123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212 |
- /*---------------------------------------------------------------------------+
- | poly_tan.c |
- | |
- | Compute the tan of a FPU_REG, using a polynomial approximation. |
- | |
- | Copyright (C) 1992,1993,1994,1997,1999 |
- | W. Metzenthen, 22 Parker St, Ormond, Vic 3163, |
- | Australia. E-mail billm@melbpc.org.au |
- | |
- | |
- +---------------------------------------------------------------------------*/
- #include "exception.h"
- #include "reg_constant.h"
- #include "fpu_emu.h"
- #include "fpu_system.h"
- #include "control_w.h"
- #include "poly.h"
- #define HiPOWERop 3 /* odd poly, positive terms */
- static const unsigned long long oddplterm[HiPOWERop] = {
- 0x0000000000000000LL,
- 0x0051a1cf08fca228LL,
- 0x0000000071284ff7LL
- };
- #define HiPOWERon 2 /* odd poly, negative terms */
- static const unsigned long long oddnegterm[HiPOWERon] = {
- 0x1291a9a184244e80LL,
- 0x0000583245819c21LL
- };
- #define HiPOWERep 2 /* even poly, positive terms */
- static const unsigned long long evenplterm[HiPOWERep] = {
- 0x0e848884b539e888LL,
- 0x00003c7f18b887daLL
- };
- #define HiPOWERen 2 /* even poly, negative terms */
- static const unsigned long long evennegterm[HiPOWERen] = {
- 0xf1f0200fd51569ccLL,
- 0x003afb46105c4432LL
- };
- static const unsigned long long twothirds = 0xaaaaaaaaaaaaaaabLL;
- /*--- poly_tan() ------------------------------------------------------------+
- | |
- +---------------------------------------------------------------------------*/
- void poly_tan(FPU_REG *st0_ptr)
- {
- long int exponent;
- int invert;
- Xsig argSq, argSqSq, accumulatoro, accumulatore, accum,
- argSignif, fix_up;
- unsigned long adj;
- exponent = exponent(st0_ptr);
- #ifdef PARANOID
- if (signnegative(st0_ptr)) { /* Can't hack a number < 0.0 */
- arith_invalid(0);
- return;
- } /* Need a positive number */
- #endif /* PARANOID */
- /* Split the problem into two domains, smaller and larger than pi/4 */
- if ((exponent == 0)
- || ((exponent == -1) && (st0_ptr->sigh > 0xc90fdaa2))) {
- /* The argument is greater than (approx) pi/4 */
- invert = 1;
- accum.lsw = 0;
- XSIG_LL(accum) = significand(st0_ptr);
- if (exponent == 0) {
- /* The argument is >= 1.0 */
- /* Put the binary point at the left. */
- XSIG_LL(accum) <<= 1;
- }
- /* pi/2 in hex is: 1.921fb54442d18469 898CC51701B839A2 52049C1 */
- XSIG_LL(accum) = 0x921fb54442d18469LL - XSIG_LL(accum);
- /* This is a special case which arises due to rounding. */
- if (XSIG_LL(accum) == 0xffffffffffffffffLL) {
- FPU_settag0(TAG_Valid);
- significand(st0_ptr) = 0x8a51e04daabda360LL;
- setexponent16(st0_ptr,
- (0x41 + EXTENDED_Ebias) | SIGN_Negative);
- return;
- }
- argSignif.lsw = accum.lsw;
- XSIG_LL(argSignif) = XSIG_LL(accum);
- exponent = -1 + norm_Xsig(&argSignif);
- } else {
- invert = 0;
- argSignif.lsw = 0;
- XSIG_LL(accum) = XSIG_LL(argSignif) = significand(st0_ptr);
- if (exponent < -1) {
- /* shift the argument right by the required places */
- if (FPU_shrx(&XSIG_LL(accum), -1 - exponent) >=
- 0x80000000U)
- XSIG_LL(accum)++; /* round up */
- }
- }
- XSIG_LL(argSq) = XSIG_LL(accum);
- argSq.lsw = accum.lsw;
- mul_Xsig_Xsig(&argSq, &argSq);
- XSIG_LL(argSqSq) = XSIG_LL(argSq);
- argSqSq.lsw = argSq.lsw;
- mul_Xsig_Xsig(&argSqSq, &argSqSq);
- /* Compute the negative terms for the numerator polynomial */
- accumulatoro.msw = accumulatoro.midw = accumulatoro.lsw = 0;
- polynomial_Xsig(&accumulatoro, &XSIG_LL(argSqSq), oddnegterm,
- HiPOWERon - 1);
- mul_Xsig_Xsig(&accumulatoro, &argSq);
- negate_Xsig(&accumulatoro);
- /* Add the positive terms */
- polynomial_Xsig(&accumulatoro, &XSIG_LL(argSqSq), oddplterm,
- HiPOWERop - 1);
- /* Compute the positive terms for the denominator polynomial */
- accumulatore.msw = accumulatore.midw = accumulatore.lsw = 0;
- polynomial_Xsig(&accumulatore, &XSIG_LL(argSqSq), evenplterm,
- HiPOWERep - 1);
- mul_Xsig_Xsig(&accumulatore, &argSq);
- negate_Xsig(&accumulatore);
- /* Add the negative terms */
- polynomial_Xsig(&accumulatore, &XSIG_LL(argSqSq), evennegterm,
- HiPOWERen - 1);
- /* Multiply by arg^2 */
- mul64_Xsig(&accumulatore, &XSIG_LL(argSignif));
- mul64_Xsig(&accumulatore, &XSIG_LL(argSignif));
- /* de-normalize and divide by 2 */
- shr_Xsig(&accumulatore, -2 * (1 + exponent) + 1);
- negate_Xsig(&accumulatore); /* This does 1 - accumulator */
- /* Now find the ratio. */
- if (accumulatore.msw == 0) {
- /* accumulatoro must contain 1.0 here, (actually, 0) but it
- really doesn't matter what value we use because it will
- have negligible effect in later calculations
- */
- XSIG_LL(accum) = 0x8000000000000000LL;
- accum.lsw = 0;
- } else {
- div_Xsig(&accumulatoro, &accumulatore, &accum);
- }
- /* Multiply by 1/3 * arg^3 */
- mul64_Xsig(&accum, &XSIG_LL(argSignif));
- mul64_Xsig(&accum, &XSIG_LL(argSignif));
- mul64_Xsig(&accum, &XSIG_LL(argSignif));
- mul64_Xsig(&accum, &twothirds);
- shr_Xsig(&accum, -2 * (exponent + 1));
- /* tan(arg) = arg + accum */
- add_two_Xsig(&accum, &argSignif, &exponent);
- if (invert) {
- /* We now have the value of tan(pi_2 - arg) where pi_2 is an
- approximation for pi/2
- */
- /* The next step is to fix the answer to compensate for the
- error due to the approximation used for pi/2
- */
- /* This is (approx) delta, the error in our approx for pi/2
- (see above). It has an exponent of -65
- */
- XSIG_LL(fix_up) = 0x898cc51701b839a2LL;
- fix_up.lsw = 0;
- if (exponent == 0)
- adj = 0xffffffff; /* We want approx 1.0 here, but
- this is close enough. */
- else if (exponent > -30) {
- adj = accum.msw >> -(exponent + 1); /* tan */
- adj = mul_32_32(adj, adj); /* tan^2 */
- } else
- adj = 0;
- adj = mul_32_32(0x898cc517, adj); /* delta * tan^2 */
- fix_up.msw += adj;
- if (!(fix_up.msw & 0x80000000)) { /* did fix_up overflow ? */
- /* Yes, we need to add an msb */
- shr_Xsig(&fix_up, 1);
- fix_up.msw |= 0x80000000;
- shr_Xsig(&fix_up, 64 + exponent);
- } else
- shr_Xsig(&fix_up, 65 + exponent);
- add_two_Xsig(&accum, &fix_up, &exponent);
- /* accum now contains tan(pi/2 - arg).
- Use tan(arg) = 1.0 / tan(pi/2 - arg)
- */
- accumulatoro.lsw = accumulatoro.midw = 0;
- accumulatoro.msw = 0x80000000;
- div_Xsig(&accumulatoro, &accum, &accum);
- exponent = -exponent - 1;
- }
- /* Transfer the result */
- round_Xsig(&accum);
- FPU_settag0(TAG_Valid);
- significand(st0_ptr) = XSIG_LL(accum);
- setexponent16(st0_ptr, exponent + EXTENDED_Ebias); /* Result is positive. */
- }
|