. u64 *lm_root;
  2663. lm_root = (void*)get_zeroed_page(GFP_KERNEL);
  2664. if (lm_root == NULL)
  2665. return 1;
  2666. lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
  2667. vcpu->arch.mmu.lm_root = lm_root;
  2668. }
  2669. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
  2670. }
  2671. return 0;
  2672. }
  2673. static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
  2674. {
  2675. if (vcpu->arch.mmu.direct_map)
  2676. return mmu_alloc_direct_roots(vcpu);
  2677. else
  2678. return mmu_alloc_shadow_roots(vcpu);
  2679. }
  2680. static void mmu_sync_roots(struct kvm_vcpu *vcpu)
  2681. {
  2682. int i;
  2683. struct kvm_mmu_page *sp;
  2684. if (vcpu->arch.mmu.direct_map)
  2685. return;
  2686. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2687. return;
  2688. vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
  2689. kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
  2690. if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
  2691. hpa_t root = vcpu->arch.mmu.root_hpa;
  2692. sp = page_header(root);
  2693. mmu_sync_children(vcpu, sp);
  2694. kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
  2695. return;
  2696. }
  2697. for (i = 0; i < 4; ++i) {
  2698. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2699. if (root && VALID_PAGE(root)) {
  2700. root &= PT64_BASE_ADDR_MASK;
  2701. sp = page_header(root);
  2702. mmu_sync_children(vcpu, sp);
  2703. }
  2704. }
  2705. kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
  2706. }
  2707. void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
  2708. {
  2709. spin_lock(&vcpu->kvm->mmu_lock);
  2710. mmu_sync_roots(vcpu);
  2711. spin_unlock(&vcpu->kvm->mmu_lock);
  2712. }
  2713. EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
  2714. static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
  2715. u32 access, struct x86_exception *exception)
  2716. {
  2717. if (exception)
  2718. exception->error_code = 0;
  2719. return vaddr;
  2720. }
  2721. static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
  2722. u32 access,
  2723. struct x86_exception *exception)
  2724. {
  2725. if (exception)
  2726. exception->error_code = 0;
  2727. return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
  2728. }
  2729. static bool
  2730. __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
  2731. {
  2732. int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f;
  2733. return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) |
  2734. ((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0);
  2735. }
  2736. static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
  2737. {
  2738. return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level);
  2739. }
  2740. static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level)
  2741. {
  2742. return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level);
  2743. }
  2744. static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
  2745. {
  2746. if (direct)
  2747. return vcpu_match_mmio_gpa(vcpu, addr);
  2748. return vcpu_match_mmio_gva(vcpu, addr);
  2749. }
  2750. /* return true if reserved bit is detected on spte. */
  2751. static bool
  2752. walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
  2753. {
  2754. struct kvm_shadow_walk_iterator iterator;
  2755. u64 sptes[PT64_ROOT_LEVEL], spte = 0ull;
  2756. int root, leaf;
  2757. bool reserved = false;
  2758. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2759. goto exit;
  2760. walk_shadow_page_lockless_begin(vcpu);
  2761. for (shadow_walk_init(&iterator, vcpu, addr),
  2762. leaf = root = iterator.level;
  2763. shadow_walk_okay(&iterator);
  2764. __shadow_walk_next(&iterator, spte)) {
  2765. spte = mmu_spte_get_lockless(iterator.sptep);
  2766. sptes[leaf - 1] = spte;
  2767. leaf--;
  2768. if (!is_shadow_present_pte(spte))
  2769. break;
  2770. reserved |= is_shadow_zero_bits_set(&vcpu->arch.mmu, spte,
  2771. iterator.level);
  2772. }
  2773. walk_shadow_page_lockless_end(vcpu);
  2774. if (reserved) {
  2775. pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
  2776. __func__, addr);
  2777. while (root > leaf) {
  2778. pr_err("------ spte 0x%llx level %d.\n",
  2779. sptes[root - 1], root);
  2780. root--;
  2781. }
  2782. }
  2783. exit:
  2784. *sptep = spte;
  2785. return reserved;
  2786. }
  2787. int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
  2788. {
  2789. u64 spte;
  2790. bool reserved;
  2791. if (quickly_check_mmio_pf(vcpu, addr, direct))
  2792. return RET_MMIO_PF_EMULATE;
  2793. reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
  2794. if (WARN_ON(reserved))
  2795. return RET_MMIO_PF_BUG;
  2796. if (is_mmio_spte(spte)) {
  2797. gfn_t gfn = get_mmio_spte_gfn(spte);
  2798. unsigned access = get_mmio_spte_access(spte);
  2799. if (!check_mmio_spte(vcpu, spte))
  2800. return RET_MMIO_PF_INVALID;
  2801. if (direct)
  2802. addr = 0;
  2803. trace_handle_mmio_page_fault(addr, gfn, access);
  2804. vcpu_cache_mmio_info(vcpu, addr, gfn, access);
  2805. return RET_MMIO_PF_EMULATE;
  2806. }
  2807. /*
  2808. * If the page table is zapped by other cpus, let CPU fault again on
  2809. * the address.
  2810. */
  2811. return RET_MMIO_PF_RETRY;
  2812. }
  2813. EXPORT_SYMBOL_GPL(handle_mmio_page_fault);
  2814. static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
  2815. u32 error_code, bool prefault)
  2816. {
  2817. gfn_t gfn;
  2818. int r;
  2819. pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
  2820. if (unlikely(error_code & PFERR_RSVD_MASK)) {
  2821. r = handle_mmio_page_fault(vcpu, gva, true);
  2822. if (likely(r != RET_MMIO_PF_INVALID))
  2823. return r;
  2824. }
  2825. r = mmu_topup_memory_caches(vcpu);
  2826. if (r)
  2827. return r;
  2828. MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2829. gfn = gva >> PAGE_SHIFT;
  2830. return nonpaging_map(vcpu, gva & PAGE_MASK,
  2831. error_code, gfn, prefault);
  2832. }
  2833. static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
  2834. {
  2835. struct kvm_arch_async_pf arch;
  2836. arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
  2837. arch.gfn = gfn;
  2838. arch.direct_map = vcpu->arch.mmu.direct_map;
  2839. arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
  2840. return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
  2841. }
  2842. bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
  2843. {
  2844. if (unlikely(!lapic_in_kernel(vcpu) ||
  2845. kvm_event_needs_reinjection(vcpu)))
  2846. return false;
  2847. if (is_guest_mode(vcpu))
  2848. return false;
  2849. return kvm_x86_ops->interrupt_allowed(vcpu);
  2850. }
  2851. static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
  2852. gva_t gva, pfn_t *pfn, bool write, bool *writable)
  2853. {
  2854. struct kvm_memory_slot *slot;
  2855. bool async;
  2856. slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
  2857. async = false;
  2858. *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
  2859. if (!async)
  2860. return false; /* *pfn has correct page already */
  2861. if (!prefault && kvm_can_do_async_pf(vcpu)) {
  2862. trace_kvm_try_async_get_page(gva, gfn);
  2863. if (kvm_find_async_pf_gfn(vcpu, gfn)) {
  2864. trace_kvm_async_pf_doublefault(gva, gfn);
  2865. kvm_make_request(KVM_REQ_APF_HALT, vcpu);
  2866. return true;
  2867. } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
  2868. return true;
  2869. }
  2870. *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
  2871. return false;
  2872. }
  2873. static bool
  2874. check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
  2875. {
  2876. int page_num = KVM_PAGES_PER_HPAGE(level);
  2877. gfn &= ~(page_num - 1);
  2878. return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num);
  2879. }
  2880. static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
  2881. bool prefault)
  2882. {
  2883. pfn_t pfn;
  2884. int r;
  2885. int level;
  2886. bool force_pt_level;
  2887. gfn_t gfn = gpa >> PAGE_SHIFT;
  2888. unsigned long mmu_seq;
  2889. int write = error_code & PFERR_WRITE_MASK;
  2890. bool map_writable;
  2891. MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2892. if (unlikely(error_code & PFERR_RSVD_MASK)) {
  2893. r = handle_mmio_page_fault(vcpu, gpa, true);
  2894. if (likely(r != RET_MMIO_PF_INVALID))
  2895. return r;
  2896. }
  2897. r = mmu_topup_memory_caches(vcpu);
  2898. if (r)
  2899. return r;
  2900. force_pt_level = !check_hugepage_cache_consistency(vcpu, gfn,
  2901. PT_DIRECTORY_LEVEL);
  2902. level = mapping_level(vcpu, gfn, &force_pt_level);
  2903. if (likely(!force_pt_level)) {
  2904. if (level > PT_DIRECTORY_LEVEL &&
  2905. !check_hugepage_cache_consistency(vcpu, gfn, level))
  2906. level = PT_DIRECTORY_LEVEL;
  2907. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  2908. }
  2909. if (fast_page_fault(vcpu, gpa, level, error_code))
  2910. return 0;
  2911. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  2912. smp_rmb();
  2913. if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
  2914. return 0;
  2915. if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
  2916. return r;
  2917. spin_lock(&vcpu->kvm->mmu_lock);
  2918. if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
  2919. goto out_unlock;
  2920. make_mmu_pages_available(vcpu);
  2921. if (likely(!force_pt_level))
  2922. transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
  2923. r = __direct_map(vcpu, gpa, write, map_writable,
  2924. level, gfn, pfn, prefault);
  2925. spin_unlock(&vcpu->kvm->mmu_lock);
  2926. return r;
  2927. out_unlock:
  2928. spin_unlock(&vcpu->kvm->mmu_lock);
  2929. kvm_release_pfn_clean(pfn);
  2930. return 0;
  2931. }
  2932. static void nonpaging_init_context(struct kvm_vcpu *vcpu,
  2933. struct kvm_mmu *context)
  2934. {
  2935. context->page_fault = nonpaging_page_fault;
  2936. context->gva_to_gpa = nonpaging_gva_to_gpa;
  2937. context->sync_page = nonpaging_sync_page;
  2938. context->invlpg = nonpaging_invlpg;
  2939. context->update_pte = nonpaging_update_pte;
  2940. context->root_level = 0;
  2941. context->shadow_root_level = PT32E_ROOT_LEVEL;
  2942. context->root_hpa = INVALID_PAGE;
  2943. context->direct_map = true;
  2944. context->nx = false;
  2945. }
  2946. void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
  2947. {
  2948. mmu_free_roots(vcpu);
  2949. }
  2950. static unsigned long get_cr3(struct kvm_vcpu *vcpu)
  2951. {
  2952. return kvm_read_cr3(vcpu);
  2953. }
  2954. static void inject_page_fault(struct kvm_vcpu *vcpu,
  2955. struct x86_exception *fault)
  2956. {
  2957. vcpu->arch.mmu.inject_page_fault(vcpu, fault);
  2958. }
  2959. static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
  2960. unsigned access, int *nr_present)
  2961. {
  2962. if (unlikely(is_mmio_spte(*sptep))) {
  2963. if (gfn != get_mmio_spte_gfn(*sptep)) {
  2964. mmu_spte_clear_no_track(sptep);
  2965. return true;
  2966. }
  2967. (*nr_present)++;
  2968. mark_mmio_spte(vcpu, sptep, gfn, access);
  2969. return true;
  2970. }
  2971. return false;
  2972. }
  2973. static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
  2974. {
  2975. unsigned index;
  2976. index = level - 1;
  2977. index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
  2978. return mmu->last_pte_bitmap & (1 << index);
  2979. }
  2980. #define PTTYPE_EPT 18 /* arbitrary */
  2981. #define PTTYPE PTTYPE_EPT
  2982. #include "paging_tmpl.h"
  2983. #undef PTTYPE
  2984. #define PTTYPE 64
  2985. #include "paging_tmpl.h"
  2986. #undef PTTYPE
  2987. #define PTTYPE 32
  2988. #include "paging_tmpl.h"
  2989. #undef PTTYPE
  2990. static void
  2991. __reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
  2992. struct rsvd_bits_validate *rsvd_check,
  2993. int maxphyaddr, int level, bool nx, bool gbpages,
  2994. bool pse, bool amd)
  2995. {
  2996. u64 exb_bit_rsvd = 0;
  2997. u64 gbpages_bit_rsvd = 0;
  2998. u64 nonleaf_bit8_rsvd = 0;
  2999. rsvd_check->bad_mt_xwr = 0;
  3000. if (!nx)
  3001. exb_bit_rsvd = rsvd_bits(63, 63);
  3002. if (!gbpages)
  3003. gbpages_bit_rsvd = rsvd_bits(7, 7);
  3004. /*
  3005. * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
  3006. * leaf entries) on AMD CPUs only.
  3007. */
  3008. if (amd)
  3009. nonleaf_bit8_rsvd = rsvd_bits(8, 8);
  3010. switch (level) {
  3011. case PT32_ROOT_LEVEL:
  3012. /* no rsvd bits for 2 level 4K page table entries */
  3013. rsvd_check->rsvd_bits_mask[0][1] = 0;
  3014. rsvd_check->rsvd_bits_mask[0][0] = 0;
  3015. rsvd_check->rsvd_bits_mask[1][0] =
  3016. rsvd_check->rsvd_bits_mask[0][0];
  3017. if (!pse) {
  3018. rsvd_check->rsvd_bits_mask[1][1] = 0;
  3019. break;
  3020. }
  3021. if (is_cpuid_PSE36())
  3022. /* 36bits PSE 4MB page */
  3023. rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
  3024. else
  3025. /* 32 bits PSE 4MB page */
  3026. rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
  3027. break;
  3028. case PT32E_ROOT_LEVEL:
  3029. rsvd_check->rsvd_bits_mask[0][2] =
  3030. rsvd_bits(maxphyaddr, 63) |
  3031. rsvd_bits(5, 8) | rsvd_bits(1, 2); /* PDPTE */
  3032. rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  3033. rsvd_bits(maxphyaddr, 62); /* PDE */
  3034. rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  3035. rsvd_bits(maxphyaddr, 62); /* PTE */
  3036. rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  3037. rsvd_bits(maxphyaddr, 62) |
  3038. rsvd_bits(13, 20); /* large page */
  3039. rsvd_check->rsvd_bits_mask[1][0] =
  3040. rsvd_check->rsvd_bits_mask[0][0];
  3041. break;
  3042. case PT64_ROOT_LEVEL:
  3043. rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
  3044. nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
  3045. rsvd_bits(maxphyaddr, 51);
  3046. rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
  3047. nonleaf_bit8_rsvd | gbpages_bit_rsvd |
  3048. rsvd_bits(maxphyaddr, 51);
  3049. rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  3050. rsvd_bits(maxphyaddr, 51);
  3051. rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  3052. rsvd_bits(maxphyaddr, 51);
  3053. rsvd_check->rsvd_bits_mask[1][3] =
  3054. rsvd_check->rsvd_bits_mask[0][3];
  3055. rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
  3056. gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
  3057. rsvd_bits(13, 29);
  3058. rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  3059. rsvd_bits(maxphyaddr, 51) |
  3060. rsvd_bits(13, 20); /* large page */
  3061. rsvd_check->rsvd_bits_mask[1][0] =
  3062. rsvd_check->rsvd_bits_mask[0][0];
  3063. break;
  3064. }
  3065. }
  3066. static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
  3067. struct kvm_mmu *context)
  3068. {
  3069. __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
  3070. cpuid_maxphyaddr(vcpu), context->root_level,
  3071. context->nx, guest_cpuid_has_gbpages(vcpu),
  3072. is_pse(vcpu), guest_cpuid_is_amd(vcpu));
  3073. }
  3074. static void
  3075. __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
  3076. int maxphyaddr, bool execonly)
  3077. {
  3078. u64 bad_mt_xwr;
  3079. rsvd_check->rsvd_bits_mask[0][3] =
  3080. rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
  3081. rsvd_check->rsvd_bits_mask[0][2] =
  3082. rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
  3083. rsvd_check->rsvd_bits_mask[0][1] =
  3084. rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
  3085. rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
  3086. /* large page */
  3087. rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
  3088. rsvd_check->rsvd_bits_mask[1][2] =
  3089. rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
  3090. rsvd_check->rsvd_bits_mask[1][1] =
  3091. rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
  3092. rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
  3093. bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */
  3094. bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */
  3095. bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */
  3096. bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */
  3097. bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */
  3098. if (!execonly) {
  3099. /* bits 0..2 must not be 100 unless VMX capabilities allow it */
  3100. bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
  3101. }
  3102. rsvd_check->bad_mt_xwr = bad_mt_xwr;
  3103. }
  3104. static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
  3105. struct kvm_mmu *context, bool execonly)
  3106. {
  3107. __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
  3108. cpuid_maxphyaddr(vcpu), execonly);
  3109. }
  3110. /*
  3111. * the page table on host is the shadow page table for the page
  3112. * table in guest or amd nested guest, its mmu features completely
  3113. * follow the features in guest.
  3114. */
  3115. void
  3116. reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
  3117. {
  3118. bool uses_nx = context->nx || context->base_role.smep_andnot_wp;
  3119. /*
  3120. * Passing "true" to the last argument is okay; it adds a check
  3121. * on bit 8 of the SPTEs which KVM doesn't use anyway.
  3122. */
  3123. __reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
  3124. boot_cpu_data.x86_phys_bits,
  3125. context->shadow_root_level, uses_nx,
  3126. guest_cpuid_has_gbpages(vcpu), is_pse(vcpu),
  3127. true);
  3128. }
  3129. EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
  3130. static inline bool boot_cpu_is_amd(void)
  3131. {
  3132. WARN_ON_ONCE(!tdp_enabled);
  3133. return shadow_x_mask == 0;
  3134. }
  3135. /*
  3136. * the direct page table on host, use as much mmu features as
  3137. * possible, however, kvm currently does not do execution-protection.
  3138. */
  3139. static void
  3140. reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
  3141. struct kvm_mmu *context)
  3142. {
  3143. if (boot_cpu_is_amd())
  3144. __reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
  3145. boot_cpu_data.x86_phys_bits,
  3146. context->shadow_root_level, false,
  3147. cpu_has_gbpages, true, true);
  3148. else
  3149. __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
  3150. boot_cpu_data.x86_phys_bits,
  3151. false);
  3152. }
  3153. /*
  3154. * as the comments in reset_shadow_zero_bits_mask() except it
  3155. * is the shadow page table for intel nested guest.
  3156. */
  3157. static void
  3158. reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
  3159. struct kvm_mmu *context, bool execonly)
  3160. {
  3161. __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
  3162. boot_cpu_data.x86_phys_bits, execonly);
  3163. }
  3164. static void update_permission_bitmask(struct kvm_vcpu *vcpu,
  3165. struct kvm_mmu *mmu, bool ept)
  3166. {
  3167. unsigned bit, byte, pfec;
  3168. u8 map;
  3169. bool fault, x, w, u, wf, uf, ff, smapf, cr4_smap, cr4_smep, smap = 0;
  3170. cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
  3171. cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
  3172. for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
  3173. pfec = byte << 1;
  3174. map = 0;
  3175. wf = pfec & PFERR_WRITE_MASK;
  3176. uf = pfec & PFERR_USER_MASK;
  3177. ff = pfec & PFERR_FETCH_MASK;
  3178. /*
  3179. * PFERR_RSVD_MASK bit is set in PFEC if the access is not
  3180. * subject to SMAP restrictions, and cleared otherwise. The
  3181. * bit is only meaningful if the SMAP bit is set in CR4.
  3182. */
  3183. smapf = !(pfec & PFERR_RSVD_MASK);
  3184. for (bit = 0; bit < 8; ++bit) {
  3185. x = bit & ACC_EXEC_MASK;
  3186. w = bit & ACC_WRITE_MASK;
  3187. u = bit & ACC_USER_MASK;
  3188. if (!ept) {
  3189. /* Not really needed: !nx will cause pte.nx to fault */
  3190. x |= !mmu->nx;
  3191. /* Allow supervisor writes if !cr0.wp */
  3192. w |= !is_write_protection(vcpu) && !uf;
  3193. /* Disallow supervisor fetches of user code if cr4.smep */
  3194. x &= !(cr4_smep && u && !uf);
  3195. /*
  3196. * SMAP:kernel-mode data accesses from user-mode
  3197. * mappings should fault. A fault is considered
  3198. * as a SMAP violation if all of the following
  3199. * conditions are ture:
  3200. * - X86_CR4_SMAP is set in CR4
  3201. * - An user page is accessed
  3202. * - Page fault in kernel mode
  3203. * - if CPL = 3 or X86_EFLAGS_AC is clear
  3204. *
  3205. * Here, we cover the first three conditions.
  3206. * The fourth is computed dynamically in
  3207. * permission_fault() and is in smapf.
  3208. *
  3209. * Also, SMAP does not affect instruction
  3210. * fetches, add the !ff check here to make it
  3211. * clearer.
  3212. */
  3213. smap = cr4_smap && u && !uf && !ff;
  3214. } else
  3215. /* Not really needed: no U/S accesses on ept */
  3216. u = 1;
  3217. fault = (ff && !x) || (uf && !u) || (wf && !w) ||
  3218. (smapf && smap);
  3219. map |= fault << bit;
  3220. }
  3221. mmu->permissions[byte] = map;
  3222. }
  3223. }
  3224. static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
  3225. {
  3226. u8 map;
  3227. unsigned level, root_level = mmu->root_level;
  3228. const unsigned ps_set_index = 1 << 2; /* bit 2 of index: ps */
  3229. if (root_level == PT32E_ROOT_LEVEL)
  3230. --root_level;
  3231. /* PT_PAGE_TABLE_LEVEL always terminates */
  3232. map = 1 | (1 << ps_set_index);
  3233. for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
  3234. if (level <= PT_PDPE_LEVEL
  3235. && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
  3236. map |= 1 << (ps_set_index | (level - 1));
  3237. }
  3238. mmu->last_pte_bitmap = map;
  3239. }
  3240. static void paging64_init_context_common(struct kvm_vcpu *vcpu,
  3241. struct kvm_mmu *context,
  3242. int level)
  3243. {
  3244. context->nx = is_nx(vcpu);
  3245. context->root_level = level;
  3246. reset_rsvds_bits_mask(vcpu, context);
  3247. update_permission_bitmask(vcpu, context, false);
  3248. update_last_pte_bitmap(vcpu, context);
  3249. MMU_WARN_ON(!is_pae(vcpu));
  3250. context->page_fault = paging64_page_fault;
  3251. context->gva_to_gpa = paging64_gva_to_gpa;
  3252. context->sync_page = paging64_sync_page;
  3253. context->invlpg = paging64_invlpg;
  3254. context->update_pte = paging64_update_pte;
  3255. context->shadow_root_level = level;
  3256. context->root_hpa = INVALID_PAGE;
  3257. context->direct_map = false;
  3258. }
  3259. static void paging64_init_context(struct kvm_vcpu *vcpu,
  3260. struct kvm_mmu *context)
  3261. {
  3262. paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
  3263. }
  3264. static void paging32_init_context(struct kvm_vcpu *vcpu,
  3265. struct kvm_mmu *context)
  3266. {
  3267. context->nx = false;
  3268. context->root_level = PT32_ROOT_LEVEL;
  3269. reset_rsvds_bits_mask(vcpu, context);
  3270. update_permission_bitmask(vcpu, context, false);
  3271. update_last_pte_bitmap(vcpu, context);
  3272. context->page_fault = paging32_page_fault;
  3273. context->gva_to_gpa = paging32_gva_to_gpa;
  3274. context->sync_page = paging32_sync_page;
  3275. context->invlpg = paging32_invlpg;
  3276. context->update_pte = paging32_update_pte;
  3277. context->shadow_root_level = PT32E_ROOT_LEVEL;
  3278. context->root_hpa = INVALID_PAGE;
  3279. context->direct_map = false;
  3280. }
  3281. static void paging32E_init_context(struct kvm_vcpu *vcpu,
  3282. struct kvm_mmu *context)
  3283. {
  3284. paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
  3285. }
  3286. static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
  3287. {
  3288. struct kvm_mmu *context = &vcpu->arch.mmu;
  3289. context->base_role.word = 0;
  3290. context->base_role.smm = is_smm(vcpu);
  3291. context->page_fault = tdp_page_fault;
  3292. context->sync_page = nonpaging_sync_page;
  3293. context->invlpg = nonpaging_invlpg;
  3294. context->update_pte = nonpaging_update_pte;
  3295. context->shadow_root_level = kvm_x86_ops->get_tdp_level();
  3296. context->root_hpa = INVALID_PAGE;
  3297. context->direct_map = true;
  3298. context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
  3299. context->get_cr3 = get_cr3;
  3300. context->get_pdptr = kvm_pdptr_read;
  3301. context->inject_page_fault = kvm_inject_page_fault;
  3302. if (!is_paging(vcpu)) {
  3303. context->nx = false;
  3304. context->gva_to_gpa = nonpaging_gva_to_gpa;
  3305. context->root_level = 0;
  3306. } else if (is_long_mode(vcpu)) {
  3307. context->nx = is_nx(vcpu);
  3308. context->root_level = PT64_ROOT_LEVEL;
  3309. reset_rsvds_bits_mask(vcpu, context);
  3310. context->gva_to_gpa = paging64_gva_to_gpa;
  3311. } else if (is_pae(vcpu)) {
  3312. context->nx = is_nx(vcpu);
  3313. context->root_level = PT32E_ROOT_LEVEL;
  3314. reset_rsvds_bits_mask(vcpu, context);
  3315. context->gva_to_gpa = paging64_gva_to_gpa;
  3316. } else {
  3317. context->nx = false;
  3318. context->root_level = PT32_ROOT_LEVEL;
  3319. reset_rsvds_bits_mask(vcpu, context);
  3320. context->gva_to_gpa = paging32_gva_to_gpa;
  3321. }
  3322. update_permission_bitmask(vcpu, context, false);
  3323. update_last_pte_bitmap(vcpu, context);
  3324. reset_tdp_shadow_zero_bits_mask(vcpu, context);
  3325. }
  3326. void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
  3327. {
  3328. bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
  3329. bool smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
  3330. struct kvm_mmu *context = &vcpu->arch.mmu;
  3331. MMU_WARN_ON(VALID_PAGE(context->root_hpa));
  3332. if (!is_paging(vcpu))
  3333. nonpaging_init_context(vcpu, context);
  3334. else if (is_long_mode(vcpu))
  3335. paging64_init_context(vcpu, context);
  3336. else if (is_pae(vcpu))
  3337. paging32E_init_context(vcpu, context);
  3338. else
  3339. paging32_init_context(vcpu, context);
  3340. context->base_role.nxe = is_nx(vcpu);
  3341. context->base_role.cr4_pae = !!is_pae(vcpu);
  3342. context->base_role.cr0_wp = is_write_protection(vcpu);
  3343. context->base_role.smep_andnot_wp
  3344. = smep && !is_write_protection(vcpu);
  3345. context->base_role.smap_andnot_wp
  3346. = smap && !is_write_protection(vcpu);
  3347. context->base_role.smm = is_smm(vcpu);
  3348. reset_shadow_zero_bits_mask(vcpu, context);
  3349. }
  3350. EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
  3351. void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly)
  3352. {
  3353. struct kvm_mmu *context = &vcpu->arch.mmu;
  3354. MMU_WARN_ON(VALID_PAGE(context->root_hpa));
  3355. context->shadow_root_level = kvm_x86_ops->get_tdp_level();
  3356. context->nx = true;
  3357. context->page_fault = ept_page_fault;
  3358. context->gva_to_gpa = ept_gva_to_gpa;
  3359. context->sync_page = ept_sync_page;
  3360. context->invlpg = ept_invlpg;
  3361. context->update_pte = ept_update_pte;
  3362. context->root_level = context->shadow_root_level;
  3363. context->root_hpa = INVALID_PAGE;
  3364. context->direct_map = false;
  3365. update_permission_bitmask(vcpu, context, true);
  3366. reset_rsvds_bits_mask_ept(vcpu, context, execonly);
  3367. reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
  3368. }
  3369. EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
  3370. static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
  3371. {
  3372. struct kvm_mmu *context = &vcpu->arch.mmu;
  3373. kvm_init_shadow_mmu(vcpu);
  3374. context->set_cr3 = kvm_x86_ops->set_cr3;
  3375. context->get_cr3 = get_cr3;
  3376. context->get_pdptr = kvm_pdptr_read;
  3377. context->inject_page_fault = kvm_inject_page_fault;
  3378. }
  3379. static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
  3380. {
  3381. struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
  3382. g_context->get_cr3 = get_cr3;
  3383. g_context->get_pdptr = kvm_pdptr_read;
  3384. g_context->inject_page_fault = kvm_inject_page_fault;
  3385. /*
  3386. * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
  3387. * translation of l2_gpa to l1_gpa addresses is done using the
  3388. * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
  3389. * functions between mmu and nested_mmu are swapped.
  3390. */
  3391. if (!is_paging(vcpu)) {
  3392. g_context->nx = false;
  3393. g_context->root_level = 0;
  3394. g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
  3395. } else if (is_long_mode(vcpu)) {
  3396. g_context->nx = is_nx(vcpu);
  3397. g_context->root_level = PT64_ROOT_LEVEL;
  3398. reset_rsvds_bits_mask(vcpu, g_context);
  3399. g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
  3400. } else if (is_pae(vcpu)) {
  3401. g_context->nx = is_nx(vcpu);
  3402. g_context->root_level = PT32E_ROOT_LEVEL;
  3403. reset_rsvds_bits_mask(vcpu, g_context);
  3404. g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
  3405. } else {
  3406. g_context->nx = false;
  3407. g_context->root_level = PT32_ROOT_LEVEL;
  3408. reset_rsvds_bits_mask(vcpu, g_context);
  3409. g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
  3410. }
  3411. update_permission_bitmask(vcpu, g_context, false);
  3412. update_last_pte_bitmap(vcpu, g_context);
  3413. }
  3414. static void init_kvm_mmu(struct kvm_vcpu *vcpu)
  3415. {
  3416. if (mmu_is_nested(vcpu))
  3417. init_kvm_nested_mmu(vcpu);
  3418. else if (tdp_enabled)
  3419. init_kvm_tdp_mmu(vcpu);
  3420. else
  3421. init_kvm_softmmu(vcpu);
  3422. }
  3423. void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
  3424. {
  3425. kvm_mmu_unload(vcpu);
  3426. init_kvm_mmu(vcpu);
  3427. }
  3428. EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
  3429. int kvm_mmu_load(struct kvm_vcpu *vcpu)
  3430. {
  3431. int r;
  3432. r = mmu_topup_memory_caches(vcpu);
  3433. if (r)
  3434. goto out;
  3435. r = mmu_alloc_roots(vcpu);
  3436. kvm_mmu_sync_roots(vcpu);
  3437. if (r)
  3438. goto out;
  3439. /* set_cr3() should ensure TLB has been flushed */
  3440. vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
  3441. out:
  3442. return r;
  3443. }
  3444. EXPORT_SYMBOL_GPL(kvm_mmu_load);
  3445. void kvm_mmu_unload(struct kvm_vcpu *vcpu)
  3446. {
  3447. mmu_free_roots(vcpu);
  3448. WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  3449. }
  3450. EXPORT_SYMBOL_GPL(kvm_mmu_unload);
  3451. static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
  3452. struct kvm_mmu_page *sp, u64 *spte,
  3453. const void *new)
  3454. {
  3455. if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
  3456. ++vcpu->kvm->stat.mmu_pde_zapped;
  3457. return;
  3458. }
  3459. ++vcpu->kvm->stat.mmu_pte_updated;
  3460. vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
  3461. }
  3462. static bool need_remote_flush(u64 old, u64 new)
  3463. {
  3464. if (!is_shadow_present_pte(old))
  3465. return false;
  3466. if (!is_shadow_present_pte(new))
  3467. return true;
  3468. if ((old ^ new) & PT64_BASE_ADDR_MASK)
  3469. return true;
  3470. old ^= shadow_nx_mask;
  3471. new ^= shadow_nx_mask;
  3472. return (old & ~new & PT64_PERM_MASK) != 0;
  3473. }
  3474. static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
  3475. bool remote_flush, bool local_flush)
  3476. {
  3477. if (zap_page)
  3478. return;
  3479. if (remote_flush)
  3480. kvm_flush_remote_tlbs(vcpu->kvm);
  3481. else if (local_flush)
  3482. kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
  3483. }
  3484. static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
  3485. int *bytes)
  3486. {
  3487. u64 gentry = 0;
  3488. int r;
  3489. /*
  3490. * Assume that the pte write on a page table of the same type
  3491. * as the current vcpu paging mode since we update the sptes only
  3492. * when they have the same mode.
  3493. */
  3494. if (is_pae(vcpu) && *bytes == 4) {
  3495. /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
  3496. *gpa &= ~(gpa_t)7;
  3497. *bytes = 8;
  3498. }
  3499. if (*bytes == 4 || *bytes == 8) {
  3500. r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
  3501. if (r)
  3502. gentry = 0;
  3503. }
  3504. return gentry;
  3505. }
  3506. /*
  3507. * If we're seeing too many writes to a page, it may no longer be a page table,
  3508. * or we may be forking, in which case it is better to unmap the page.
  3509. */
  3510. static bool detect_write_flooding(struct kvm_mmu_page *sp)
  3511. {
  3512. /*
  3513. * Skip write-flooding detected for the sp whose level is 1, because
  3514. * it can become unsync, then the guest page is not write-protected.
  3515. */
  3516. if (sp->role.level == PT_PAGE_TABLE_LEVEL)
  3517. return false;
  3518. return ++sp->write_flooding_count >= 3;
  3519. }
  3520. /*
  3521. * Misaligned accesses are too much trouble to fix up; also, they usually
  3522. * indicate a page is not used as a page table.
  3523. */
  3524. static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
  3525. int bytes)
  3526. {
  3527. unsigned offset, pte_size, misaligned;
  3528. pgprintk("misaligned: gpa %llx bytes %d role %x\n",
  3529. gpa, bytes, sp->role.word);
  3530. offset = offset_in_page(gpa);
  3531. pte_size = sp->role.cr4_pae ? 8 : 4;
  3532. /*
  3533. * Sometimes, the OS only writes the last one bytes to update status
  3534. * bits, for example, in linux, andb instruction is used in clear_bit().
  3535. */
  3536. if (!(offset & (pte_size - 1)) && bytes == 1)
  3537. return false;
  3538. misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
  3539. misaligned |= bytes < 4;
  3540. return misaligned;
  3541. }
  3542. static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
  3543. {
  3544. unsigned page_offset, quadrant;
  3545. u64 *spte;
  3546. int level;
  3547. page_offset = offset_in_page(gpa);
  3548. level = sp->role.level;
  3549. *nspte = 1;
  3550. if (!sp->role.cr4_pae) {
  3551. page_offset <<= 1; /* 32->64 */
  3552. /*
  3553. * A 32-bit pde maps 4MB while the shadow pdes map
  3554. * only 2MB. So we need to double the offset again
  3555. * and zap two pdes instead of one.
  3556. */
  3557. if (level == PT32_ROOT_LEVEL) {
  3558. page_offset &= ~7; /* kill rounding error */
  3559. page_offset <<= 1;
  3560. *nspte = 2;
  3561. }
  3562. quadrant = page_offset >> PAGE_SHIFT;
  3563. page_offset &= ~PAGE_MASK;
  3564. if (quadrant != sp->role.quadrant)
  3565. return NULL;
  3566. }
  3567. spte = &sp->spt[page_offset / sizeof(*spte)];
  3568. return spte;
  3569. }
  3570. void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  3571. const u8 *new, int bytes)
  3572. {
  3573. gfn_t gfn = gpa >> PAGE_SHIFT;
  3574. struct kvm_mmu_page *sp;
  3575. LIST_HEAD(invalid_list);
  3576. u64 entry, gentry, *spte;
  3577. int npte;
  3578. bool remote_flush, local_flush, zap_page;
  3579. union kvm_mmu_page_role mask = { };
  3580. mask.cr0_wp = 1;
  3581. mask.cr4_pae = 1;
  3582. mask.nxe = 1;
  3583. mask.smep_andnot_wp = 1;
  3584. mask.smap_andnot_wp = 1;
  3585. mask.smm = 1;
  3586. /*
  3587. * If we don't have indirect shadow pages, it means no page is
  3588. * write-protected, so we can exit simply.
  3589. */
  3590. if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
  3591. return;
  3592. zap_page = remote_flush = local_flush = false;
  3593. pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
  3594. /*
  3595. * No need to care whether allocation memory is successful
  3596. * or not since pte prefetch is skiped if it does not have
  3597. * enough objects in the cache.
  3598. */
  3599. mmu_topup_memory_caches(vcpu);
  3600. spin_lock(&vcpu->kvm->mmu_lock);
  3601. gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
  3602. ++vcpu->kvm->stat.mmu_pte_write;
  3603. kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
  3604. for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
  3605. if (detect_write_misaligned(sp, gpa, bytes) ||
  3606. detect_write_flooding(sp)) {
  3607. zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
  3608. &invalid_list);
  3609. ++vcpu->kvm->stat.mmu_flooded;
  3610. continue;
  3611. }
  3612. spte = get_written_sptes(sp, gpa, &npte);
  3613. if (!spte)
  3614. continue;
  3615. local_flush = true;
  3616. while (npte--) {
  3617. entry = *spte;
  3618. mmu_page_zap_pte(vcpu->kvm, sp, spte);
  3619. if (gentry &&
  3620. !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
  3621. & mask.word) && rmap_can_add(vcpu))
  3622. mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
  3623. if (need_remote_flush(entry, *spte))
  3624. remote_flush = true;
  3625. ++spte;
  3626. }
  3627. }
  3628. mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
  3629. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  3630. kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
  3631. spin_unlock(&vcpu->kvm->mmu_lock);
  3632. }
  3633. int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
  3634. {
  3635. gpa_t gpa;
  3636. int r;
  3637. if (vcpu->arch.mmu.direct_map)
  3638. return 0;
  3639. gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
  3640. r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  3641. return r;
  3642. }
  3643. EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
  3644. static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
  3645. {
  3646. LIST_HEAD(invalid_list);
  3647. if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
  3648. return;
  3649. while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
  3650. if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
  3651. break;
  3652. ++vcpu->kvm->stat.mmu_recycled;
  3653. }
  3654. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  3655. }
  3656. static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
  3657. {
  3658. if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
  3659. return vcpu_match_mmio_gpa(vcpu, addr);
  3660. return vcpu_match_mmio_gva(vcpu, addr);
  3661. }
  3662. int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
  3663. void *insn, int insn_len)
  3664. {
  3665. int r, emulation_type = EMULTYPE_RETRY;
  3666. enum emulation_result er;
  3667. r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
  3668. if (r < 0)
  3669. goto out;
  3670. if (!r) {
  3671. r = 1;
  3672. goto out;
  3673. }
  3674. if (is_mmio_page_fault(vcpu, cr2))
  3675. emulation_type = 0;
  3676. er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
  3677. switch (er) {
  3678. case EMULATE_DONE:
  3679. return 1;
  3680. case EMULATE_USER_EXIT:
  3681. ++vcpu->stat.mmio_exits;
  3682. /* fall through */
  3683. case EMULATE_FAIL:
  3684. return 0;
  3685. default:
  3686. BUG();
  3687. }
  3688. out:
  3689. return r;
  3690. }
  3691. EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
  3692. void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  3693. {
  3694. vcpu->arch.mmu.invlpg(vcpu, gva);
  3695. kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
  3696. ++vcpu->stat.invlpg;
  3697. }
  3698. EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
  3699. void kvm_enable_tdp(void)
  3700. {
  3701. tdp_enabled = true;
  3702. }
  3703. EXPORT_SYMBOL_GPL(kvm_enable_tdp);
  3704. void kvm_disable_tdp(void)
  3705. {
  3706. tdp_enabled = false;
  3707. }
  3708. EXPORT_SYMBOL_GPL(kvm_disable_tdp);
  3709. static void free_mmu_pages(struct kvm_vcpu *vcpu)
  3710. {
  3711. free_page((unsigned long)vcpu->arch.mmu.pae_root);
  3712. if (vcpu->arch.mmu.lm_root != NULL)
  3713. free_page((unsigned long)vcpu->arch.mmu.lm_root);
  3714. }
  3715. static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
  3716. {
  3717. struct page *page;
  3718. int i;
  3719. /*
  3720. * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
  3721. * Therefore we need to allocate shadow page tables in the first
  3722. * 4GB of memory, which happens to fit the DMA32 zone.
  3723. */
  3724. page = alloc_page(GFP_KERNEL | __GFP_DMA32);
  3725. if (!page)
  3726. return -ENOMEM;
  3727. vcpu->arch.mmu.pae_root = page_address(page);
  3728. for (i = 0; i < 4; ++i)
  3729. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  3730. return 0;
  3731. }
  3732. int kvm_mmu_create(struct kvm_vcpu *vcpu)
  3733. {
  3734. vcpu->arch.walk_mmu = &vcpu->arch.mmu;
  3735. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  3736. vcpu->arch.mmu.translate_gpa = translate_gpa;
  3737. vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
  3738. return alloc_mmu_pages(vcpu);
  3739. }
  3740. void kvm_mmu_setup(struct kvm_vcpu *vcpu)
  3741. {
  3742. MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  3743. init_kvm_mmu(vcpu);
  3744. }
  3745. /* The return value indicates if tlb flush on all vcpus is needed. */
  3746. typedef bool (*slot_level_handler) (struct kvm *kvm, unsigned long *rmap);
  3747. /* The caller should hold mmu-lock before calling this function. */
  3748. static __always_inline bool
  3749. slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
  3750. slot_level_handler fn, int start_level, int end_level,
  3751. gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
  3752. {
  3753. struct slot_rmap_walk_iterator iterator;
  3754. bool flush = false;
  3755. for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
  3756. end_gfn, &iterator) {
  3757. if (iterator.rmap)
  3758. flush |= fn(kvm, iterator.rmap);
  3759. if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
  3760. if (flush && lock_flush_tlb) {
  3761. kvm_flush_remote_tlbs(kvm);
  3762. flush = false;
  3763. }
  3764. cond_resched_lock(&kvm->mmu_lock);
  3765. }
  3766. }
  3767. if (flush && lock_flush_tlb) {
  3768. kvm_flush_remote_tlbs(kvm);
  3769. flush = false;
  3770. }
  3771. return flush;
  3772. }
  3773. static __always_inline bool
  3774. slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
  3775. slot_level_handler fn, int start_level, int end_level,
  3776. bool lock_flush_tlb)
  3777. {
  3778. return slot_handle_level_range(kvm, memslot, fn, start_level,
  3779. end_level, memslot->base_gfn,
  3780. memslot->base_gfn + memslot->npages - 1,
  3781. lock_flush_tlb);
  3782. }
  3783. static __always_inline bool
  3784. slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
  3785. slot_level_handler fn, bool lock_flush_tlb)
  3786. {
  3787. return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
  3788. PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
  3789. }
  3790. static __always_inline bool
  3791. slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
  3792. slot_level_handler fn, bool lock_flush_tlb)
  3793. {
  3794. return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
  3795. PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
  3796. }
  3797. static __always_inline bool
  3798. slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
  3799. slot_level_handler fn, bool lock_flush_tlb)
  3800. {
  3801. return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
  3802. PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
  3803. }
  3804. void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
  3805. {
  3806. struct kvm_memslots *slots;
  3807. struct kvm_memory_slot *memslot;
  3808. int i;
  3809. spin_lock(&kvm->mmu_lock);
  3810. for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
  3811. slots = __kvm_memslots(kvm, i);
  3812. kvm_for_each_memslot(memslot, slots) {
  3813. gfn_t start, end;
  3814. start = max(gfn_start, memslot->base_gfn);
  3815. end = min(gfn_end, memslot->base_gfn + memslot->npages);
  3816. if (start >= end)
  3817. continue;
  3818. slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
  3819. PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
  3820. start, end - 1, true);
  3821. }
  3822. }
  3823. spin_unlock(&kvm->mmu_lock);
  3824. }
  3825. static bool slot_rmap_write_protect(struct kvm *kvm, unsigned long *rmapp)
  3826. {
  3827. return __rmap_write_protect(kvm, rmapp, false);
  3828. }
  3829. void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
  3830. struct kvm_memory_slot *memslot)
  3831. {
  3832. bool flush;
  3833. spin_lock(&kvm->mmu_lock);
  3834. flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
  3835. false);
  3836. spin_unlock(&kvm->mmu_lock);
  3837. /*
  3838. * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
  3839. * which do tlb flush out of mmu-lock should be serialized by
  3840. * kvm->slots_lock otherwise tlb flush would be missed.
  3841. */
  3842. lockdep_assert_held(&kvm->slots_lock);
  3843. /*
  3844. * We can flush all the TLBs out of the mmu lock without TLB
  3845. * corruption since we just change the spte from writable to
  3846. * readonly so that we only need to care the case of changing
  3847. * spte from present to present (changing the spte from present
  3848. * to nonpresent will flush all the TLBs immediately), in other
  3849. * words, the only case we care is mmu_spte_update() where we
  3850. * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
  3851. * instead of PT_WRITABLE_MASK, that means it does not depend
  3852. * on PT_WRITABLE_MASK anymore.
  3853. */
  3854. if (flush)
  3855. kvm_flush_remote_tlbs(kvm);
  3856. }
  3857. static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
  3858. unsigned long *rmapp)
  3859. {
  3860. u64 *sptep;
  3861. struct rmap_iterator iter;
  3862. int need_tlb_flush = 0;
  3863. pfn_t pfn;
  3864. struct kvm_mmu_page *sp;
  3865. restart:
  3866. for_each_rmap_spte(rmapp, &iter, sptep) {
  3867. sp = page_header(__pa(sptep));
  3868. pfn = spte_to_pfn(*sptep);
  3869. /*
  3870. * We cannot do huge page mapping for indirect shadow pages,
  3871. * which are found on the last rmap (level = 1) when not using
  3872. * tdp; such shadow pages are synced with the page table in
  3873. * the guest, and the guest page table is using 4K page size
  3874. * mapping if the indirect sp has level = 1.
  3875. */
  3876. if (sp->role.direct &&
  3877. !kvm_is_reserved_pfn(pfn) &&
  3878. PageTransCompound(pfn_to_page(pfn))) {
  3879. drop_spte(kvm, sptep);
  3880. need_tlb_flush = 1;
  3881. goto restart;
  3882. }
  3883. }
  3884. return need_tlb_flush;
  3885. }
  3886. void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
  3887. const struct kvm_memory_slot *memslot)
  3888. {
  3889. /* FIXME: const-ify all uses of struct kvm_memory_slot. */
  3890. spin_lock(&kvm->mmu_lock);
  3891. slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
  3892. kvm_mmu_zap_collapsible_spte, true);
  3893. spin_unlock(&kvm->mmu_lock);
  3894. }
  3895. void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
  3896. struct kvm_memory_slot *memslot)
  3897. {
  3898. bool flush;
  3899. spin_lock(&kvm->mmu_lock);
  3900. flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
  3901. spin_unlock(&kvm->mmu_lock);
  3902. lockdep_assert_held(&kvm->slots_lock);
  3903. /*
  3904. * It's also safe to flush TLBs out of mmu lock here as currently this
  3905. * function is only used for dirty logging, in which case flushing TLB
  3906. * out of mmu lock also guarantees no dirty pages will be lost in
  3907. * dirty_bitmap.
  3908. */
  3909. if (flush)
  3910. kvm_flush_remote_tlbs(kvm);
  3911. }
  3912. EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
  3913. void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
  3914. struct kvm_memory_slot *memslot)
  3915. {
  3916. bool flush;
  3917. spin_lock(&kvm->mmu_lock);
  3918. flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
  3919. false);
  3920. spin_unlock(&kvm->mmu_lock);
  3921. /* see kvm_mmu_slot_remove_write_access */
  3922. lockdep_assert_held(&kvm->slots_lock);
  3923. if (flush)
  3924. kvm_flush_remote_tlbs(kvm);
  3925. }
  3926. EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
  3927. void kvm_mmu_slot_set_dirty(struct kvm *kvm,
  3928. struct kvm_memory_slot *memslot)
  3929. {
  3930. bool flush;
  3931. spin_lock(&kvm->mmu_lock);
  3932. flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
  3933. spin_unlock(&kvm->mmu_lock);
  3934. lockdep_assert_held(&kvm->slots_lock);
  3935. /* see kvm_mmu_slot_leaf_clear_dirty */
  3936. if (flush)
  3937. kvm_flush_remote_tlbs(kvm);
  3938. }
  3939. EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
  3940. #define BATCH_ZAP_PAGES 10
  3941. static void kvm_zap_obsolete_pages(struct kvm *kvm)
  3942. {
  3943. struct kvm_mmu_page *sp, *node;
  3944. int batch = 0;
  3945. restart:
  3946. list_for_each_entry_safe_reverse(sp, node,
  3947. &kvm->arch.active_mmu_pages, link) {
  3948. int ret;
  3949. /*
  3950. * No obsolete page exists before new created page since
  3951. * active_mmu_pages is the FIFO list.
  3952. */
  3953. if (!is_obsolete_sp(kvm, sp))
  3954. break;
  3955. /*
  3956. * Since we are reversely walking the list and the invalid
  3957. * list will be moved to the head, skip the invalid page
  3958. * can help us to avoid the infinity list walking.
  3959. */
  3960. if (sp->role.invalid)
  3961. continue;
  3962. /*
  3963. * Need not flush tlb since we only zap the sp with invalid
  3964. * generation number.
  3965. */
  3966. if (batch >= BATCH_ZAP_PAGES &&
  3967. cond_resched_lock(&kvm->mmu_lock)) {
  3968. batch = 0;
  3969. goto restart;
  3970. }
  3971. ret = kvm_mmu_prepare_zap_page(kvm, sp,
  3972. &kvm->arch.zapped_obsolete_pages);
  3973. batch += ret;
  3974. if (ret)
  3975. goto restart;
  3976. }
  3977. /*
  3978. * Should flush tlb before free page tables since lockless-walking
  3979. * may use the pages.
  3980. */
  3981. kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
  3982. }
  3983. /*
  3984. * Fast invalidate all shadow pages and use lock-break technique
  3985. * to zap obsolete pages.
  3986. *
  3987. * It's required when memslot is being deleted or VM is being
  3988. * destroyed, in these cases, we should ensure that KVM MMU does
  3989. * not use any resource of the being-deleted slot or all slots
  3990. * after calling the function.
  3991. */
  3992. void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
  3993. {
  3994. spin_lock(&kvm->mmu_lock);
  3995. trace_kvm_mmu_invalidate_zap_all_pages(kvm);
  3996. kvm->arch.mmu_valid_gen++;
  3997. /*
  3998. * Notify all vcpus to reload its shadow page table
  3999. * and flush TLB. Then all vcpus will switch to new
  4000. * shadow page table with the new mmu_valid_gen.
  4001. *
  4002. * Note: we should do this under the protection of
  4003. * mmu-lock, otherwise, vcpu would purge shadow page
  4004. * but miss tlb flush.
  4005. */
  4006. kvm_reload_remote_mmus(kvm);
  4007. kvm_zap_obsolete_pages(kvm);
  4008. spin_unlock(&kvm->mmu_lock);
  4009. }
  4010. static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
  4011. {
  4012. return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
  4013. }
  4014. void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, struct kvm_memslots *slots)
  4015. {
  4016. /*
  4017. * The very rare case: if the generation-number is round,
  4018. * zap all shadow pages.
  4019. */
  4020. if (unlikely((slots->generation & MMIO_GEN_MASK) == 0)) {
  4021. printk_ratelimited(KERN_DEBUG "kvm: zapping shadow pages for mmio generation wraparound\n");
  4022. kvm_mmu_invalidate_zap_all_pages(kvm);
  4023. }
  4024. }
  4025. static unsigned long
  4026. mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
  4027. {
  4028. struct kvm *kvm;
  4029. int nr_to_scan = sc->nr_to_scan;
  4030. unsigned long freed = 0;
  4031. spin_lock(&kvm_lock);
  4032. list_for_each_entry(kvm, &vm_list, vm_list) {
  4033. int idx;
  4034. LIST_HEAD(invalid_list);
  4035. /*
  4036. * Never scan more than sc->nr_to_scan VM instances.
  4037. * Will not hit this condition practically since we do not try
  4038. * to shrink more than one VM and it is very unlikely to see
  4039. * !n_used_mmu_pages so many times.
  4040. */
  4041. if (!nr_to_scan--)
  4042. break;
  4043. /*
  4044. * n_used_mmu_pages is accessed without holding kvm->mmu_lock
  4045. * here. We may skip a VM instance errorneosly, but we do not
  4046. * want to shrink a VM that only started to populate its MMU
  4047. * anyway.
  4048. */
  4049. if (!kvm->arch.n_used_mmu_pages &&
  4050. !kvm_has_zapped_obsolete_pages(kvm))
  4051. continue;
  4052. idx = srcu_read_lock(&kvm->srcu);
  4053. spin_lock(&kvm->mmu_lock);
  4054. if (kvm_has_zapped_obsolete_pages(kvm)) {
  4055. kvm_mmu_commit_zap_page(kvm,
  4056. &kvm->arch.zapped_obsolete_pages);
  4057. goto unlock;
  4058. }
  4059. if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
  4060. freed++;
  4061. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  4062. unlock:
  4063. spin_unlock(&kvm->mmu_lock);
  4064. srcu_read_unlock(&kvm->srcu, idx);
  4065. /*
  4066. * unfair on small ones
  4067. * per-vm shrinkers cry out
  4068. * sadness comes quickly
  4069. */
  4070. list_move_tail(&kvm->vm_list, &vm_list);
  4071. break;
  4072. }
  4073. spin_unlock(&kvm_lock);
  4074. return freed;
  4075. }
  4076. static unsigned long
  4077. mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
  4078. {
  4079. return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
  4080. }
  4081. static struct shrinker mmu_shrinker = {
  4082. .count_objects = mmu_shrink_count,
  4083. .scan_objects = mmu_shrink_scan,
  4084. .seeks = DEFAULT_SEEKS * 10,
  4085. };
  4086. static void mmu_destroy_caches(void)
  4087. {
  4088. if (pte_list_desc_cache)
  4089. kmem_cache_destroy(pte_list_desc_cache);
  4090. if (mmu_page_header_cache)
  4091. kmem_cache_destroy(mmu_page_header_cache);
  4092. }
  4093. int kvm_mmu_module_init(void)
  4094. {
  4095. pte_list_desc_cache = kmem_cache_create("pte_list_desc",
  4096. sizeof(struct pte_list_desc),
  4097. 0, 0, NULL);
  4098. if (!pte_list_desc_cache)
  4099. goto nomem;
  4100. mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
  4101. sizeof(struct kvm_mmu_page),
  4102. 0, 0, NULL);
  4103. if (!mmu_page_header_cache)
  4104. goto nomem;
  4105. if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
  4106. goto nomem;
  4107. register_shrinker(&mmu_shrinker);
  4108. return 0;
  4109. nomem:
  4110. mmu_destroy_caches();
  4111. return -ENOMEM;
  4112. }
  4113. /*
  4114. * Caculate mmu pages needed for kvm.
  4115. */
  4116. unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
  4117. {
  4118. unsigned int nr_mmu_pages;
  4119. unsigned int nr_pages = 0;
  4120. struct kvm_memslots *slots;
  4121. struct kvm_memory_slot *memslot;
  4122. int i;
  4123. for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
  4124. slots = __kvm_memslots(kvm, i);
  4125. kvm_for_each_memslot(memslot, slots)
  4126. nr_pages += memslot->npages;
  4127. }
  4128. nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
  4129. nr_mmu_pages = max(nr_mmu_pages,
  4130. (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
  4131. return nr_mmu_pages;
  4132. }
  4133. void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
  4134. {
  4135. kvm_mmu_unload(vcpu);
  4136. free_mmu_pages(vcpu);
  4137. mmu_free_memory_caches(vcpu);
  4138. }
  4139. void kvm_mmu_module_exit(void)
  4140. {
  4141. mmu_destroy_caches();
  4142. percpu_counter_destroy(&kvm_total_used_mmu_pages);
  4143. unregister_shrinker(&mmu_shrinker);
  4144. mmu_audit_disable();
  4145. }