gup.c 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403
  1. /*
  2. * Lockless get_user_pages_fast for x86
  3. *
  4. * Copyright (C) 2008 Nick Piggin
  5. * Copyright (C) 2008 Novell Inc.
  6. */
  7. #include <linux/sched.h>
  8. #include <linux/mm.h>
  9. #include <linux/vmstat.h>
  10. #include <linux/highmem.h>
  11. #include <linux/swap.h>
  12. #include <asm/pgtable.h>
  13. static inline pte_t gup_get_pte(pte_t *ptep)
  14. {
  15. #ifndef CONFIG_X86_PAE
  16. return READ_ONCE(*ptep);
  17. #else
  18. /*
  19. * With get_user_pages_fast, we walk down the pagetables without taking
  20. * any locks. For this we would like to load the pointers atomically,
  21. * but that is not possible (without expensive cmpxchg8b) on PAE. What
  22. * we do have is the guarantee that a pte will only either go from not
  23. * present to present, or present to not present or both -- it will not
  24. * switch to a completely different present page without a TLB flush in
  25. * between; something that we are blocking by holding interrupts off.
  26. *
  27. * Setting ptes from not present to present goes:
  28. * ptep->pte_high = h;
  29. * smp_wmb();
  30. * ptep->pte_low = l;
  31. *
  32. * And present to not present goes:
  33. * ptep->pte_low = 0;
  34. * smp_wmb();
  35. * ptep->pte_high = 0;
  36. *
  37. * We must ensure here that the load of pte_low sees l iff pte_high
  38. * sees h. We load pte_high *after* loading pte_low, which ensures we
  39. * don't see an older value of pte_high. *Then* we recheck pte_low,
  40. * which ensures that we haven't picked up a changed pte high. We might
  41. * have got rubbish values from pte_low and pte_high, but we are
  42. * guaranteed that pte_low will not have the present bit set *unless*
  43. * it is 'l'. And get_user_pages_fast only operates on present ptes, so
  44. * we're safe.
  45. *
  46. * gup_get_pte should not be used or copied outside gup.c without being
  47. * very careful -- it does not atomically load the pte or anything that
  48. * is likely to be useful for you.
  49. */
  50. pte_t pte;
  51. retry:
  52. pte.pte_low = ptep->pte_low;
  53. smp_rmb();
  54. pte.pte_high = ptep->pte_high;
  55. smp_rmb();
  56. if (unlikely(pte.pte_low != ptep->pte_low))
  57. goto retry;
  58. return pte;
  59. #endif
  60. }
  61. /*
  62. * The performance critical leaf functions are made noinline otherwise gcc
  63. * inlines everything into a single function which results in too much
  64. * register pressure.
  65. */
  66. static noinline int gup_pte_range(pmd_t pmd, unsigned long addr,
  67. unsigned long end, int write, struct page **pages, int *nr)
  68. {
  69. unsigned long mask;
  70. pte_t *ptep;
  71. mask = _PAGE_PRESENT|_PAGE_USER;
  72. if (write)
  73. mask |= _PAGE_RW;
  74. ptep = pte_offset_map(&pmd, addr);
  75. do {
  76. pte_t pte = gup_get_pte(ptep);
  77. struct page *page;
  78. /* Similar to the PMD case, NUMA hinting must take slow path */
  79. if (pte_protnone(pte)) {
  80. pte_unmap(ptep);
  81. return 0;
  82. }
  83. if ((pte_flags(pte) & (mask | _PAGE_SPECIAL)) != mask) {
  84. pte_unmap(ptep);
  85. return 0;
  86. }
  87. VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
  88. page = pte_page(pte);
  89. get_page(page);
  90. SetPageReferenced(page);
  91. pages[*nr] = page;
  92. (*nr)++;
  93. } while (ptep++, addr += PAGE_SIZE, addr != end);
  94. pte_unmap(ptep - 1);
  95. return 1;
  96. }
  97. static inline void get_head_page_multiple(struct page *page, int nr)
  98. {
  99. VM_BUG_ON_PAGE(page != compound_head(page), page);
  100. VM_BUG_ON_PAGE(page_count(page) == 0, page);
  101. atomic_add(nr, &page->_count);
  102. SetPageReferenced(page);
  103. }
  104. static noinline int gup_huge_pmd(pmd_t pmd, unsigned long addr,
  105. unsigned long end, int write, struct page **pages, int *nr)
  106. {
  107. unsigned long mask;
  108. struct page *head, *page;
  109. int refs;
  110. mask = _PAGE_PRESENT|_PAGE_USER;
  111. if (write)
  112. mask |= _PAGE_RW;
  113. if ((pmd_flags(pmd) & mask) != mask)
  114. return 0;
  115. /* hugepages are never "special" */
  116. VM_BUG_ON(pmd_flags(pmd) & _PAGE_SPECIAL);
  117. VM_BUG_ON(!pfn_valid(pmd_pfn(pmd)));
  118. refs = 0;
  119. head = pmd_page(pmd);
  120. page = head + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
  121. do {
  122. VM_BUG_ON_PAGE(compound_head(page) != head, page);
  123. pages[*nr] = page;
  124. if (PageTail(page))
  125. get_huge_page_tail(page);
  126. (*nr)++;
  127. page++;
  128. refs++;
  129. } while (addr += PAGE_SIZE, addr != end);
  130. get_head_page_multiple(head, refs);
  131. return 1;
  132. }
  133. static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end,
  134. int write, struct page **pages, int *nr)
  135. {
  136. unsigned long next;
  137. pmd_t *pmdp;
  138. pmdp = pmd_offset(&pud, addr);
  139. do {
  140. pmd_t pmd = *pmdp;
  141. next = pmd_addr_end(addr, end);
  142. /*
  143. * The pmd_trans_splitting() check below explains why
  144. * pmdp_splitting_flush has to flush the tlb, to stop
  145. * this gup-fast code from running while we set the
  146. * splitting bit in the pmd. Returning zero will take
  147. * the slow path that will call wait_split_huge_page()
  148. * if the pmd is still in splitting state. gup-fast
  149. * can't because it has irq disabled and
  150. * wait_split_huge_page() would never return as the
  151. * tlb flush IPI wouldn't run.
  152. */
  153. if (pmd_none(pmd) || pmd_trans_splitting(pmd))
  154. return 0;
  155. if (unlikely(pmd_large(pmd) || !pmd_present(pmd))) {
  156. /*
  157. * NUMA hinting faults need to be handled in the GUP
  158. * slowpath for accounting purposes and so that they
  159. * can be serialised against THP migration.
  160. */
  161. if (pmd_protnone(pmd))
  162. return 0;
  163. if (!gup_huge_pmd(pmd, addr, next, write, pages, nr))
  164. return 0;
  165. } else {
  166. if (!gup_pte_range(pmd, addr, next, write, pages, nr))
  167. return 0;
  168. }
  169. } while (pmdp++, addr = next, addr != end);
  170. return 1;
  171. }
  172. static noinline int gup_huge_pud(pud_t pud, unsigned long addr,
  173. unsigned long end, int write, struct page **pages, int *nr)
  174. {
  175. unsigned long mask;
  176. struct page *head, *page;
  177. int refs;
  178. mask = _PAGE_PRESENT|_PAGE_USER;
  179. if (write)
  180. mask |= _PAGE_RW;
  181. if ((pud_flags(pud) & mask) != mask)
  182. return 0;
  183. /* hugepages are never "special" */
  184. VM_BUG_ON(pud_flags(pud) & _PAGE_SPECIAL);
  185. VM_BUG_ON(!pfn_valid(pud_pfn(pud)));
  186. refs = 0;
  187. head = pud_page(pud);
  188. page = head + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
  189. do {
  190. VM_BUG_ON_PAGE(compound_head(page) != head, page);
  191. pages[*nr] = page;
  192. if (PageTail(page))
  193. get_huge_page_tail(page);
  194. (*nr)++;
  195. page++;
  196. refs++;
  197. } while (addr += PAGE_SIZE, addr != end);
  198. get_head_page_multiple(head, refs);
  199. return 1;
  200. }
  201. static int gup_pud_range(pgd_t pgd, unsigned long addr, unsigned long end,
  202. int write, struct page **pages, int *nr)
  203. {
  204. unsigned long next;
  205. pud_t *pudp;
  206. pudp = pud_offset(&pgd, addr);
  207. do {
  208. pud_t pud = *pudp;
  209. next = pud_addr_end(addr, end);
  210. if (pud_none(pud))
  211. return 0;
  212. if (unlikely(pud_large(pud))) {
  213. if (!gup_huge_pud(pud, addr, next, write, pages, nr))
  214. return 0;
  215. } else {
  216. if (!gup_pmd_range(pud, addr, next, write, pages, nr))
  217. return 0;
  218. }
  219. } while (pudp++, addr = next, addr != end);
  220. return 1;
  221. }
  222. /*
  223. * Like get_user_pages_fast() except its IRQ-safe in that it won't fall
  224. * back to the regular GUP.
  225. */
  226. int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
  227. struct page **pages)
  228. {
  229. struct mm_struct *mm = current->mm;
  230. unsigned long addr, len, end;
  231. unsigned long next;
  232. unsigned long flags;
  233. pgd_t *pgdp;
  234. int nr = 0;
  235. start &= PAGE_MASK;
  236. addr = start;
  237. len = (unsigned long) nr_pages << PAGE_SHIFT;
  238. end = start + len;
  239. if (unlikely(!access_ok(write ? VERIFY_WRITE : VERIFY_READ,
  240. (void __user *)start, len)))
  241. return 0;
  242. /*
  243. * XXX: batch / limit 'nr', to avoid large irq off latency
  244. * needs some instrumenting to determine the common sizes used by
  245. * important workloads (eg. DB2), and whether limiting the batch size
  246. * will decrease performance.
  247. *
  248. * It seems like we're in the clear for the moment. Direct-IO is
  249. * the main guy that batches up lots of get_user_pages, and even
  250. * they are limited to 64-at-a-time which is not so many.
  251. */
  252. /*
  253. * This doesn't prevent pagetable teardown, but does prevent
  254. * the pagetables and pages from being freed on x86.
  255. *
  256. * So long as we atomically load page table pointers versus teardown
  257. * (which we do on x86, with the above PAE exception), we can follow the
  258. * address down to the the page and take a ref on it.
  259. */
  260. local_irq_save(flags);
  261. pgdp = pgd_offset(mm, addr);
  262. do {
  263. pgd_t pgd = *pgdp;
  264. next = pgd_addr_end(addr, end);
  265. if (pgd_none(pgd))
  266. break;
  267. if (!gup_pud_range(pgd, addr, next, write, pages, &nr))
  268. break;
  269. } while (pgdp++, addr = next, addr != end);
  270. local_irq_restore(flags);
  271. return nr;
  272. }
  273. /**
  274. * get_user_pages_fast() - pin user pages in memory
  275. * @start: starting user address
  276. * @nr_pages: number of pages from start to pin
  277. * @write: whether pages will be written to
  278. * @pages: array that receives pointers to the pages pinned.
  279. * Should be at least nr_pages long.
  280. *
  281. * Attempt to pin user pages in memory without taking mm->mmap_sem.
  282. * If not successful, it will fall back to taking the lock and
  283. * calling get_user_pages().
  284. *
  285. * Returns number of pages pinned. This may be fewer than the number
  286. * requested. If nr_pages is 0 or negative, returns 0. If no pages
  287. * were pinned, returns -errno.
  288. */
  289. int get_user_pages_fast(unsigned long start, int nr_pages, int write,
  290. struct page **pages)
  291. {
  292. struct mm_struct *mm = current->mm;
  293. unsigned long addr, len, end;
  294. unsigned long next;
  295. pgd_t *pgdp;
  296. int nr = 0;
  297. start &= PAGE_MASK;
  298. addr = start;
  299. len = (unsigned long) nr_pages << PAGE_SHIFT;
  300. end = start + len;
  301. if (end < start)
  302. goto slow_irqon;
  303. #ifdef CONFIG_X86_64
  304. if (end >> __VIRTUAL_MASK_SHIFT)
  305. goto slow_irqon;
  306. #endif
  307. /*
  308. * XXX: batch / limit 'nr', to avoid large irq off latency
  309. * needs some instrumenting to determine the common sizes used by
  310. * important workloads (eg. DB2), and whether limiting the batch size
  311. * will decrease performance.
  312. *
  313. * It seems like we're in the clear for the moment. Direct-IO is
  314. * the main guy that batches up lots of get_user_pages, and even
  315. * they are limited to 64-at-a-time which is not so many.
  316. */
  317. /*
  318. * This doesn't prevent pagetable teardown, but does prevent
  319. * the pagetables and pages from being freed on x86.
  320. *
  321. * So long as we atomically load page table pointers versus teardown
  322. * (which we do on x86, with the above PAE exception), we can follow the
  323. * address down to the the page and take a ref on it.
  324. */
  325. local_irq_disable();
  326. pgdp = pgd_offset(mm, addr);
  327. do {
  328. pgd_t pgd = *pgdp;
  329. next = pgd_addr_end(addr, end);
  330. if (pgd_none(pgd))
  331. goto slow;
  332. if (!gup_pud_range(pgd, addr, next, write, pages, &nr))
  333. goto slow;
  334. } while (pgdp++, addr = next, addr != end);
  335. local_irq_enable();
  336. VM_BUG_ON(nr != (end - start) >> PAGE_SHIFT);
  337. return nr;
  338. {
  339. int ret;
  340. slow:
  341. local_irq_enable();
  342. slow_irqon:
  343. /* Try to get the remaining pages with get_user_pages */
  344. start += nr << PAGE_SHIFT;
  345. pages += nr;
  346. ret = get_user_pages_unlocked(current, mm, start,
  347. (end - start) >> PAGE_SHIFT,
  348. pages, write ? FOLL_WRITE : 0);
  349. /* Have to be a bit careful with return values */
  350. if (nr > 0) {
  351. if (ret < 0)
  352. ret = nr;
  353. else
  354. ret += nr;
  355. }
  356. return ret;
  357. }
  358. }