mmu.h 5.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178
  1. #ifndef __KVM_X86_MMU_H
  2. #define __KVM_X86_MMU_H
  3. #include <linux/kvm_host.h>
  4. #include "kvm_cache_regs.h"
  5. #define PT64_PT_BITS 9
  6. #define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS)
  7. #define PT32_PT_BITS 10
  8. #define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS)
  9. #define PT_WRITABLE_SHIFT 1
  10. #define PT_PRESENT_MASK (1ULL << 0)
  11. #define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
  12. #define PT_USER_MASK (1ULL << 2)
  13. #define PT_PWT_MASK (1ULL << 3)
  14. #define PT_PCD_MASK (1ULL << 4)
  15. #define PT_ACCESSED_SHIFT 5
  16. #define PT_ACCESSED_MASK (1ULL << PT_ACCESSED_SHIFT)
  17. #define PT_DIRTY_SHIFT 6
  18. #define PT_DIRTY_MASK (1ULL << PT_DIRTY_SHIFT)
  19. #define PT_PAGE_SIZE_SHIFT 7
  20. #define PT_PAGE_SIZE_MASK (1ULL << PT_PAGE_SIZE_SHIFT)
  21. #define PT_PAT_MASK (1ULL << 7)
  22. #define PT_GLOBAL_MASK (1ULL << 8)
  23. #define PT64_NX_SHIFT 63
  24. #define PT64_NX_MASK (1ULL << PT64_NX_SHIFT)
  25. #define PT_PAT_SHIFT 7
  26. #define PT_DIR_PAT_SHIFT 12
  27. #define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
  28. #define PT32_DIR_PSE36_SIZE 4
  29. #define PT32_DIR_PSE36_SHIFT 13
  30. #define PT32_DIR_PSE36_MASK \
  31. (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
  32. #define PT64_ROOT_LEVEL 4
  33. #define PT32_ROOT_LEVEL 2
  34. #define PT32E_ROOT_LEVEL 3
  35. #define PT_PDPE_LEVEL 3
  36. #define PT_DIRECTORY_LEVEL 2
  37. #define PT_PAGE_TABLE_LEVEL 1
  38. #define PT_MAX_HUGEPAGE_LEVEL (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES - 1)
  39. static inline u64 rsvd_bits(int s, int e)
  40. {
  41. return ((1ULL << (e - s + 1)) - 1) << s;
  42. }
  43. void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask);
  44. void
  45. reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context);
  46. /*
  47. * Return values of handle_mmio_page_fault:
  48. * RET_MMIO_PF_EMULATE: it is a real mmio page fault, emulate the instruction
  49. * directly.
  50. * RET_MMIO_PF_INVALID: invalid spte is detected then let the real page
  51. * fault path update the mmio spte.
  52. * RET_MMIO_PF_RETRY: let CPU fault again on the address.
  53. * RET_MMIO_PF_BUG: a bug was detected (and a WARN was printed).
  54. */
  55. enum {
  56. RET_MMIO_PF_EMULATE = 1,
  57. RET_MMIO_PF_INVALID = 2,
  58. RET_MMIO_PF_RETRY = 0,
  59. RET_MMIO_PF_BUG = -1
  60. };
  61. int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct);
  62. void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu);
  63. void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly);
  64. bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu);
  65. static inline unsigned int kvm_mmu_available_pages(struct kvm *kvm)
  66. {
  67. if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
  68. return kvm->arch.n_max_mmu_pages -
  69. kvm->arch.n_used_mmu_pages;
  70. return 0;
  71. }
  72. static inline int kvm_mmu_reload(struct kvm_vcpu *vcpu)
  73. {
  74. if (likely(vcpu->arch.mmu.root_hpa != INVALID_PAGE))
  75. return 0;
  76. return kvm_mmu_load(vcpu);
  77. }
  78. static inline int is_present_gpte(unsigned long pte)
  79. {
  80. return pte & PT_PRESENT_MASK;
  81. }
  82. /*
  83. * Currently, we have two sorts of write-protection, a) the first one
  84. * write-protects guest page to sync the guest modification, b) another one is
  85. * used to sync dirty bitmap when we do KVM_GET_DIRTY_LOG. The differences
  86. * between these two sorts are:
  87. * 1) the first case clears SPTE_MMU_WRITEABLE bit.
  88. * 2) the first case requires flushing tlb immediately avoiding corrupting
  89. * shadow page table between all vcpus so it should be in the protection of
  90. * mmu-lock. And the another case does not need to flush tlb until returning
  91. * the dirty bitmap to userspace since it only write-protects the page
  92. * logged in the bitmap, that means the page in the dirty bitmap is not
  93. * missed, so it can flush tlb out of mmu-lock.
  94. *
  95. * So, there is the problem: the first case can meet the corrupted tlb caused
  96. * by another case which write-protects pages but without flush tlb
  97. * immediately. In order to making the first case be aware this problem we let
  98. * it flush tlb if we try to write-protect a spte whose SPTE_MMU_WRITEABLE bit
  99. * is set, it works since another case never touches SPTE_MMU_WRITEABLE bit.
  100. *
  101. * Anyway, whenever a spte is updated (only permission and status bits are
  102. * changed) we need to check whether the spte with SPTE_MMU_WRITEABLE becomes
  103. * readonly, if that happens, we need to flush tlb. Fortunately,
  104. * mmu_spte_update() has already handled it perfectly.
  105. *
  106. * The rules to use SPTE_MMU_WRITEABLE and PT_WRITABLE_MASK:
  107. * - if we want to see if it has writable tlb entry or if the spte can be
  108. * writable on the mmu mapping, check SPTE_MMU_WRITEABLE, this is the most
  109. * case, otherwise
  110. * - if we fix page fault on the spte or do write-protection by dirty logging,
  111. * check PT_WRITABLE_MASK.
  112. *
  113. * TODO: introduce APIs to split these two cases.
  114. */
  115. static inline int is_writable_pte(unsigned long pte)
  116. {
  117. return pte & PT_WRITABLE_MASK;
  118. }
  119. static inline bool is_write_protection(struct kvm_vcpu *vcpu)
  120. {
  121. return kvm_read_cr0_bits(vcpu, X86_CR0_WP);
  122. }
  123. /*
  124. * Will a fault with a given page-fault error code (pfec) cause a permission
  125. * fault with the given access (in ACC_* format)?
  126. */
  127. static inline bool permission_fault(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
  128. unsigned pte_access, unsigned pfec)
  129. {
  130. int cpl = kvm_x86_ops->get_cpl(vcpu);
  131. unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
  132. /*
  133. * If CPL < 3, SMAP prevention are disabled if EFLAGS.AC = 1.
  134. *
  135. * If CPL = 3, SMAP applies to all supervisor-mode data accesses
  136. * (these are implicit supervisor accesses) regardless of the value
  137. * of EFLAGS.AC.
  138. *
  139. * This computes (cpl < 3) && (rflags & X86_EFLAGS_AC), leaving
  140. * the result in X86_EFLAGS_AC. We then insert it in place of
  141. * the PFERR_RSVD_MASK bit; this bit will always be zero in pfec,
  142. * but it will be one in index if SMAP checks are being overridden.
  143. * It is important to keep this branchless.
  144. */
  145. unsigned long smap = (cpl - 3) & (rflags & X86_EFLAGS_AC);
  146. int index = (pfec >> 1) +
  147. (smap >> (X86_EFLAGS_AC_BIT - PFERR_RSVD_BIT + 1));
  148. WARN_ON(pfec & PFERR_RSVD_MASK);
  149. return (mmu->permissions[index] >> pte_access) & 1;
  150. }
  151. void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm);
  152. void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end);
  153. #endif