123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771 |
- #include <linux/mm.h>
- #include <linux/gfp.h>
- #include <linux/hugetlb.h>
- #include <asm/pgalloc.h>
- #include <asm/pgtable.h>
- #include <asm/tlb.h>
- #include <asm/fixmap.h>
- #include <asm/mtrr.h>
- #define PGALLOC_GFP (GFP_KERNEL | __GFP_NOTRACK | __GFP_REPEAT | __GFP_ZERO)
- #ifdef CONFIG_HIGHPTE
- #define PGALLOC_USER_GFP __GFP_HIGHMEM
- #else
- #define PGALLOC_USER_GFP 0
- #endif
- gfp_t __userpte_alloc_gfp = PGALLOC_GFP | PGALLOC_USER_GFP;
- pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
- {
- return (pte_t *)__get_free_page(PGALLOC_GFP);
- }
- pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
- {
- struct page *pte;
- pte = alloc_pages(__userpte_alloc_gfp, 0);
- if (!pte)
- return NULL;
- if (!pgtable_page_ctor(pte)) {
- __free_page(pte);
- return NULL;
- }
- return pte;
- }
- static int __init setup_userpte(char *arg)
- {
- if (!arg)
- return -EINVAL;
- /*
- * "userpte=nohigh" disables allocation of user pagetables in
- * high memory.
- */
- if (strcmp(arg, "nohigh") == 0)
- __userpte_alloc_gfp &= ~__GFP_HIGHMEM;
- else
- return -EINVAL;
- return 0;
- }
- early_param("userpte", setup_userpte);
- void ___pte_free_tlb(struct mmu_gather *tlb, struct page *pte)
- {
- pgtable_page_dtor(pte);
- paravirt_release_pte(page_to_pfn(pte));
- tlb_remove_page(tlb, pte);
- }
- #if CONFIG_PGTABLE_LEVELS > 2
- void ___pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd)
- {
- struct page *page = virt_to_page(pmd);
- paravirt_release_pmd(__pa(pmd) >> PAGE_SHIFT);
- /*
- * NOTE! For PAE, any changes to the top page-directory-pointer-table
- * entries need a full cr3 reload to flush.
- */
- #ifdef CONFIG_X86_PAE
- tlb->need_flush_all = 1;
- #endif
- pgtable_pmd_page_dtor(page);
- tlb_remove_page(tlb, page);
- }
- #if CONFIG_PGTABLE_LEVELS > 3
- void ___pud_free_tlb(struct mmu_gather *tlb, pud_t *pud)
- {
- paravirt_release_pud(__pa(pud) >> PAGE_SHIFT);
- tlb_remove_page(tlb, virt_to_page(pud));
- }
- #endif /* CONFIG_PGTABLE_LEVELS > 3 */
- #endif /* CONFIG_PGTABLE_LEVELS > 2 */
- static inline void pgd_list_add(pgd_t *pgd)
- {
- struct page *page = virt_to_page(pgd);
- list_add(&page->lru, &pgd_list);
- }
- static inline void pgd_list_del(pgd_t *pgd)
- {
- struct page *page = virt_to_page(pgd);
- list_del(&page->lru);
- }
- #define UNSHARED_PTRS_PER_PGD \
- (SHARED_KERNEL_PMD ? KERNEL_PGD_BOUNDARY : PTRS_PER_PGD)
- static void pgd_set_mm(pgd_t *pgd, struct mm_struct *mm)
- {
- BUILD_BUG_ON(sizeof(virt_to_page(pgd)->index) < sizeof(mm));
- virt_to_page(pgd)->index = (pgoff_t)mm;
- }
- struct mm_struct *pgd_page_get_mm(struct page *page)
- {
- return (struct mm_struct *)page->index;
- }
- static void pgd_ctor(struct mm_struct *mm, pgd_t *pgd)
- {
- /* If the pgd points to a shared pagetable level (either the
- ptes in non-PAE, or shared PMD in PAE), then just copy the
- references from swapper_pg_dir. */
- if (CONFIG_PGTABLE_LEVELS == 2 ||
- (CONFIG_PGTABLE_LEVELS == 3 && SHARED_KERNEL_PMD) ||
- CONFIG_PGTABLE_LEVELS == 4) {
- clone_pgd_range(pgd + KERNEL_PGD_BOUNDARY,
- swapper_pg_dir + KERNEL_PGD_BOUNDARY,
- KERNEL_PGD_PTRS);
- }
- /* list required to sync kernel mapping updates */
- if (!SHARED_KERNEL_PMD) {
- pgd_set_mm(pgd, mm);
- pgd_list_add(pgd);
- }
- }
- static void pgd_dtor(pgd_t *pgd)
- {
- if (SHARED_KERNEL_PMD)
- return;
- spin_lock(&pgd_lock);
- pgd_list_del(pgd);
- spin_unlock(&pgd_lock);
- }
- /*
- * List of all pgd's needed for non-PAE so it can invalidate entries
- * in both cached and uncached pgd's; not needed for PAE since the
- * kernel pmd is shared. If PAE were not to share the pmd a similar
- * tactic would be needed. This is essentially codepath-based locking
- * against pageattr.c; it is the unique case in which a valid change
- * of kernel pagetables can't be lazily synchronized by vmalloc faults.
- * vmalloc faults work because attached pagetables are never freed.
- * -- nyc
- */
- #ifdef CONFIG_X86_PAE
- /*
- * In PAE mode, we need to do a cr3 reload (=tlb flush) when
- * updating the top-level pagetable entries to guarantee the
- * processor notices the update. Since this is expensive, and
- * all 4 top-level entries are used almost immediately in a
- * new process's life, we just pre-populate them here.
- *
- * Also, if we're in a paravirt environment where the kernel pmd is
- * not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate
- * and initialize the kernel pmds here.
- */
- #define PREALLOCATED_PMDS UNSHARED_PTRS_PER_PGD
- void pud_populate(struct mm_struct *mm, pud_t *pudp, pmd_t *pmd)
- {
- paravirt_alloc_pmd(mm, __pa(pmd) >> PAGE_SHIFT);
- /* Note: almost everything apart from _PAGE_PRESENT is
- reserved at the pmd (PDPT) level. */
- set_pud(pudp, __pud(__pa(pmd) | _PAGE_PRESENT));
- /*
- * According to Intel App note "TLBs, Paging-Structure Caches,
- * and Their Invalidation", April 2007, document 317080-001,
- * section 8.1: in PAE mode we explicitly have to flush the
- * TLB via cr3 if the top-level pgd is changed...
- */
- flush_tlb_mm(mm);
- }
- #else /* !CONFIG_X86_PAE */
- /* No need to prepopulate any pagetable entries in non-PAE modes. */
- #define PREALLOCATED_PMDS 0
- #endif /* CONFIG_X86_PAE */
- static void free_pmds(struct mm_struct *mm, pmd_t *pmds[])
- {
- int i;
- for(i = 0; i < PREALLOCATED_PMDS; i++)
- if (pmds[i]) {
- pgtable_pmd_page_dtor(virt_to_page(pmds[i]));
- free_page((unsigned long)pmds[i]);
- mm_dec_nr_pmds(mm);
- }
- }
- static int preallocate_pmds(struct mm_struct *mm, pmd_t *pmds[])
- {
- int i;
- bool failed = false;
- for(i = 0; i < PREALLOCATED_PMDS; i++) {
- pmd_t *pmd = (pmd_t *)__get_free_page(PGALLOC_GFP);
- if (!pmd)
- failed = true;
- if (pmd && !pgtable_pmd_page_ctor(virt_to_page(pmd))) {
- free_page((unsigned long)pmd);
- pmd = NULL;
- failed = true;
- }
- if (pmd)
- mm_inc_nr_pmds(mm);
- pmds[i] = pmd;
- }
- if (failed) {
- free_pmds(mm, pmds);
- return -ENOMEM;
- }
- return 0;
- }
- /*
- * Mop up any pmd pages which may still be attached to the pgd.
- * Normally they will be freed by munmap/exit_mmap, but any pmd we
- * preallocate which never got a corresponding vma will need to be
- * freed manually.
- */
- static void pgd_mop_up_pmds(struct mm_struct *mm, pgd_t *pgdp)
- {
- int i;
- for(i = 0; i < PREALLOCATED_PMDS; i++) {
- pgd_t pgd = pgdp[i];
- if (pgd_val(pgd) != 0) {
- pmd_t *pmd = (pmd_t *)pgd_page_vaddr(pgd);
- pgdp[i] = native_make_pgd(0);
- paravirt_release_pmd(pgd_val(pgd) >> PAGE_SHIFT);
- pmd_free(mm, pmd);
- mm_dec_nr_pmds(mm);
- }
- }
- }
- static void pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd, pmd_t *pmds[])
- {
- pud_t *pud;
- int i;
- if (PREALLOCATED_PMDS == 0) /* Work around gcc-3.4.x bug */
- return;
- pud = pud_offset(pgd, 0);
- for (i = 0; i < PREALLOCATED_PMDS; i++, pud++) {
- pmd_t *pmd = pmds[i];
- if (i >= KERNEL_PGD_BOUNDARY)
- memcpy(pmd, (pmd_t *)pgd_page_vaddr(swapper_pg_dir[i]),
- sizeof(pmd_t) * PTRS_PER_PMD);
- pud_populate(mm, pud, pmd);
- }
- }
- /*
- * Xen paravirt assumes pgd table should be in one page. 64 bit kernel also
- * assumes that pgd should be in one page.
- *
- * But kernel with PAE paging that is not running as a Xen domain
- * only needs to allocate 32 bytes for pgd instead of one page.
- */
- #ifdef CONFIG_X86_PAE
- #include <linux/slab.h>
- #define PGD_SIZE (PTRS_PER_PGD * sizeof(pgd_t))
- #define PGD_ALIGN 32
- static struct kmem_cache *pgd_cache;
- static int __init pgd_cache_init(void)
- {
- /*
- * When PAE kernel is running as a Xen domain, it does not use
- * shared kernel pmd. And this requires a whole page for pgd.
- */
- if (!SHARED_KERNEL_PMD)
- return 0;
- /*
- * when PAE kernel is not running as a Xen domain, it uses
- * shared kernel pmd. Shared kernel pmd does not require a whole
- * page for pgd. We are able to just allocate a 32-byte for pgd.
- * During boot time, we create a 32-byte slab for pgd table allocation.
- */
- pgd_cache = kmem_cache_create("pgd_cache", PGD_SIZE, PGD_ALIGN,
- SLAB_PANIC, NULL);
- if (!pgd_cache)
- return -ENOMEM;
- return 0;
- }
- core_initcall(pgd_cache_init);
- static inline pgd_t *_pgd_alloc(void)
- {
- /*
- * If no SHARED_KERNEL_PMD, PAE kernel is running as a Xen domain.
- * We allocate one page for pgd.
- */
- if (!SHARED_KERNEL_PMD)
- return (pgd_t *)__get_free_page(PGALLOC_GFP);
- /*
- * Now PAE kernel is not running as a Xen domain. We can allocate
- * a 32-byte slab for pgd to save memory space.
- */
- return kmem_cache_alloc(pgd_cache, PGALLOC_GFP);
- }
- static inline void _pgd_free(pgd_t *pgd)
- {
- if (!SHARED_KERNEL_PMD)
- free_page((unsigned long)pgd);
- else
- kmem_cache_free(pgd_cache, pgd);
- }
- #else
- /*
- * Instead of one pgd, Kaiser acquires two pgds. Being order-1, it is
- * both 8k in size and 8k-aligned. That lets us just flip bit 12
- * in a pointer to swap between the two 4k halves.
- */
- #define PGD_ALLOCATION_ORDER kaiser_enabled
- static inline pgd_t *_pgd_alloc(void)
- {
- /* No __GFP_REPEAT: to avoid page allocation stalls in order-1 case */
- return (pgd_t *)__get_free_pages(PGALLOC_GFP & ~__GFP_REPEAT,
- PGD_ALLOCATION_ORDER);
- }
- static inline void _pgd_free(pgd_t *pgd)
- {
- free_pages((unsigned long)pgd, PGD_ALLOCATION_ORDER);
- }
- #endif /* CONFIG_X86_PAE */
- pgd_t *pgd_alloc(struct mm_struct *mm)
- {
- pgd_t *pgd;
- pmd_t *pmds[PREALLOCATED_PMDS];
- pgd = _pgd_alloc();
- if (pgd == NULL)
- goto out;
- mm->pgd = pgd;
- if (preallocate_pmds(mm, pmds) != 0)
- goto out_free_pgd;
- if (paravirt_pgd_alloc(mm) != 0)
- goto out_free_pmds;
- /*
- * Make sure that pre-populating the pmds is atomic with
- * respect to anything walking the pgd_list, so that they
- * never see a partially populated pgd.
- */
- spin_lock(&pgd_lock);
- pgd_ctor(mm, pgd);
- pgd_prepopulate_pmd(mm, pgd, pmds);
- spin_unlock(&pgd_lock);
- return pgd;
- out_free_pmds:
- free_pmds(mm, pmds);
- out_free_pgd:
- _pgd_free(pgd);
- out:
- return NULL;
- }
- void pgd_free(struct mm_struct *mm, pgd_t *pgd)
- {
- pgd_mop_up_pmds(mm, pgd);
- pgd_dtor(pgd);
- paravirt_pgd_free(mm, pgd);
- _pgd_free(pgd);
- }
- /*
- * Used to set accessed or dirty bits in the page table entries
- * on other architectures. On x86, the accessed and dirty bits
- * are tracked by hardware. However, do_wp_page calls this function
- * to also make the pte writeable at the same time the dirty bit is
- * set. In that case we do actually need to write the PTE.
- */
- int ptep_set_access_flags(struct vm_area_struct *vma,
- unsigned long address, pte_t *ptep,
- pte_t entry, int dirty)
- {
- int changed = !pte_same(*ptep, entry);
- if (changed && dirty) {
- *ptep = entry;
- pte_update_defer(vma->vm_mm, address, ptep);
- }
- return changed;
- }
- #ifdef CONFIG_TRANSPARENT_HUGEPAGE
- int pmdp_set_access_flags(struct vm_area_struct *vma,
- unsigned long address, pmd_t *pmdp,
- pmd_t entry, int dirty)
- {
- int changed = !pmd_same(*pmdp, entry);
- VM_BUG_ON(address & ~HPAGE_PMD_MASK);
- if (changed && dirty) {
- *pmdp = entry;
- pmd_update_defer(vma->vm_mm, address, pmdp);
- /*
- * We had a write-protection fault here and changed the pmd
- * to to more permissive. No need to flush the TLB for that,
- * #PF is architecturally guaranteed to do that and in the
- * worst-case we'll generate a spurious fault.
- */
- }
- return changed;
- }
- #endif
- int ptep_test_and_clear_young(struct vm_area_struct *vma,
- unsigned long addr, pte_t *ptep)
- {
- int ret = 0;
- if (pte_young(*ptep))
- ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
- (unsigned long *) &ptep->pte);
- if (ret)
- pte_update(vma->vm_mm, addr, ptep);
- return ret;
- }
- #ifdef CONFIG_TRANSPARENT_HUGEPAGE
- int pmdp_test_and_clear_young(struct vm_area_struct *vma,
- unsigned long addr, pmd_t *pmdp)
- {
- int ret = 0;
- if (pmd_young(*pmdp))
- ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
- (unsigned long *)pmdp);
- if (ret)
- pmd_update(vma->vm_mm, addr, pmdp);
- return ret;
- }
- #endif
- int ptep_clear_flush_young(struct vm_area_struct *vma,
- unsigned long address, pte_t *ptep)
- {
- /*
- * On x86 CPUs, clearing the accessed bit without a TLB flush
- * doesn't cause data corruption. [ It could cause incorrect
- * page aging and the (mistaken) reclaim of hot pages, but the
- * chance of that should be relatively low. ]
- *
- * So as a performance optimization don't flush the TLB when
- * clearing the accessed bit, it will eventually be flushed by
- * a context switch or a VM operation anyway. [ In the rare
- * event of it not getting flushed for a long time the delay
- * shouldn't really matter because there's no real memory
- * pressure for swapout to react to. ]
- */
- return ptep_test_and_clear_young(vma, address, ptep);
- }
- #ifdef CONFIG_TRANSPARENT_HUGEPAGE
- int pmdp_clear_flush_young(struct vm_area_struct *vma,
- unsigned long address, pmd_t *pmdp)
- {
- int young;
- VM_BUG_ON(address & ~HPAGE_PMD_MASK);
- young = pmdp_test_and_clear_young(vma, address, pmdp);
- if (young)
- flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
- return young;
- }
- void pmdp_splitting_flush(struct vm_area_struct *vma,
- unsigned long address, pmd_t *pmdp)
- {
- int set;
- VM_BUG_ON(address & ~HPAGE_PMD_MASK);
- set = !test_and_set_bit(_PAGE_BIT_SPLITTING,
- (unsigned long *)pmdp);
- if (set) {
- pmd_update(vma->vm_mm, address, pmdp);
- /* need tlb flush only to serialize against gup-fast */
- flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
- }
- }
- #endif
- /**
- * reserve_top_address - reserves a hole in the top of kernel address space
- * @reserve - size of hole to reserve
- *
- * Can be used to relocate the fixmap area and poke a hole in the top
- * of kernel address space to make room for a hypervisor.
- */
- void __init reserve_top_address(unsigned long reserve)
- {
- #ifdef CONFIG_X86_32
- BUG_ON(fixmaps_set > 0);
- __FIXADDR_TOP = round_down(-reserve, 1 << PMD_SHIFT) - PAGE_SIZE;
- printk(KERN_INFO "Reserving virtual address space above 0x%08lx (rounded to 0x%08lx)\n",
- -reserve, __FIXADDR_TOP + PAGE_SIZE);
- #endif
- }
- int fixmaps_set;
- void __native_set_fixmap(enum fixed_addresses idx, pte_t pte)
- {
- unsigned long address = __fix_to_virt(idx);
- if (idx >= __end_of_fixed_addresses) {
- BUG();
- return;
- }
- set_pte_vaddr(address, pte);
- fixmaps_set++;
- }
- void native_set_fixmap(enum fixed_addresses idx, phys_addr_t phys,
- pgprot_t flags)
- {
- __native_set_fixmap(idx, pfn_pte(phys >> PAGE_SHIFT, flags));
- }
- #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
- /**
- * pud_set_huge - setup kernel PUD mapping
- *
- * MTRRs can override PAT memory types with 4KiB granularity. Therefore, this
- * function sets up a huge page only if any of the following conditions are met:
- *
- * - MTRRs are disabled, or
- *
- * - MTRRs are enabled and the range is completely covered by a single MTRR, or
- *
- * - MTRRs are enabled and the corresponding MTRR memory type is WB, which
- * has no effect on the requested PAT memory type.
- *
- * Callers should try to decrease page size (1GB -> 2MB -> 4K) if the bigger
- * page mapping attempt fails.
- *
- * Returns 1 on success and 0 on failure.
- */
- int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
- {
- u8 mtrr, uniform;
- mtrr = mtrr_type_lookup(addr, addr + PUD_SIZE, &uniform);
- if ((mtrr != MTRR_TYPE_INVALID) && (!uniform) &&
- (mtrr != MTRR_TYPE_WRBACK))
- return 0;
- /* Bail out if we are we on a populated non-leaf entry: */
- if (pud_present(*pud) && !pud_huge(*pud))
- return 0;
- prot = pgprot_4k_2_large(prot);
- set_pte((pte_t *)pud, pfn_pte(
- (u64)addr >> PAGE_SHIFT,
- __pgprot(pgprot_val(prot) | _PAGE_PSE)));
- return 1;
- }
- /**
- * pmd_set_huge - setup kernel PMD mapping
- *
- * See text over pud_set_huge() above.
- *
- * Returns 1 on success and 0 on failure.
- */
- int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
- {
- u8 mtrr, uniform;
- mtrr = mtrr_type_lookup(addr, addr + PMD_SIZE, &uniform);
- if ((mtrr != MTRR_TYPE_INVALID) && (!uniform) &&
- (mtrr != MTRR_TYPE_WRBACK)) {
- pr_warn_once("%s: Cannot satisfy [mem %#010llx-%#010llx] with a huge-page mapping due to MTRR override.\n",
- __func__, addr, addr + PMD_SIZE);
- return 0;
- }
- /* Bail out if we are we on a populated non-leaf entry: */
- if (pmd_present(*pmd) && !pmd_huge(*pmd))
- return 0;
- prot = pgprot_4k_2_large(prot);
- set_pte((pte_t *)pmd, pfn_pte(
- (u64)addr >> PAGE_SHIFT,
- __pgprot(pgprot_val(prot) | _PAGE_PSE)));
- return 1;
- }
- /**
- * pud_clear_huge - clear kernel PUD mapping when it is set
- *
- * Returns 1 on success and 0 on failure (no PUD map is found).
- */
- int pud_clear_huge(pud_t *pud)
- {
- if (pud_large(*pud)) {
- pud_clear(pud);
- return 1;
- }
- return 0;
- }
- /**
- * pmd_clear_huge - clear kernel PMD mapping when it is set
- *
- * Returns 1 on success and 0 on failure (no PMD map is found).
- */
- int pmd_clear_huge(pmd_t *pmd)
- {
- if (pmd_large(*pmd)) {
- pmd_clear(pmd);
- return 1;
- }
- return 0;
- }
- #ifdef CONFIG_X86_64
- /**
- * pud_free_pmd_page - Clear pud entry and free pmd page.
- * @pud: Pointer to a PUD.
- * @addr: Virtual address associated with pud.
- *
- * Context: The pud range has been unmapped and TLB purged.
- * Return: 1 if clearing the entry succeeded. 0 otherwise.
- *
- * NOTE: Callers must allow a single page allocation.
- */
- int pud_free_pmd_page(pud_t *pud, unsigned long addr)
- {
- pmd_t *pmd, *pmd_sv;
- pte_t *pte;
- int i;
- if (pud_none(*pud))
- return 1;
- pmd = (pmd_t *)pud_page_vaddr(*pud);
- pmd_sv = (pmd_t *)__get_free_page(GFP_KERNEL);
- if (!pmd_sv)
- return 0;
- for (i = 0; i < PTRS_PER_PMD; i++) {
- pmd_sv[i] = pmd[i];
- if (!pmd_none(pmd[i]))
- pmd_clear(&pmd[i]);
- }
- pud_clear(pud);
- /* INVLPG to clear all paging-structure caches */
- flush_tlb_kernel_range(addr, addr + PAGE_SIZE-1);
- for (i = 0; i < PTRS_PER_PMD; i++) {
- if (!pmd_none(pmd_sv[i])) {
- pte = (pte_t *)pmd_page_vaddr(pmd_sv[i]);
- free_page((unsigned long)pte);
- }
- }
- free_page((unsigned long)pmd_sv);
- free_page((unsigned long)pmd);
- return 1;
- }
- /**
- * pmd_free_pte_page - Clear pmd entry and free pte page.
- * @pmd: Pointer to a PMD.
- * @addr: Virtual address associated with pmd.
- *
- * Context: The pmd range has been unmapped and TLB purged.
- * Return: 1 if clearing the entry succeeded. 0 otherwise.
- */
- int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
- {
- pte_t *pte;
- if (pmd_none(*pmd))
- return 1;
- pte = (pte_t *)pmd_page_vaddr(*pmd);
- pmd_clear(pmd);
- /* INVLPG to clear all paging-structure caches */
- flush_tlb_kernel_range(addr, addr + PAGE_SIZE-1);
- free_page((unsigned long)pte);
- return 1;
- }
- #else /* !CONFIG_X86_64 */
- int pud_free_pmd_page(pud_t *pud, unsigned long addr)
- {
- return pud_none(*pud);
- }
- /*
- * Disable free page handling on x86-PAE. This assures that ioremap()
- * does not update sync'd pmd entries. See vmalloc_sync_one().
- */
- int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
- {
- return pmd_none(*pmd);
- }
- #endif /* CONFIG_X86_64 */
- #endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */
|