123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478 |
- #include <linux/init.h>
- #include <linux/mm.h>
- #include <linux/spinlock.h>
- #include <linux/smp.h>
- #include <linux/interrupt.h>
- #include <linux/module.h>
- #include <linux/cpu.h>
- #include <linux/debugfs.h>
- #include <asm/tlbflush.h>
- #include <asm/mmu_context.h>
- #include <asm/nospec-branch.h>
- #include <asm/cache.h>
- #include <asm/apic.h>
- #include <asm/uv/uv.h>
- #include <asm/kaiser.h>
- /*
- * TLB flushing, formerly SMP-only
- * c/o Linus Torvalds.
- *
- * These mean you can really definitely utterly forget about
- * writing to user space from interrupts. (Its not allowed anyway).
- *
- * Optimizations Manfred Spraul <manfred@colorfullife.com>
- *
- * More scalable flush, from Andi Kleen
- *
- * Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
- */
- atomic64_t last_mm_ctx_id = ATOMIC64_INIT(1);
- struct flush_tlb_info {
- struct mm_struct *flush_mm;
- unsigned long flush_start;
- unsigned long flush_end;
- };
- static void load_new_mm_cr3(pgd_t *pgdir)
- {
- unsigned long new_mm_cr3 = __pa(pgdir);
- if (kaiser_enabled) {
- /*
- * We reuse the same PCID for different tasks, so we must
- * flush all the entries for the PCID out when we change tasks.
- * Flush KERN below, flush USER when returning to userspace in
- * kaiser's SWITCH_USER_CR3 (_SWITCH_TO_USER_CR3) macro.
- *
- * invpcid_flush_single_context(X86_CR3_PCID_ASID_USER) could
- * do it here, but can only be used if X86_FEATURE_INVPCID is
- * available - and many machines support pcid without invpcid.
- *
- * If X86_CR3_PCID_KERN_FLUSH actually added something, then it
- * would be needed in the write_cr3() below - if PCIDs enabled.
- */
- BUILD_BUG_ON(X86_CR3_PCID_KERN_FLUSH);
- kaiser_flush_tlb_on_return_to_user();
- }
- /*
- * Caution: many callers of this function expect
- * that load_cr3() is serializing and orders TLB
- * fills with respect to the mm_cpumask writes.
- */
- write_cr3(new_mm_cr3);
- }
- /*
- * We cannot call mmdrop() because we are in interrupt context,
- * instead update mm->cpu_vm_mask.
- */
- void leave_mm(int cpu)
- {
- struct mm_struct *active_mm = this_cpu_read(cpu_tlbstate.active_mm);
- if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_OK)
- BUG();
- if (cpumask_test_cpu(cpu, mm_cpumask(active_mm))) {
- cpumask_clear_cpu(cpu, mm_cpumask(active_mm));
- load_new_mm_cr3(swapper_pg_dir);
- /*
- * This gets called in the idle path where RCU
- * functions differently. Tracing normally
- * uses RCU, so we have to call the tracepoint
- * specially here.
- */
- trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
- }
- }
- EXPORT_SYMBOL_GPL(leave_mm);
- void switch_mm(struct mm_struct *prev, struct mm_struct *next,
- struct task_struct *tsk)
- {
- unsigned long flags;
- local_irq_save(flags);
- switch_mm_irqs_off(prev, next, tsk);
- local_irq_restore(flags);
- }
- void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
- struct task_struct *tsk)
- {
- unsigned cpu = smp_processor_id();
- if (likely(prev != next)) {
- u64 last_ctx_id = this_cpu_read(cpu_tlbstate.last_ctx_id);
- /*
- * Avoid user/user BTB poisoning by flushing the branch
- * predictor when switching between processes. This stops
- * one process from doing Spectre-v2 attacks on another.
- *
- * As an optimization, flush indirect branches only when
- * switching into processes that disable dumping. This
- * protects high value processes like gpg, without having
- * too high performance overhead. IBPB is *expensive*!
- *
- * This will not flush branches when switching into kernel
- * threads. It will also not flush if we switch to idle
- * thread and back to the same process. It will flush if we
- * switch to a different non-dumpable process.
- */
- if (tsk && tsk->mm &&
- tsk->mm->context.ctx_id != last_ctx_id &&
- get_dumpable(tsk->mm) != SUID_DUMP_USER)
- indirect_branch_prediction_barrier();
- /*
- * Record last user mm's context id, so we can avoid
- * flushing branch buffer with IBPB if we switch back
- * to the same user.
- */
- if (next != &init_mm)
- this_cpu_write(cpu_tlbstate.last_ctx_id, next->context.ctx_id);
- this_cpu_write(cpu_tlbstate.state, TLBSTATE_OK);
- this_cpu_write(cpu_tlbstate.active_mm, next);
- cpumask_set_cpu(cpu, mm_cpumask(next));
- /*
- * Re-load page tables.
- *
- * This logic has an ordering constraint:
- *
- * CPU 0: Write to a PTE for 'next'
- * CPU 0: load bit 1 in mm_cpumask. if nonzero, send IPI.
- * CPU 1: set bit 1 in next's mm_cpumask
- * CPU 1: load from the PTE that CPU 0 writes (implicit)
- *
- * We need to prevent an outcome in which CPU 1 observes
- * the new PTE value and CPU 0 observes bit 1 clear in
- * mm_cpumask. (If that occurs, then the IPI will never
- * be sent, and CPU 0's TLB will contain a stale entry.)
- *
- * The bad outcome can occur if either CPU's load is
- * reordered before that CPU's store, so both CPUs must
- * execute full barriers to prevent this from happening.
- *
- * Thus, switch_mm needs a full barrier between the
- * store to mm_cpumask and any operation that could load
- * from next->pgd. TLB fills are special and can happen
- * due to instruction fetches or for no reason at all,
- * and neither LOCK nor MFENCE orders them.
- * Fortunately, load_cr3() is serializing and gives the
- * ordering guarantee we need.
- *
- */
- load_new_mm_cr3(next->pgd);
- trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
- /* Stop flush ipis for the previous mm */
- cpumask_clear_cpu(cpu, mm_cpumask(prev));
- /* Load per-mm CR4 state */
- load_mm_cr4(next);
- #ifdef CONFIG_MODIFY_LDT_SYSCALL
- /*
- * Load the LDT, if the LDT is different.
- *
- * It's possible that prev->context.ldt doesn't match
- * the LDT register. This can happen if leave_mm(prev)
- * was called and then modify_ldt changed
- * prev->context.ldt but suppressed an IPI to this CPU.
- * In this case, prev->context.ldt != NULL, because we
- * never set context.ldt to NULL while the mm still
- * exists. That means that next->context.ldt !=
- * prev->context.ldt, because mms never share an LDT.
- */
- if (unlikely(prev->context.ldt != next->context.ldt))
- load_mm_ldt(next);
- #endif
- } else {
- this_cpu_write(cpu_tlbstate.state, TLBSTATE_OK);
- BUG_ON(this_cpu_read(cpu_tlbstate.active_mm) != next);
- if (!cpumask_test_cpu(cpu, mm_cpumask(next))) {
- /*
- * On established mms, the mm_cpumask is only changed
- * from irq context, from ptep_clear_flush() while in
- * lazy tlb mode, and here. Irqs are blocked during
- * schedule, protecting us from simultaneous changes.
- */
- cpumask_set_cpu(cpu, mm_cpumask(next));
- /*
- * We were in lazy tlb mode and leave_mm disabled
- * tlb flush IPI delivery. We must reload CR3
- * to make sure to use no freed page tables.
- *
- * As above, load_cr3() is serializing and orders TLB
- * fills with respect to the mm_cpumask write.
- */
- load_new_mm_cr3(next->pgd);
- trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
- load_mm_cr4(next);
- load_mm_ldt(next);
- }
- }
- }
- /*
- * The flush IPI assumes that a thread switch happens in this order:
- * [cpu0: the cpu that switches]
- * 1) switch_mm() either 1a) or 1b)
- * 1a) thread switch to a different mm
- * 1a1) set cpu_tlbstate to TLBSTATE_OK
- * Now the tlb flush NMI handler flush_tlb_func won't call leave_mm
- * if cpu0 was in lazy tlb mode.
- * 1a2) update cpu active_mm
- * Now cpu0 accepts tlb flushes for the new mm.
- * 1a3) cpu_set(cpu, new_mm->cpu_vm_mask);
- * Now the other cpus will send tlb flush ipis.
- * 1a4) change cr3.
- * 1a5) cpu_clear(cpu, old_mm->cpu_vm_mask);
- * Stop ipi delivery for the old mm. This is not synchronized with
- * the other cpus, but flush_tlb_func ignore flush ipis for the wrong
- * mm, and in the worst case we perform a superfluous tlb flush.
- * 1b) thread switch without mm change
- * cpu active_mm is correct, cpu0 already handles flush ipis.
- * 1b1) set cpu_tlbstate to TLBSTATE_OK
- * 1b2) test_and_set the cpu bit in cpu_vm_mask.
- * Atomically set the bit [other cpus will start sending flush ipis],
- * and test the bit.
- * 1b3) if the bit was 0: leave_mm was called, flush the tlb.
- * 2) switch %%esp, ie current
- *
- * The interrupt must handle 2 special cases:
- * - cr3 is changed before %%esp, ie. it cannot use current->{active_,}mm.
- * - the cpu performs speculative tlb reads, i.e. even if the cpu only
- * runs in kernel space, the cpu could load tlb entries for user space
- * pages.
- *
- * The good news is that cpu_tlbstate is local to each cpu, no
- * write/read ordering problems.
- */
- /*
- * TLB flush funcation:
- * 1) Flush the tlb entries if the cpu uses the mm that's being flushed.
- * 2) Leave the mm if we are in the lazy tlb mode.
- */
- static void flush_tlb_func(void *info)
- {
- struct flush_tlb_info *f = info;
- inc_irq_stat(irq_tlb_count);
- if (f->flush_mm && f->flush_mm != this_cpu_read(cpu_tlbstate.active_mm))
- return;
- count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
- if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_OK) {
- if (f->flush_end == TLB_FLUSH_ALL) {
- local_flush_tlb();
- trace_tlb_flush(TLB_REMOTE_SHOOTDOWN, TLB_FLUSH_ALL);
- } else {
- unsigned long addr;
- unsigned long nr_pages =
- (f->flush_end - f->flush_start) / PAGE_SIZE;
- addr = f->flush_start;
- while (addr < f->flush_end) {
- __flush_tlb_single(addr);
- addr += PAGE_SIZE;
- }
- trace_tlb_flush(TLB_REMOTE_SHOOTDOWN, nr_pages);
- }
- } else
- leave_mm(smp_processor_id());
- }
- void native_flush_tlb_others(const struct cpumask *cpumask,
- struct mm_struct *mm, unsigned long start,
- unsigned long end)
- {
- struct flush_tlb_info info;
- info.flush_mm = mm;
- info.flush_start = start;
- info.flush_end = end;
- count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
- if (end == TLB_FLUSH_ALL)
- trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL);
- else
- trace_tlb_flush(TLB_REMOTE_SEND_IPI,
- (end - start) >> PAGE_SHIFT);
- if (is_uv_system()) {
- unsigned int cpu;
- cpu = smp_processor_id();
- cpumask = uv_flush_tlb_others(cpumask, mm, start, end, cpu);
- if (cpumask)
- smp_call_function_many(cpumask, flush_tlb_func,
- &info, 1);
- return;
- }
- smp_call_function_many(cpumask, flush_tlb_func, &info, 1);
- }
- /*
- * See Documentation/x86/tlb.txt for details. We choose 33
- * because it is large enough to cover the vast majority (at
- * least 95%) of allocations, and is small enough that we are
- * confident it will not cause too much overhead. Each single
- * flush is about 100 ns, so this caps the maximum overhead at
- * _about_ 3,000 ns.
- *
- * This is in units of pages.
- */
- static unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
- void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
- unsigned long end, unsigned long vmflag)
- {
- unsigned long addr;
- /* do a global flush by default */
- unsigned long base_pages_to_flush = TLB_FLUSH_ALL;
- preempt_disable();
- if ((end != TLB_FLUSH_ALL) && !(vmflag & VM_HUGETLB))
- base_pages_to_flush = (end - start) >> PAGE_SHIFT;
- if (base_pages_to_flush > tlb_single_page_flush_ceiling)
- base_pages_to_flush = TLB_FLUSH_ALL;
- if (current->active_mm != mm) {
- /* Synchronize with switch_mm. */
- smp_mb();
- goto out;
- }
- if (!current->mm) {
- leave_mm(smp_processor_id());
- /* Synchronize with switch_mm. */
- smp_mb();
- goto out;
- }
- /*
- * Both branches below are implicit full barriers (MOV to CR or
- * INVLPG) that synchronize with switch_mm.
- */
- if (base_pages_to_flush == TLB_FLUSH_ALL) {
- count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
- local_flush_tlb();
- } else {
- /* flush range by one by one 'invlpg' */
- for (addr = start; addr < end; addr += PAGE_SIZE) {
- count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ONE);
- __flush_tlb_single(addr);
- }
- }
- trace_tlb_flush(TLB_LOCAL_MM_SHOOTDOWN, base_pages_to_flush);
- out:
- if (base_pages_to_flush == TLB_FLUSH_ALL) {
- start = 0UL;
- end = TLB_FLUSH_ALL;
- }
- if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids)
- flush_tlb_others(mm_cpumask(mm), mm, start, end);
- preempt_enable();
- }
- static void do_flush_tlb_all(void *info)
- {
- count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
- __flush_tlb_all();
- if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_LAZY)
- leave_mm(smp_processor_id());
- }
- void flush_tlb_all(void)
- {
- count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
- on_each_cpu(do_flush_tlb_all, NULL, 1);
- }
- static void do_kernel_range_flush(void *info)
- {
- struct flush_tlb_info *f = info;
- unsigned long addr;
- /* flush range by one by one 'invlpg' */
- for (addr = f->flush_start; addr < f->flush_end; addr += PAGE_SIZE)
- __flush_tlb_single(addr);
- }
- void flush_tlb_kernel_range(unsigned long start, unsigned long end)
- {
- /* Balance as user space task's flush, a bit conservative */
- if (end == TLB_FLUSH_ALL ||
- (end - start) > tlb_single_page_flush_ceiling * PAGE_SIZE) {
- on_each_cpu(do_flush_tlb_all, NULL, 1);
- } else {
- struct flush_tlb_info info;
- info.flush_start = start;
- info.flush_end = end;
- on_each_cpu(do_kernel_range_flush, &info, 1);
- }
- }
- static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
- size_t count, loff_t *ppos)
- {
- char buf[32];
- unsigned int len;
- len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling);
- return simple_read_from_buffer(user_buf, count, ppos, buf, len);
- }
- static ssize_t tlbflush_write_file(struct file *file,
- const char __user *user_buf, size_t count, loff_t *ppos)
- {
- char buf[32];
- ssize_t len;
- int ceiling;
- len = min(count, sizeof(buf) - 1);
- if (copy_from_user(buf, user_buf, len))
- return -EFAULT;
- buf[len] = '\0';
- if (kstrtoint(buf, 0, &ceiling))
- return -EINVAL;
- if (ceiling < 0)
- return -EINVAL;
- tlb_single_page_flush_ceiling = ceiling;
- return count;
- }
- static const struct file_operations fops_tlbflush = {
- .read = tlbflush_read_file,
- .write = tlbflush_write_file,
- .llseek = default_llseek,
- };
- static int __init create_tlb_single_page_flush_ceiling(void)
- {
- debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR,
- arch_debugfs_dir, NULL, &fops_tlbflush);
- return 0;
- }
- late_initcall(create_tlb_single_page_flush_ceiling);
|