intel_mid_vrtc.c 4.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176
  1. /*
  2. * intel_mid_vrtc.c: Driver for virtual RTC device on Intel MID platform
  3. *
  4. * (C) Copyright 2009 Intel Corporation
  5. *
  6. * This program is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU General Public License
  8. * as published by the Free Software Foundation; version 2
  9. * of the License.
  10. *
  11. * Note:
  12. * VRTC is emulated by system controller firmware, the real HW
  13. * RTC is located in the PMIC device. SCU FW shadows PMIC RTC
  14. * in a memory mapped IO space that is visible to the host IA
  15. * processor.
  16. *
  17. * This driver is based on RTC CMOS driver.
  18. */
  19. #include <linux/kernel.h>
  20. #include <linux/export.h>
  21. #include <linux/init.h>
  22. #include <linux/sfi.h>
  23. #include <linux/platform_device.h>
  24. #include <asm/intel-mid.h>
  25. #include <asm/intel_mid_vrtc.h>
  26. #include <asm/time.h>
  27. #include <asm/fixmap.h>
  28. static unsigned char __iomem *vrtc_virt_base;
  29. unsigned char vrtc_cmos_read(unsigned char reg)
  30. {
  31. unsigned char retval;
  32. /* vRTC's registers range from 0x0 to 0xD */
  33. if (reg > 0xd || !vrtc_virt_base)
  34. return 0xff;
  35. lock_cmos_prefix(reg);
  36. retval = __raw_readb(vrtc_virt_base + (reg << 2));
  37. lock_cmos_suffix(reg);
  38. return retval;
  39. }
  40. EXPORT_SYMBOL_GPL(vrtc_cmos_read);
  41. void vrtc_cmos_write(unsigned char val, unsigned char reg)
  42. {
  43. if (reg > 0xd || !vrtc_virt_base)
  44. return;
  45. lock_cmos_prefix(reg);
  46. __raw_writeb(val, vrtc_virt_base + (reg << 2));
  47. lock_cmos_suffix(reg);
  48. }
  49. EXPORT_SYMBOL_GPL(vrtc_cmos_write);
  50. void vrtc_get_time(struct timespec *now)
  51. {
  52. u8 sec, min, hour, mday, mon;
  53. unsigned long flags;
  54. u32 year;
  55. spin_lock_irqsave(&rtc_lock, flags);
  56. while ((vrtc_cmos_read(RTC_FREQ_SELECT) & RTC_UIP))
  57. cpu_relax();
  58. sec = vrtc_cmos_read(RTC_SECONDS);
  59. min = vrtc_cmos_read(RTC_MINUTES);
  60. hour = vrtc_cmos_read(RTC_HOURS);
  61. mday = vrtc_cmos_read(RTC_DAY_OF_MONTH);
  62. mon = vrtc_cmos_read(RTC_MONTH);
  63. year = vrtc_cmos_read(RTC_YEAR);
  64. spin_unlock_irqrestore(&rtc_lock, flags);
  65. /* vRTC YEAR reg contains the offset to 1972 */
  66. year += 1972;
  67. pr_info("vRTC: sec: %d min: %d hour: %d day: %d "
  68. "mon: %d year: %d\n", sec, min, hour, mday, mon, year);
  69. now->tv_sec = mktime(year, mon, mday, hour, min, sec);
  70. now->tv_nsec = 0;
  71. }
  72. int vrtc_set_mmss(const struct timespec *now)
  73. {
  74. unsigned long flags;
  75. struct rtc_time tm;
  76. int year;
  77. int retval = 0;
  78. rtc_time_to_tm(now->tv_sec, &tm);
  79. if (!rtc_valid_tm(&tm) && tm.tm_year >= 72) {
  80. /*
  81. * tm.year is the number of years since 1900, and the
  82. * vrtc need the years since 1972.
  83. */
  84. year = tm.tm_year - 72;
  85. spin_lock_irqsave(&rtc_lock, flags);
  86. vrtc_cmos_write(year, RTC_YEAR);
  87. vrtc_cmos_write(tm.tm_mon, RTC_MONTH);
  88. vrtc_cmos_write(tm.tm_mday, RTC_DAY_OF_MONTH);
  89. vrtc_cmos_write(tm.tm_hour, RTC_HOURS);
  90. vrtc_cmos_write(tm.tm_min, RTC_MINUTES);
  91. vrtc_cmos_write(tm.tm_sec, RTC_SECONDS);
  92. spin_unlock_irqrestore(&rtc_lock, flags);
  93. } else {
  94. pr_err("%s: Invalid vRTC value: write of %lx to vRTC failed\n",
  95. __func__, now->tv_sec);
  96. retval = -EINVAL;
  97. }
  98. return retval;
  99. }
  100. void __init intel_mid_rtc_init(void)
  101. {
  102. unsigned long vrtc_paddr;
  103. sfi_table_parse(SFI_SIG_MRTC, NULL, NULL, sfi_parse_mrtc);
  104. vrtc_paddr = sfi_mrtc_array[0].phys_addr;
  105. if (!sfi_mrtc_num || !vrtc_paddr)
  106. return;
  107. vrtc_virt_base = (void __iomem *)set_fixmap_offset_nocache(FIX_LNW_VRTC,
  108. vrtc_paddr);
  109. x86_platform.get_wallclock = vrtc_get_time;
  110. x86_platform.set_wallclock = vrtc_set_mmss;
  111. }
  112. /*
  113. * The Moorestown platform has a memory mapped virtual RTC device that emulates
  114. * the programming interface of the RTC.
  115. */
  116. static struct resource vrtc_resources[] = {
  117. [0] = {
  118. .flags = IORESOURCE_MEM,
  119. },
  120. [1] = {
  121. .flags = IORESOURCE_IRQ,
  122. }
  123. };
  124. static struct platform_device vrtc_device = {
  125. .name = "rtc_mrst",
  126. .id = -1,
  127. .resource = vrtc_resources,
  128. .num_resources = ARRAY_SIZE(vrtc_resources),
  129. };
  130. /* Register the RTC device if appropriate */
  131. static int __init intel_mid_device_create(void)
  132. {
  133. /* No Moorestown, no device */
  134. if (!intel_mid_identify_cpu())
  135. return -ENODEV;
  136. /* No timer, no device */
  137. if (!sfi_mrtc_num)
  138. return -ENODEV;
  139. /* iomem resource */
  140. vrtc_resources[0].start = sfi_mrtc_array[0].phys_addr;
  141. vrtc_resources[0].end = sfi_mrtc_array[0].phys_addr +
  142. MRST_VRTC_MAP_SZ;
  143. /* irq resource */
  144. vrtc_resources[1].start = sfi_mrtc_array[0].irq;
  145. vrtc_resources[1].end = sfi_mrtc_array[0].irq;
  146. return platform_device_register(&vrtc_device);
  147. }
  148. device_initcall(intel_mid_device_create);