1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906 |
- /*
- * random.c -- A strong random number generator
- *
- * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
- *
- * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All
- * rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- * 1. Redistributions of source code must retain the above copyright
- * notice, and the entire permission notice in its entirety,
- * including the disclaimer of warranties.
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.
- * 3. The name of the author may not be used to endorse or promote
- * products derived from this software without specific prior
- * written permission.
- *
- * ALTERNATIVELY, this product may be distributed under the terms of
- * the GNU General Public License, in which case the provisions of the GPL are
- * required INSTEAD OF the above restrictions. (This clause is
- * necessary due to a potential bad interaction between the GPL and
- * the restrictions contained in a BSD-style copyright.)
- *
- * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
- * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
- * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
- * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
- * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
- * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
- * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
- * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
- * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
- * DAMAGE.
- */
- /*
- * (now, with legal B.S. out of the way.....)
- *
- * This routine gathers environmental noise from device drivers, etc.,
- * and returns good random numbers, suitable for cryptographic use.
- * Besides the obvious cryptographic uses, these numbers are also good
- * for seeding TCP sequence numbers, and other places where it is
- * desirable to have numbers which are not only random, but hard to
- * predict by an attacker.
- *
- * Theory of operation
- * ===================
- *
- * Computers are very predictable devices. Hence it is extremely hard
- * to produce truly random numbers on a computer --- as opposed to
- * pseudo-random numbers, which can easily generated by using a
- * algorithm. Unfortunately, it is very easy for attackers to guess
- * the sequence of pseudo-random number generators, and for some
- * applications this is not acceptable. So instead, we must try to
- * gather "environmental noise" from the computer's environment, which
- * must be hard for outside attackers to observe, and use that to
- * generate random numbers. In a Unix environment, this is best done
- * from inside the kernel.
- *
- * Sources of randomness from the environment include inter-keyboard
- * timings, inter-interrupt timings from some interrupts, and other
- * events which are both (a) non-deterministic and (b) hard for an
- * outside observer to measure. Randomness from these sources are
- * added to an "entropy pool", which is mixed using a CRC-like function.
- * This is not cryptographically strong, but it is adequate assuming
- * the randomness is not chosen maliciously, and it is fast enough that
- * the overhead of doing it on every interrupt is very reasonable.
- * As random bytes are mixed into the entropy pool, the routines keep
- * an *estimate* of how many bits of randomness have been stored into
- * the random number generator's internal state.
- *
- * When random bytes are desired, they are obtained by taking the SHA
- * hash of the contents of the "entropy pool". The SHA hash avoids
- * exposing the internal state of the entropy pool. It is believed to
- * be computationally infeasible to derive any useful information
- * about the input of SHA from its output. Even if it is possible to
- * analyze SHA in some clever way, as long as the amount of data
- * returned from the generator is less than the inherent entropy in
- * the pool, the output data is totally unpredictable. For this
- * reason, the routine decreases its internal estimate of how many
- * bits of "true randomness" are contained in the entropy pool as it
- * outputs random numbers.
- *
- * If this estimate goes to zero, the routine can still generate
- * random numbers; however, an attacker may (at least in theory) be
- * able to infer the future output of the generator from prior
- * outputs. This requires successful cryptanalysis of SHA, which is
- * not believed to be feasible, but there is a remote possibility.
- * Nonetheless, these numbers should be useful for the vast majority
- * of purposes.
- *
- * Exported interfaces ---- output
- * ===============================
- *
- * There are three exported interfaces; the first is one designed to
- * be used from within the kernel:
- *
- * void get_random_bytes(void *buf, int nbytes);
- *
- * This interface will return the requested number of random bytes,
- * and place it in the requested buffer.
- *
- * The two other interfaces are two character devices /dev/random and
- * /dev/urandom. /dev/random is suitable for use when very high
- * quality randomness is desired (for example, for key generation or
- * one-time pads), as it will only return a maximum of the number of
- * bits of randomness (as estimated by the random number generator)
- * contained in the entropy pool.
- *
- * The /dev/urandom device does not have this limit, and will return
- * as many bytes as are requested. As more and more random bytes are
- * requested without giving time for the entropy pool to recharge,
- * this will result in random numbers that are merely cryptographically
- * strong. For many applications, however, this is acceptable.
- *
- * Exported interfaces ---- input
- * ==============================
- *
- * The current exported interfaces for gathering environmental noise
- * from the devices are:
- *
- * void add_device_randomness(const void *buf, unsigned int size);
- * void add_input_randomness(unsigned int type, unsigned int code,
- * unsigned int value);
- * void add_interrupt_randomness(int irq, int irq_flags);
- * void add_disk_randomness(struct gendisk *disk);
- *
- * add_device_randomness() is for adding data to the random pool that
- * is likely to differ between two devices (or possibly even per boot).
- * This would be things like MAC addresses or serial numbers, or the
- * read-out of the RTC. This does *not* add any actual entropy to the
- * pool, but it initializes the pool to different values for devices
- * that might otherwise be identical and have very little entropy
- * available to them (particularly common in the embedded world).
- *
- * add_input_randomness() uses the input layer interrupt timing, as well as
- * the event type information from the hardware.
- *
- * add_interrupt_randomness() uses the interrupt timing as random
- * inputs to the entropy pool. Using the cycle counters and the irq source
- * as inputs, it feeds the randomness roughly once a second.
- *
- * add_disk_randomness() uses what amounts to the seek time of block
- * layer request events, on a per-disk_devt basis, as input to the
- * entropy pool. Note that high-speed solid state drives with very low
- * seek times do not make for good sources of entropy, as their seek
- * times are usually fairly consistent.
- *
- * All of these routines try to estimate how many bits of randomness a
- * particular randomness source. They do this by keeping track of the
- * first and second order deltas of the event timings.
- *
- * Ensuring unpredictability at system startup
- * ============================================
- *
- * When any operating system starts up, it will go through a sequence
- * of actions that are fairly predictable by an adversary, especially
- * if the start-up does not involve interaction with a human operator.
- * This reduces the actual number of bits of unpredictability in the
- * entropy pool below the value in entropy_count. In order to
- * counteract this effect, it helps to carry information in the
- * entropy pool across shut-downs and start-ups. To do this, put the
- * following lines an appropriate script which is run during the boot
- * sequence:
- *
- * echo "Initializing random number generator..."
- * random_seed=/var/run/random-seed
- * # Carry a random seed from start-up to start-up
- * # Load and then save the whole entropy pool
- * if [ -f $random_seed ]; then
- * cat $random_seed >/dev/urandom
- * else
- * touch $random_seed
- * fi
- * chmod 600 $random_seed
- * dd if=/dev/urandom of=$random_seed count=1 bs=512
- *
- * and the following lines in an appropriate script which is run as
- * the system is shutdown:
- *
- * # Carry a random seed from shut-down to start-up
- * # Save the whole entropy pool
- * echo "Saving random seed..."
- * random_seed=/var/run/random-seed
- * touch $random_seed
- * chmod 600 $random_seed
- * dd if=/dev/urandom of=$random_seed count=1 bs=512
- *
- * For example, on most modern systems using the System V init
- * scripts, such code fragments would be found in
- * /etc/rc.d/init.d/random. On older Linux systems, the correct script
- * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
- *
- * Effectively, these commands cause the contents of the entropy pool
- * to be saved at shut-down time and reloaded into the entropy pool at
- * start-up. (The 'dd' in the addition to the bootup script is to
- * make sure that /etc/random-seed is different for every start-up,
- * even if the system crashes without executing rc.0.) Even with
- * complete knowledge of the start-up activities, predicting the state
- * of the entropy pool requires knowledge of the previous history of
- * the system.
- *
- * Configuring the /dev/random driver under Linux
- * ==============================================
- *
- * The /dev/random driver under Linux uses minor numbers 8 and 9 of
- * the /dev/mem major number (#1). So if your system does not have
- * /dev/random and /dev/urandom created already, they can be created
- * by using the commands:
- *
- * mknod /dev/random c 1 8
- * mknod /dev/urandom c 1 9
- *
- * Acknowledgements:
- * =================
- *
- * Ideas for constructing this random number generator were derived
- * from Pretty Good Privacy's random number generator, and from private
- * discussions with Phil Karn. Colin Plumb provided a faster random
- * number generator, which speed up the mixing function of the entropy
- * pool, taken from PGPfone. Dale Worley has also contributed many
- * useful ideas and suggestions to improve this driver.
- *
- * Any flaws in the design are solely my responsibility, and should
- * not be attributed to the Phil, Colin, or any of authors of PGP.
- *
- * Further background information on this topic may be obtained from
- * RFC 1750, "Randomness Recommendations for Security", by Donald
- * Eastlake, Steve Crocker, and Jeff Schiller.
- */
- #include <linux/utsname.h>
- #include <linux/module.h>
- #include <linux/kernel.h>
- #include <linux/major.h>
- #include <linux/string.h>
- #include <linux/fcntl.h>
- #include <linux/slab.h>
- #include <linux/random.h>
- #include <linux/poll.h>
- #include <linux/init.h>
- #include <linux/fs.h>
- #include <linux/genhd.h>
- #include <linux/interrupt.h>
- #include <linux/mm.h>
- #include <linux/spinlock.h>
- #include <linux/kthread.h>
- #include <linux/percpu.h>
- #include <linux/cryptohash.h>
- #include <linux/fips.h>
- #include <linux/ptrace.h>
- #include <linux/kmemcheck.h>
- #include <linux/workqueue.h>
- #include <linux/irq.h>
- #include <linux/syscalls.h>
- #include <linux/completion.h>
- #include <asm/processor.h>
- #include <asm/uaccess.h>
- #include <asm/irq.h>
- #include <asm/irq_regs.h>
- #include <asm/io.h>
- #define CREATE_TRACE_POINTS
- #include <trace/events/random.h>
- /* #define ADD_INTERRUPT_BENCH */
- /*
- * Configuration information
- */
- #define INPUT_POOL_SHIFT 12
- #define INPUT_POOL_WORDS (1 << (INPUT_POOL_SHIFT-5))
- #define OUTPUT_POOL_SHIFT 10
- #define OUTPUT_POOL_WORDS (1 << (OUTPUT_POOL_SHIFT-5))
- #define SEC_XFER_SIZE 512
- #define EXTRACT_SIZE 10
- #define DEBUG_RANDOM_BOOT 0
- #define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
- /*
- * To allow fractional bits to be tracked, the entropy_count field is
- * denominated in units of 1/8th bits.
- *
- * 2*(ENTROPY_SHIFT + log2(poolbits)) must <= 31, or the multiply in
- * credit_entropy_bits() needs to be 64 bits wide.
- */
- #define ENTROPY_SHIFT 3
- #define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT)
- /*
- * The minimum number of bits of entropy before we wake up a read on
- * /dev/random. Should be enough to do a significant reseed.
- */
- static int random_read_wakeup_bits = 64;
- /*
- * If the entropy count falls under this number of bits, then we
- * should wake up processes which are selecting or polling on write
- * access to /dev/random.
- */
- static int random_write_wakeup_bits = 28 * OUTPUT_POOL_WORDS;
- /*
- * The minimum number of seconds between urandom pool reseeding. We
- * do this to limit the amount of entropy that can be drained from the
- * input pool even if there are heavy demands on /dev/urandom.
- */
- static int random_min_urandom_seed = 60;
- /*
- * Originally, we used a primitive polynomial of degree .poolwords
- * over GF(2). The taps for various sizes are defined below. They
- * were chosen to be evenly spaced except for the last tap, which is 1
- * to get the twisting happening as fast as possible.
- *
- * For the purposes of better mixing, we use the CRC-32 polynomial as
- * well to make a (modified) twisted Generalized Feedback Shift
- * Register. (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR
- * generators. ACM Transactions on Modeling and Computer Simulation
- * 2(3):179-194. Also see M. Matsumoto & Y. Kurita, 1994. Twisted
- * GFSR generators II. ACM Transactions on Modeling and Computer
- * Simulation 4:254-266)
- *
- * Thanks to Colin Plumb for suggesting this.
- *
- * The mixing operation is much less sensitive than the output hash,
- * where we use SHA-1. All that we want of mixing operation is that
- * it be a good non-cryptographic hash; i.e. it not produce collisions
- * when fed "random" data of the sort we expect to see. As long as
- * the pool state differs for different inputs, we have preserved the
- * input entropy and done a good job. The fact that an intelligent
- * attacker can construct inputs that will produce controlled
- * alterations to the pool's state is not important because we don't
- * consider such inputs to contribute any randomness. The only
- * property we need with respect to them is that the attacker can't
- * increase his/her knowledge of the pool's state. Since all
- * additions are reversible (knowing the final state and the input,
- * you can reconstruct the initial state), if an attacker has any
- * uncertainty about the initial state, he/she can only shuffle that
- * uncertainty about, but never cause any collisions (which would
- * decrease the uncertainty).
- *
- * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and
- * Videau in their paper, "The Linux Pseudorandom Number Generator
- * Revisited" (see: http://eprint.iacr.org/2012/251.pdf). In their
- * paper, they point out that we are not using a true Twisted GFSR,
- * since Matsumoto & Kurita used a trinomial feedback polynomial (that
- * is, with only three taps, instead of the six that we are using).
- * As a result, the resulting polynomial is neither primitive nor
- * irreducible, and hence does not have a maximal period over
- * GF(2**32). They suggest a slight change to the generator
- * polynomial which improves the resulting TGFSR polynomial to be
- * irreducible, which we have made here.
- */
- static struct poolinfo {
- int poolbitshift, poolwords, poolbytes, poolbits, poolfracbits;
- #define S(x) ilog2(x)+5, (x), (x)*4, (x)*32, (x) << (ENTROPY_SHIFT+5)
- int tap1, tap2, tap3, tap4, tap5;
- } poolinfo_table[] = {
- /* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */
- /* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */
- { S(128), 104, 76, 51, 25, 1 },
- /* was: x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 */
- /* x^32 + x^26 + x^19 + x^14 + x^7 + x + 1 */
- { S(32), 26, 19, 14, 7, 1 },
- #if 0
- /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */
- { S(2048), 1638, 1231, 819, 411, 1 },
- /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
- { S(1024), 817, 615, 412, 204, 1 },
- /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
- { S(1024), 819, 616, 410, 207, 2 },
- /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
- { S(512), 411, 308, 208, 104, 1 },
- /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
- { S(512), 409, 307, 206, 102, 2 },
- /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
- { S(512), 409, 309, 205, 103, 2 },
- /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
- { S(256), 205, 155, 101, 52, 1 },
- /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
- { S(128), 103, 78, 51, 27, 2 },
- /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
- { S(64), 52, 39, 26, 14, 1 },
- #endif
- };
- /*
- * Static global variables
- */
- static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
- static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
- static DECLARE_WAIT_QUEUE_HEAD(urandom_init_wait);
- static struct fasync_struct *fasync;
- static DEFINE_SPINLOCK(random_ready_list_lock);
- static LIST_HEAD(random_ready_list);
- /**********************************************************************
- *
- * OS independent entropy store. Here are the functions which handle
- * storing entropy in an entropy pool.
- *
- **********************************************************************/
- struct entropy_store;
- struct entropy_store {
- /* read-only data: */
- const struct poolinfo *poolinfo;
- __u32 *pool;
- const char *name;
- struct entropy_store *pull;
- struct work_struct push_work;
- /* read-write data: */
- unsigned long last_pulled;
- spinlock_t lock;
- unsigned short add_ptr;
- unsigned short input_rotate;
- int entropy_count;
- int entropy_total;
- unsigned int initialized:1;
- unsigned int limit:1;
- unsigned int last_data_init:1;
- __u8 last_data[EXTRACT_SIZE];
- };
- static void push_to_pool(struct work_struct *work);
- static __u32 input_pool_data[INPUT_POOL_WORDS];
- static __u32 blocking_pool_data[OUTPUT_POOL_WORDS];
- static __u32 nonblocking_pool_data[OUTPUT_POOL_WORDS];
- static struct entropy_store input_pool = {
- .poolinfo = &poolinfo_table[0],
- .name = "input",
- .limit = 1,
- .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
- .pool = input_pool_data
- };
- static struct entropy_store blocking_pool = {
- .poolinfo = &poolinfo_table[1],
- .name = "blocking",
- .limit = 1,
- .pull = &input_pool,
- .lock = __SPIN_LOCK_UNLOCKED(blocking_pool.lock),
- .pool = blocking_pool_data,
- .push_work = __WORK_INITIALIZER(blocking_pool.push_work,
- push_to_pool),
- };
- static struct entropy_store nonblocking_pool = {
- .poolinfo = &poolinfo_table[1],
- .name = "nonblocking",
- .pull = &input_pool,
- .lock = __SPIN_LOCK_UNLOCKED(nonblocking_pool.lock),
- .pool = nonblocking_pool_data,
- .push_work = __WORK_INITIALIZER(nonblocking_pool.push_work,
- push_to_pool),
- };
- static __u32 const twist_table[8] = {
- 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
- 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
- /*
- * This function adds bytes into the entropy "pool". It does not
- * update the entropy estimate. The caller should call
- * credit_entropy_bits if this is appropriate.
- *
- * The pool is stirred with a primitive polynomial of the appropriate
- * degree, and then twisted. We twist by three bits at a time because
- * it's cheap to do so and helps slightly in the expected case where
- * the entropy is concentrated in the low-order bits.
- */
- static void _mix_pool_bytes(struct entropy_store *r, const void *in,
- int nbytes)
- {
- unsigned long i, tap1, tap2, tap3, tap4, tap5;
- int input_rotate;
- int wordmask = r->poolinfo->poolwords - 1;
- const char *bytes = in;
- __u32 w;
- tap1 = r->poolinfo->tap1;
- tap2 = r->poolinfo->tap2;
- tap3 = r->poolinfo->tap3;
- tap4 = r->poolinfo->tap4;
- tap5 = r->poolinfo->tap5;
- input_rotate = r->input_rotate;
- i = r->add_ptr;
- /* mix one byte at a time to simplify size handling and churn faster */
- while (nbytes--) {
- w = rol32(*bytes++, input_rotate);
- i = (i - 1) & wordmask;
- /* XOR in the various taps */
- w ^= r->pool[i];
- w ^= r->pool[(i + tap1) & wordmask];
- w ^= r->pool[(i + tap2) & wordmask];
- w ^= r->pool[(i + tap3) & wordmask];
- w ^= r->pool[(i + tap4) & wordmask];
- w ^= r->pool[(i + tap5) & wordmask];
- /* Mix the result back in with a twist */
- r->pool[i] = (w >> 3) ^ twist_table[w & 7];
- /*
- * Normally, we add 7 bits of rotation to the pool.
- * At the beginning of the pool, add an extra 7 bits
- * rotation, so that successive passes spread the
- * input bits across the pool evenly.
- */
- input_rotate = (input_rotate + (i ? 7 : 14)) & 31;
- }
- r->input_rotate = input_rotate;
- r->add_ptr = i;
- }
- static void __mix_pool_bytes(struct entropy_store *r, const void *in,
- int nbytes)
- {
- trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
- _mix_pool_bytes(r, in, nbytes);
- }
- static void mix_pool_bytes(struct entropy_store *r, const void *in,
- int nbytes)
- {
- unsigned long flags;
- trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
- spin_lock_irqsave(&r->lock, flags);
- _mix_pool_bytes(r, in, nbytes);
- spin_unlock_irqrestore(&r->lock, flags);
- }
- struct fast_pool {
- __u32 pool[4];
- unsigned long last;
- unsigned short reg_idx;
- unsigned char count;
- };
- /*
- * This is a fast mixing routine used by the interrupt randomness
- * collector. It's hardcoded for an 128 bit pool and assumes that any
- * locks that might be needed are taken by the caller.
- */
- static void fast_mix(struct fast_pool *f)
- {
- __u32 a = f->pool[0], b = f->pool[1];
- __u32 c = f->pool[2], d = f->pool[3];
- a += b; c += d;
- b = rol32(b, 6); d = rol32(d, 27);
- d ^= a; b ^= c;
- a += b; c += d;
- b = rol32(b, 16); d = rol32(d, 14);
- d ^= a; b ^= c;
- a += b; c += d;
- b = rol32(b, 6); d = rol32(d, 27);
- d ^= a; b ^= c;
- a += b; c += d;
- b = rol32(b, 16); d = rol32(d, 14);
- d ^= a; b ^= c;
- f->pool[0] = a; f->pool[1] = b;
- f->pool[2] = c; f->pool[3] = d;
- f->count++;
- }
- static void process_random_ready_list(void)
- {
- unsigned long flags;
- struct random_ready_callback *rdy, *tmp;
- spin_lock_irqsave(&random_ready_list_lock, flags);
- list_for_each_entry_safe(rdy, tmp, &random_ready_list, list) {
- struct module *owner = rdy->owner;
- list_del_init(&rdy->list);
- rdy->func(rdy);
- module_put(owner);
- }
- spin_unlock_irqrestore(&random_ready_list_lock, flags);
- }
- /*
- * Credit (or debit) the entropy store with n bits of entropy.
- * Use credit_entropy_bits_safe() if the value comes from userspace
- * or otherwise should be checked for extreme values.
- */
- static void credit_entropy_bits(struct entropy_store *r, int nbits)
- {
- int entropy_count, orig;
- const int pool_size = r->poolinfo->poolfracbits;
- int nfrac = nbits << ENTROPY_SHIFT;
- if (!nbits)
- return;
- retry:
- entropy_count = orig = ACCESS_ONCE(r->entropy_count);
- if (nfrac < 0) {
- /* Debit */
- entropy_count += nfrac;
- } else {
- /*
- * Credit: we have to account for the possibility of
- * overwriting already present entropy. Even in the
- * ideal case of pure Shannon entropy, new contributions
- * approach the full value asymptotically:
- *
- * entropy <- entropy + (pool_size - entropy) *
- * (1 - exp(-add_entropy/pool_size))
- *
- * For add_entropy <= pool_size/2 then
- * (1 - exp(-add_entropy/pool_size)) >=
- * (add_entropy/pool_size)*0.7869...
- * so we can approximate the exponential with
- * 3/4*add_entropy/pool_size and still be on the
- * safe side by adding at most pool_size/2 at a time.
- *
- * The use of pool_size-2 in the while statement is to
- * prevent rounding artifacts from making the loop
- * arbitrarily long; this limits the loop to log2(pool_size)*2
- * turns no matter how large nbits is.
- */
- int pnfrac = nfrac;
- const int s = r->poolinfo->poolbitshift + ENTROPY_SHIFT + 2;
- /* The +2 corresponds to the /4 in the denominator */
- do {
- unsigned int anfrac = min(pnfrac, pool_size/2);
- unsigned int add =
- ((pool_size - entropy_count)*anfrac*3) >> s;
- entropy_count += add;
- pnfrac -= anfrac;
- } while (unlikely(entropy_count < pool_size-2 && pnfrac));
- }
- if (unlikely(entropy_count < 0)) {
- pr_warn("random: negative entropy/overflow: pool %s count %d\n",
- r->name, entropy_count);
- WARN_ON(1);
- entropy_count = 0;
- } else if (entropy_count > pool_size)
- entropy_count = pool_size;
- if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
- goto retry;
- r->entropy_total += nbits;
- if (!r->initialized && r->entropy_total > 128) {
- r->initialized = 1;
- r->entropy_total = 0;
- if (r == &nonblocking_pool) {
- prandom_reseed_late();
- process_random_ready_list();
- wake_up_all(&urandom_init_wait);
- pr_notice("random: %s pool is initialized\n", r->name);
- }
- }
- trace_credit_entropy_bits(r->name, nbits,
- entropy_count >> ENTROPY_SHIFT,
- r->entropy_total, _RET_IP_);
- if (r == &input_pool) {
- int entropy_bits = entropy_count >> ENTROPY_SHIFT;
- /* should we wake readers? */
- if (entropy_bits >= random_read_wakeup_bits) {
- wake_up_interruptible(&random_read_wait);
- kill_fasync(&fasync, SIGIO, POLL_IN);
- }
- /* If the input pool is getting full, send some
- * entropy to the two output pools, flipping back and
- * forth between them, until the output pools are 75%
- * full.
- */
- if (entropy_bits > random_write_wakeup_bits &&
- r->initialized &&
- r->entropy_total >= 2*random_read_wakeup_bits) {
- static struct entropy_store *last = &blocking_pool;
- struct entropy_store *other = &blocking_pool;
- if (last == &blocking_pool)
- other = &nonblocking_pool;
- if (other->entropy_count <=
- 3 * other->poolinfo->poolfracbits / 4)
- last = other;
- if (last->entropy_count <=
- 3 * last->poolinfo->poolfracbits / 4) {
- schedule_work(&last->push_work);
- r->entropy_total = 0;
- }
- }
- }
- }
- static int credit_entropy_bits_safe(struct entropy_store *r, int nbits)
- {
- const int nbits_max = r->poolinfo->poolwords * 32;
- if (nbits < 0)
- return -EINVAL;
- /* Cap the value to avoid overflows */
- nbits = min(nbits, nbits_max);
- credit_entropy_bits(r, nbits);
- return 0;
- }
- /*********************************************************************
- *
- * Entropy input management
- *
- *********************************************************************/
- /* There is one of these per entropy source */
- struct timer_rand_state {
- cycles_t last_time;
- long last_delta, last_delta2;
- unsigned dont_count_entropy:1;
- };
- #define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, };
- /*
- * Add device- or boot-specific data to the input and nonblocking
- * pools to help initialize them to unique values.
- *
- * None of this adds any entropy, it is meant to avoid the
- * problem of the nonblocking pool having similar initial state
- * across largely identical devices.
- */
- void add_device_randomness(const void *buf, unsigned int size)
- {
- unsigned long time = random_get_entropy() ^ jiffies;
- unsigned long flags;
- trace_add_device_randomness(size, _RET_IP_);
- spin_lock_irqsave(&input_pool.lock, flags);
- _mix_pool_bytes(&input_pool, buf, size);
- _mix_pool_bytes(&input_pool, &time, sizeof(time));
- spin_unlock_irqrestore(&input_pool.lock, flags);
- spin_lock_irqsave(&nonblocking_pool.lock, flags);
- _mix_pool_bytes(&nonblocking_pool, buf, size);
- _mix_pool_bytes(&nonblocking_pool, &time, sizeof(time));
- spin_unlock_irqrestore(&nonblocking_pool.lock, flags);
- }
- EXPORT_SYMBOL(add_device_randomness);
- static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE;
- /*
- * This function adds entropy to the entropy "pool" by using timing
- * delays. It uses the timer_rand_state structure to make an estimate
- * of how many bits of entropy this call has added to the pool.
- *
- * The number "num" is also added to the pool - it should somehow describe
- * the type of event which just happened. This is currently 0-255 for
- * keyboard scan codes, and 256 upwards for interrupts.
- *
- */
- static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
- {
- struct entropy_store *r;
- struct {
- long jiffies;
- unsigned cycles;
- unsigned num;
- } sample;
- long delta, delta2, delta3;
- preempt_disable();
- sample.jiffies = jiffies;
- sample.cycles = random_get_entropy();
- sample.num = num;
- r = nonblocking_pool.initialized ? &input_pool : &nonblocking_pool;
- mix_pool_bytes(r, &sample, sizeof(sample));
- /*
- * Calculate number of bits of randomness we probably added.
- * We take into account the first, second and third-order deltas
- * in order to make our estimate.
- */
- if (!state->dont_count_entropy) {
- delta = sample.jiffies - state->last_time;
- state->last_time = sample.jiffies;
- delta2 = delta - state->last_delta;
- state->last_delta = delta;
- delta3 = delta2 - state->last_delta2;
- state->last_delta2 = delta2;
- if (delta < 0)
- delta = -delta;
- if (delta2 < 0)
- delta2 = -delta2;
- if (delta3 < 0)
- delta3 = -delta3;
- if (delta > delta2)
- delta = delta2;
- if (delta > delta3)
- delta = delta3;
- /*
- * delta is now minimum absolute delta.
- * Round down by 1 bit on general principles,
- * and limit entropy entimate to 12 bits.
- */
- credit_entropy_bits(r, min_t(int, fls(delta>>1), 11));
- }
- preempt_enable();
- }
- void add_input_randomness(unsigned int type, unsigned int code,
- unsigned int value)
- {
- static unsigned char last_value;
- /* ignore autorepeat and the like */
- if (value == last_value)
- return;
- last_value = value;
- add_timer_randomness(&input_timer_state,
- (type << 4) ^ code ^ (code >> 4) ^ value);
- trace_add_input_randomness(ENTROPY_BITS(&input_pool));
- }
- EXPORT_SYMBOL_GPL(add_input_randomness);
- static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
- #ifdef ADD_INTERRUPT_BENCH
- static unsigned long avg_cycles, avg_deviation;
- #define AVG_SHIFT 8 /* Exponential average factor k=1/256 */
- #define FIXED_1_2 (1 << (AVG_SHIFT-1))
- static void add_interrupt_bench(cycles_t start)
- {
- long delta = random_get_entropy() - start;
- /* Use a weighted moving average */
- delta = delta - ((avg_cycles + FIXED_1_2) >> AVG_SHIFT);
- avg_cycles += delta;
- /* And average deviation */
- delta = abs(delta) - ((avg_deviation + FIXED_1_2) >> AVG_SHIFT);
- avg_deviation += delta;
- }
- #else
- #define add_interrupt_bench(x)
- #endif
- static __u32 get_reg(struct fast_pool *f, struct pt_regs *regs)
- {
- __u32 *ptr = (__u32 *) regs;
- unsigned int idx;
- if (regs == NULL)
- return 0;
- idx = READ_ONCE(f->reg_idx);
- if (idx >= sizeof(struct pt_regs) / sizeof(__u32))
- idx = 0;
- ptr += idx++;
- WRITE_ONCE(f->reg_idx, idx);
- return *ptr;
- }
- void add_interrupt_randomness(int irq, int irq_flags)
- {
- struct entropy_store *r;
- struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness);
- struct pt_regs *regs = get_irq_regs();
- unsigned long now = jiffies;
- cycles_t cycles = random_get_entropy();
- __u32 c_high, j_high;
- __u64 ip;
- unsigned long seed;
- int credit = 0;
- if (cycles == 0)
- cycles = get_reg(fast_pool, regs);
- c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0;
- j_high = (sizeof(now) > 4) ? now >> 32 : 0;
- fast_pool->pool[0] ^= cycles ^ j_high ^ irq;
- fast_pool->pool[1] ^= now ^ c_high;
- ip = regs ? instruction_pointer(regs) : _RET_IP_;
- fast_pool->pool[2] ^= ip;
- fast_pool->pool[3] ^= (sizeof(ip) > 4) ? ip >> 32 :
- get_reg(fast_pool, regs);
- fast_mix(fast_pool);
- add_interrupt_bench(cycles);
- if ((fast_pool->count < 64) &&
- !time_after(now, fast_pool->last + HZ))
- return;
- r = nonblocking_pool.initialized ? &input_pool : &nonblocking_pool;
- if (!spin_trylock(&r->lock))
- return;
- fast_pool->last = now;
- __mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool));
- /*
- * If we have architectural seed generator, produce a seed and
- * add it to the pool. For the sake of paranoia don't let the
- * architectural seed generator dominate the input from the
- * interrupt noise.
- */
- if (arch_get_random_seed_long(&seed)) {
- __mix_pool_bytes(r, &seed, sizeof(seed));
- credit = 1;
- }
- spin_unlock(&r->lock);
- fast_pool->count = 0;
- /* award one bit for the contents of the fast pool */
- credit_entropy_bits(r, credit + 1);
- }
- EXPORT_SYMBOL_GPL(add_interrupt_randomness);
- #ifdef CONFIG_BLOCK
- void add_disk_randomness(struct gendisk *disk)
- {
- if (!disk || !disk->random)
- return;
- /* first major is 1, so we get >= 0x200 here */
- add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
- trace_add_disk_randomness(disk_devt(disk), ENTROPY_BITS(&input_pool));
- }
- EXPORT_SYMBOL_GPL(add_disk_randomness);
- #endif
- /*********************************************************************
- *
- * Entropy extraction routines
- *
- *********************************************************************/
- static ssize_t extract_entropy(struct entropy_store *r, void *buf,
- size_t nbytes, int min, int rsvd);
- /*
- * This utility inline function is responsible for transferring entropy
- * from the primary pool to the secondary extraction pool. We make
- * sure we pull enough for a 'catastrophic reseed'.
- */
- static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes);
- static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
- {
- if (!r->pull ||
- r->entropy_count >= (nbytes << (ENTROPY_SHIFT + 3)) ||
- r->entropy_count > r->poolinfo->poolfracbits)
- return;
- if (r->limit == 0 && random_min_urandom_seed) {
- unsigned long now = jiffies;
- if (time_before(now,
- r->last_pulled + random_min_urandom_seed * HZ))
- return;
- r->last_pulled = now;
- }
- _xfer_secondary_pool(r, nbytes);
- }
- static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
- {
- __u32 tmp[OUTPUT_POOL_WORDS];
- /* For /dev/random's pool, always leave two wakeups' worth */
- int rsvd_bytes = r->limit ? 0 : random_read_wakeup_bits / 4;
- int bytes = nbytes;
- /* pull at least as much as a wakeup */
- bytes = max_t(int, bytes, random_read_wakeup_bits / 8);
- /* but never more than the buffer size */
- bytes = min_t(int, bytes, sizeof(tmp));
- trace_xfer_secondary_pool(r->name, bytes * 8, nbytes * 8,
- ENTROPY_BITS(r), ENTROPY_BITS(r->pull));
- bytes = extract_entropy(r->pull, tmp, bytes,
- random_read_wakeup_bits / 8, rsvd_bytes);
- mix_pool_bytes(r, tmp, bytes);
- credit_entropy_bits(r, bytes*8);
- }
- /*
- * Used as a workqueue function so that when the input pool is getting
- * full, we can "spill over" some entropy to the output pools. That
- * way the output pools can store some of the excess entropy instead
- * of letting it go to waste.
- */
- static void push_to_pool(struct work_struct *work)
- {
- struct entropy_store *r = container_of(work, struct entropy_store,
- push_work);
- BUG_ON(!r);
- _xfer_secondary_pool(r, random_read_wakeup_bits/8);
- trace_push_to_pool(r->name, r->entropy_count >> ENTROPY_SHIFT,
- r->pull->entropy_count >> ENTROPY_SHIFT);
- }
- /*
- * This function decides how many bytes to actually take from the
- * given pool, and also debits the entropy count accordingly.
- */
- static size_t account(struct entropy_store *r, size_t nbytes, int min,
- int reserved)
- {
- int entropy_count, orig;
- size_t ibytes, nfrac;
- BUG_ON(r->entropy_count > r->poolinfo->poolfracbits);
- /* Can we pull enough? */
- retry:
- entropy_count = orig = ACCESS_ONCE(r->entropy_count);
- ibytes = nbytes;
- /* If limited, never pull more than available */
- if (r->limit) {
- int have_bytes = entropy_count >> (ENTROPY_SHIFT + 3);
- if ((have_bytes -= reserved) < 0)
- have_bytes = 0;
- ibytes = min_t(size_t, ibytes, have_bytes);
- }
- if (ibytes < min)
- ibytes = 0;
- if (unlikely(entropy_count < 0)) {
- pr_warn("random: negative entropy count: pool %s count %d\n",
- r->name, entropy_count);
- WARN_ON(1);
- entropy_count = 0;
- }
- nfrac = ibytes << (ENTROPY_SHIFT + 3);
- if ((size_t) entropy_count > nfrac)
- entropy_count -= nfrac;
- else
- entropy_count = 0;
- if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
- goto retry;
- trace_debit_entropy(r->name, 8 * ibytes);
- if (ibytes &&
- (r->entropy_count >> ENTROPY_SHIFT) < random_write_wakeup_bits) {
- wake_up_interruptible(&random_write_wait);
- kill_fasync(&fasync, SIGIO, POLL_OUT);
- }
- return ibytes;
- }
- /*
- * This function does the actual extraction for extract_entropy and
- * extract_entropy_user.
- *
- * Note: we assume that .poolwords is a multiple of 16 words.
- */
- static void extract_buf(struct entropy_store *r, __u8 *out)
- {
- int i;
- union {
- __u32 w[5];
- unsigned long l[LONGS(20)];
- } hash;
- __u32 workspace[SHA_WORKSPACE_WORDS];
- unsigned long flags;
- /*
- * If we have an architectural hardware random number
- * generator, use it for SHA's initial vector
- */
- sha_init(hash.w);
- for (i = 0; i < LONGS(20); i++) {
- unsigned long v;
- if (!arch_get_random_long(&v))
- break;
- hash.l[i] = v;
- }
- /* Generate a hash across the pool, 16 words (512 bits) at a time */
- spin_lock_irqsave(&r->lock, flags);
- for (i = 0; i < r->poolinfo->poolwords; i += 16)
- sha_transform(hash.w, (__u8 *)(r->pool + i), workspace);
- /*
- * We mix the hash back into the pool to prevent backtracking
- * attacks (where the attacker knows the state of the pool
- * plus the current outputs, and attempts to find previous
- * ouputs), unless the hash function can be inverted. By
- * mixing at least a SHA1 worth of hash data back, we make
- * brute-forcing the feedback as hard as brute-forcing the
- * hash.
- */
- __mix_pool_bytes(r, hash.w, sizeof(hash.w));
- spin_unlock_irqrestore(&r->lock, flags);
- memzero_explicit(workspace, sizeof(workspace));
- /*
- * In case the hash function has some recognizable output
- * pattern, we fold it in half. Thus, we always feed back
- * twice as much data as we output.
- */
- hash.w[0] ^= hash.w[3];
- hash.w[1] ^= hash.w[4];
- hash.w[2] ^= rol32(hash.w[2], 16);
- memcpy(out, &hash, EXTRACT_SIZE);
- memzero_explicit(&hash, sizeof(hash));
- }
- /*
- * This function extracts randomness from the "entropy pool", and
- * returns it in a buffer.
- *
- * The min parameter specifies the minimum amount we can pull before
- * failing to avoid races that defeat catastrophic reseeding while the
- * reserved parameter indicates how much entropy we must leave in the
- * pool after each pull to avoid starving other readers.
- */
- static ssize_t extract_entropy(struct entropy_store *r, void *buf,
- size_t nbytes, int min, int reserved)
- {
- ssize_t ret = 0, i;
- __u8 tmp[EXTRACT_SIZE];
- unsigned long flags;
- /* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */
- if (fips_enabled) {
- spin_lock_irqsave(&r->lock, flags);
- if (!r->last_data_init) {
- r->last_data_init = 1;
- spin_unlock_irqrestore(&r->lock, flags);
- trace_extract_entropy(r->name, EXTRACT_SIZE,
- ENTROPY_BITS(r), _RET_IP_);
- xfer_secondary_pool(r, EXTRACT_SIZE);
- extract_buf(r, tmp);
- spin_lock_irqsave(&r->lock, flags);
- memcpy(r->last_data, tmp, EXTRACT_SIZE);
- }
- spin_unlock_irqrestore(&r->lock, flags);
- }
- trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
- xfer_secondary_pool(r, nbytes);
- nbytes = account(r, nbytes, min, reserved);
- while (nbytes) {
- extract_buf(r, tmp);
- if (fips_enabled) {
- spin_lock_irqsave(&r->lock, flags);
- if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
- panic("Hardware RNG duplicated output!\n");
- memcpy(r->last_data, tmp, EXTRACT_SIZE);
- spin_unlock_irqrestore(&r->lock, flags);
- }
- i = min_t(int, nbytes, EXTRACT_SIZE);
- memcpy(buf, tmp, i);
- nbytes -= i;
- buf += i;
- ret += i;
- }
- /* Wipe data just returned from memory */
- memzero_explicit(tmp, sizeof(tmp));
- return ret;
- }
- /*
- * This function extracts randomness from the "entropy pool", and
- * returns it in a userspace buffer.
- */
- static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
- size_t nbytes)
- {
- ssize_t ret = 0, i;
- __u8 tmp[EXTRACT_SIZE];
- int large_request = (nbytes > 256);
- trace_extract_entropy_user(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
- xfer_secondary_pool(r, nbytes);
- nbytes = account(r, nbytes, 0, 0);
- while (nbytes) {
- if (large_request && need_resched()) {
- if (signal_pending(current)) {
- if (ret == 0)
- ret = -ERESTARTSYS;
- break;
- }
- schedule();
- }
- extract_buf(r, tmp);
- i = min_t(int, nbytes, EXTRACT_SIZE);
- if (copy_to_user(buf, tmp, i)) {
- ret = -EFAULT;
- break;
- }
- nbytes -= i;
- buf += i;
- ret += i;
- }
- /* Wipe data just returned from memory */
- memzero_explicit(tmp, sizeof(tmp));
- return ret;
- }
- /*
- * This function is the exported kernel interface. It returns some
- * number of good random numbers, suitable for key generation, seeding
- * TCP sequence numbers, etc. It does not rely on the hardware random
- * number generator. For random bytes direct from the hardware RNG
- * (when available), use get_random_bytes_arch().
- */
- void get_random_bytes(void *buf, int nbytes)
- {
- #if DEBUG_RANDOM_BOOT > 0
- if (unlikely(nonblocking_pool.initialized == 0))
- printk(KERN_NOTICE "random: %pF get_random_bytes called "
- "with %d bits of entropy available\n",
- (void *) _RET_IP_,
- nonblocking_pool.entropy_total);
- #endif
- trace_get_random_bytes(nbytes, _RET_IP_);
- extract_entropy(&nonblocking_pool, buf, nbytes, 0, 0);
- }
- EXPORT_SYMBOL(get_random_bytes);
- /*
- * Add a callback function that will be invoked when the nonblocking
- * pool is initialised.
- *
- * returns: 0 if callback is successfully added
- * -EALREADY if pool is already initialised (callback not called)
- * -ENOENT if module for callback is not alive
- */
- int add_random_ready_callback(struct random_ready_callback *rdy)
- {
- struct module *owner;
- unsigned long flags;
- int err = -EALREADY;
- if (likely(nonblocking_pool.initialized))
- return err;
- owner = rdy->owner;
- if (!try_module_get(owner))
- return -ENOENT;
- spin_lock_irqsave(&random_ready_list_lock, flags);
- if (nonblocking_pool.initialized)
- goto out;
- owner = NULL;
- list_add(&rdy->list, &random_ready_list);
- err = 0;
- out:
- spin_unlock_irqrestore(&random_ready_list_lock, flags);
- module_put(owner);
- return err;
- }
- EXPORT_SYMBOL(add_random_ready_callback);
- /*
- * Delete a previously registered readiness callback function.
- */
- void del_random_ready_callback(struct random_ready_callback *rdy)
- {
- unsigned long flags;
- struct module *owner = NULL;
- spin_lock_irqsave(&random_ready_list_lock, flags);
- if (!list_empty(&rdy->list)) {
- list_del_init(&rdy->list);
- owner = rdy->owner;
- }
- spin_unlock_irqrestore(&random_ready_list_lock, flags);
- module_put(owner);
- }
- EXPORT_SYMBOL(del_random_ready_callback);
- /*
- * This function will use the architecture-specific hardware random
- * number generator if it is available. The arch-specific hw RNG will
- * almost certainly be faster than what we can do in software, but it
- * is impossible to verify that it is implemented securely (as
- * opposed, to, say, the AES encryption of a sequence number using a
- * key known by the NSA). So it's useful if we need the speed, but
- * only if we're willing to trust the hardware manufacturer not to
- * have put in a back door.
- */
- void get_random_bytes_arch(void *buf, int nbytes)
- {
- char *p = buf;
- trace_get_random_bytes_arch(nbytes, _RET_IP_);
- while (nbytes) {
- unsigned long v;
- int chunk = min(nbytes, (int)sizeof(unsigned long));
- if (!arch_get_random_long(&v))
- break;
-
- memcpy(p, &v, chunk);
- p += chunk;
- nbytes -= chunk;
- }
- if (nbytes)
- extract_entropy(&nonblocking_pool, p, nbytes, 0, 0);
- }
- EXPORT_SYMBOL(get_random_bytes_arch);
- /*
- * init_std_data - initialize pool with system data
- *
- * @r: pool to initialize
- *
- * This function clears the pool's entropy count and mixes some system
- * data into the pool to prepare it for use. The pool is not cleared
- * as that can only decrease the entropy in the pool.
- */
- static void init_std_data(struct entropy_store *r)
- {
- int i;
- ktime_t now = ktime_get_real();
- unsigned long rv;
- r->last_pulled = jiffies;
- mix_pool_bytes(r, &now, sizeof(now));
- for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) {
- if (!arch_get_random_seed_long(&rv) &&
- !arch_get_random_long(&rv))
- rv = random_get_entropy();
- mix_pool_bytes(r, &rv, sizeof(rv));
- }
- mix_pool_bytes(r, utsname(), sizeof(*(utsname())));
- }
- /*
- * Note that setup_arch() may call add_device_randomness()
- * long before we get here. This allows seeding of the pools
- * with some platform dependent data very early in the boot
- * process. But it limits our options here. We must use
- * statically allocated structures that already have all
- * initializations complete at compile time. We should also
- * take care not to overwrite the precious per platform data
- * we were given.
- */
- static int rand_initialize(void)
- {
- init_std_data(&input_pool);
- init_std_data(&blocking_pool);
- init_std_data(&nonblocking_pool);
- return 0;
- }
- early_initcall(rand_initialize);
- #ifdef CONFIG_BLOCK
- void rand_initialize_disk(struct gendisk *disk)
- {
- struct timer_rand_state *state;
- /*
- * If kzalloc returns null, we just won't use that entropy
- * source.
- */
- state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
- if (state) {
- state->last_time = INITIAL_JIFFIES;
- disk->random = state;
- }
- }
- #endif
- static ssize_t
- _random_read(int nonblock, char __user *buf, size_t nbytes)
- {
- ssize_t n;
- if (nbytes == 0)
- return 0;
- nbytes = min_t(size_t, nbytes, SEC_XFER_SIZE);
- while (1) {
- n = extract_entropy_user(&blocking_pool, buf, nbytes);
- if (n < 0)
- return n;
- trace_random_read(n*8, (nbytes-n)*8,
- ENTROPY_BITS(&blocking_pool),
- ENTROPY_BITS(&input_pool));
- if (n > 0)
- return n;
- /* Pool is (near) empty. Maybe wait and retry. */
- if (nonblock)
- return -EAGAIN;
- wait_event_interruptible(random_read_wait,
- ENTROPY_BITS(&input_pool) >=
- random_read_wakeup_bits);
- if (signal_pending(current))
- return -ERESTARTSYS;
- }
- }
- static ssize_t
- random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
- {
- return _random_read(file->f_flags & O_NONBLOCK, buf, nbytes);
- }
- static ssize_t
- urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
- {
- static int maxwarn = 10;
- int ret;
- if (unlikely(nonblocking_pool.initialized == 0) &&
- maxwarn > 0) {
- maxwarn--;
- printk(KERN_NOTICE "random: %s: uninitialized urandom read "
- "(%zd bytes read, %d bits of entropy available)\n",
- current->comm, nbytes, nonblocking_pool.entropy_total);
- }
- nbytes = min_t(size_t, nbytes, INT_MAX >> (ENTROPY_SHIFT + 3));
- ret = extract_entropy_user(&nonblocking_pool, buf, nbytes);
- trace_urandom_read(8 * nbytes, ENTROPY_BITS(&nonblocking_pool),
- ENTROPY_BITS(&input_pool));
- return ret;
- }
- static unsigned int
- random_poll(struct file *file, poll_table * wait)
- {
- unsigned int mask;
- poll_wait(file, &random_read_wait, wait);
- poll_wait(file, &random_write_wait, wait);
- mask = 0;
- if (ENTROPY_BITS(&input_pool) >= random_read_wakeup_bits)
- mask |= POLLIN | POLLRDNORM;
- if (ENTROPY_BITS(&input_pool) < random_write_wakeup_bits)
- mask |= POLLOUT | POLLWRNORM;
- return mask;
- }
- static int
- write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
- {
- size_t bytes;
- __u32 t, buf[16];
- const char __user *p = buffer;
- while (count > 0) {
- int b, i = 0;
- bytes = min(count, sizeof(buf));
- if (copy_from_user(&buf, p, bytes))
- return -EFAULT;
- for (b = bytes ; b > 0 ; b -= sizeof(__u32), i++) {
- if (!arch_get_random_int(&t))
- break;
- buf[i] ^= t;
- }
- count -= bytes;
- p += bytes;
- mix_pool_bytes(r, buf, bytes);
- cond_resched();
- }
- return 0;
- }
- static ssize_t random_write(struct file *file, const char __user *buffer,
- size_t count, loff_t *ppos)
- {
- size_t ret;
- ret = write_pool(&blocking_pool, buffer, count);
- if (ret)
- return ret;
- ret = write_pool(&nonblocking_pool, buffer, count);
- if (ret)
- return ret;
- return (ssize_t)count;
- }
- static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
- {
- int size, ent_count;
- int __user *p = (int __user *)arg;
- int retval;
- switch (cmd) {
- case RNDGETENTCNT:
- /* inherently racy, no point locking */
- ent_count = ENTROPY_BITS(&input_pool);
- if (put_user(ent_count, p))
- return -EFAULT;
- return 0;
- case RNDADDTOENTCNT:
- if (!capable(CAP_SYS_ADMIN))
- return -EPERM;
- if (get_user(ent_count, p))
- return -EFAULT;
- return credit_entropy_bits_safe(&input_pool, ent_count);
- case RNDADDENTROPY:
- if (!capable(CAP_SYS_ADMIN))
- return -EPERM;
- if (get_user(ent_count, p++))
- return -EFAULT;
- if (ent_count < 0)
- return -EINVAL;
- if (get_user(size, p++))
- return -EFAULT;
- retval = write_pool(&input_pool, (const char __user *)p,
- size);
- if (retval < 0)
- return retval;
- return credit_entropy_bits_safe(&input_pool, ent_count);
- case RNDZAPENTCNT:
- case RNDCLEARPOOL:
- /*
- * Clear the entropy pool counters. We no longer clear
- * the entropy pool, as that's silly.
- */
- if (!capable(CAP_SYS_ADMIN))
- return -EPERM;
- input_pool.entropy_count = 0;
- nonblocking_pool.entropy_count = 0;
- blocking_pool.entropy_count = 0;
- return 0;
- default:
- return -EINVAL;
- }
- }
- static int random_fasync(int fd, struct file *filp, int on)
- {
- return fasync_helper(fd, filp, on, &fasync);
- }
- const struct file_operations random_fops = {
- .read = random_read,
- .write = random_write,
- .poll = random_poll,
- .unlocked_ioctl = random_ioctl,
- .fasync = random_fasync,
- .llseek = noop_llseek,
- };
- const struct file_operations urandom_fops = {
- .read = urandom_read,
- .write = random_write,
- .unlocked_ioctl = random_ioctl,
- .fasync = random_fasync,
- .llseek = noop_llseek,
- };
- SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count,
- unsigned int, flags)
- {
- if (flags & ~(GRND_NONBLOCK|GRND_RANDOM))
- return -EINVAL;
- if (count > INT_MAX)
- count = INT_MAX;
- if (flags & GRND_RANDOM)
- return _random_read(flags & GRND_NONBLOCK, buf, count);
- if (unlikely(nonblocking_pool.initialized == 0)) {
- if (flags & GRND_NONBLOCK)
- return -EAGAIN;
- wait_event_interruptible(urandom_init_wait,
- nonblocking_pool.initialized);
- if (signal_pending(current))
- return -ERESTARTSYS;
- }
- return urandom_read(NULL, buf, count, NULL);
- }
- /***************************************************************
- * Random UUID interface
- *
- * Used here for a Boot ID, but can be useful for other kernel
- * drivers.
- ***************************************************************/
- /*
- * Generate random UUID
- */
- void generate_random_uuid(unsigned char uuid_out[16])
- {
- get_random_bytes(uuid_out, 16);
- /* Set UUID version to 4 --- truly random generation */
- uuid_out[6] = (uuid_out[6] & 0x0F) | 0x40;
- /* Set the UUID variant to DCE */
- uuid_out[8] = (uuid_out[8] & 0x3F) | 0x80;
- }
- EXPORT_SYMBOL(generate_random_uuid);
- /********************************************************************
- *
- * Sysctl interface
- *
- ********************************************************************/
- #ifdef CONFIG_SYSCTL
- #include <linux/sysctl.h>
- static int min_read_thresh = 8, min_write_thresh;
- static int max_read_thresh = OUTPUT_POOL_WORDS * 32;
- static int max_write_thresh = INPUT_POOL_WORDS * 32;
- static char sysctl_bootid[16];
- /*
- * This function is used to return both the bootid UUID, and random
- * UUID. The difference is in whether table->data is NULL; if it is,
- * then a new UUID is generated and returned to the user.
- *
- * If the user accesses this via the proc interface, the UUID will be
- * returned as an ASCII string in the standard UUID format; if via the
- * sysctl system call, as 16 bytes of binary data.
- */
- static int proc_do_uuid(struct ctl_table *table, int write,
- void __user *buffer, size_t *lenp, loff_t *ppos)
- {
- struct ctl_table fake_table;
- unsigned char buf[64], tmp_uuid[16], *uuid;
- uuid = table->data;
- if (!uuid) {
- uuid = tmp_uuid;
- generate_random_uuid(uuid);
- } else {
- static DEFINE_SPINLOCK(bootid_spinlock);
- spin_lock(&bootid_spinlock);
- if (!uuid[8])
- generate_random_uuid(uuid);
- spin_unlock(&bootid_spinlock);
- }
- sprintf(buf, "%pU", uuid);
- fake_table.data = buf;
- fake_table.maxlen = sizeof(buf);
- return proc_dostring(&fake_table, write, buffer, lenp, ppos);
- }
- /*
- * Return entropy available scaled to integral bits
- */
- static int proc_do_entropy(struct ctl_table *table, int write,
- void __user *buffer, size_t *lenp, loff_t *ppos)
- {
- struct ctl_table fake_table;
- int entropy_count;
- entropy_count = *(int *)table->data >> ENTROPY_SHIFT;
- fake_table.data = &entropy_count;
- fake_table.maxlen = sizeof(entropy_count);
- return proc_dointvec(&fake_table, write, buffer, lenp, ppos);
- }
- static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
- extern struct ctl_table random_table[];
- struct ctl_table random_table[] = {
- {
- .procname = "poolsize",
- .data = &sysctl_poolsize,
- .maxlen = sizeof(int),
- .mode = 0444,
- .proc_handler = proc_dointvec,
- },
- {
- .procname = "entropy_avail",
- .maxlen = sizeof(int),
- .mode = 0444,
- .proc_handler = proc_do_entropy,
- .data = &input_pool.entropy_count,
- },
- {
- .procname = "read_wakeup_threshold",
- .data = &random_read_wakeup_bits,
- .maxlen = sizeof(int),
- .mode = 0644,
- .proc_handler = proc_dointvec_minmax,
- .extra1 = &min_read_thresh,
- .extra2 = &max_read_thresh,
- },
- {
- .procname = "write_wakeup_threshold",
- .data = &random_write_wakeup_bits,
- .maxlen = sizeof(int),
- .mode = 0644,
- .proc_handler = proc_dointvec_minmax,
- .extra1 = &min_write_thresh,
- .extra2 = &max_write_thresh,
- },
- {
- .procname = "urandom_min_reseed_secs",
- .data = &random_min_urandom_seed,
- .maxlen = sizeof(int),
- .mode = 0644,
- .proc_handler = proc_dointvec,
- },
- {
- .procname = "boot_id",
- .data = &sysctl_bootid,
- .maxlen = 16,
- .mode = 0444,
- .proc_handler = proc_do_uuid,
- },
- {
- .procname = "uuid",
- .maxlen = 16,
- .mode = 0444,
- .proc_handler = proc_do_uuid,
- },
- #ifdef ADD_INTERRUPT_BENCH
- {
- .procname = "add_interrupt_avg_cycles",
- .data = &avg_cycles,
- .maxlen = sizeof(avg_cycles),
- .mode = 0444,
- .proc_handler = proc_doulongvec_minmax,
- },
- {
- .procname = "add_interrupt_avg_deviation",
- .data = &avg_deviation,
- .maxlen = sizeof(avg_deviation),
- .mode = 0444,
- .proc_handler = proc_doulongvec_minmax,
- },
- #endif
- { }
- };
- #endif /* CONFIG_SYSCTL */
- static u32 random_int_secret[MD5_MESSAGE_BYTES / 4] ____cacheline_aligned;
- int random_int_secret_init(void)
- {
- get_random_bytes(random_int_secret, sizeof(random_int_secret));
- return 0;
- }
- static DEFINE_PER_CPU(__u32 [MD5_DIGEST_WORDS], get_random_int_hash)
- __aligned(sizeof(unsigned long));
- /*
- * Get a random word for internal kernel use only. Similar to urandom but
- * with the goal of minimal entropy pool depletion. As a result, the random
- * value is not cryptographically secure but for several uses the cost of
- * depleting entropy is too high
- */
- unsigned int get_random_int(void)
- {
- __u32 *hash;
- unsigned int ret;
- if (arch_get_random_int(&ret))
- return ret;
- hash = get_cpu_var(get_random_int_hash);
- hash[0] += current->pid + jiffies + random_get_entropy();
- md5_transform(hash, random_int_secret);
- ret = hash[0];
- put_cpu_var(get_random_int_hash);
- return ret;
- }
- EXPORT_SYMBOL(get_random_int);
- /*
- * Same as get_random_int(), but returns unsigned long.
- */
- unsigned long get_random_long(void)
- {
- __u32 *hash;
- unsigned long ret;
- if (arch_get_random_long(&ret))
- return ret;
- hash = get_cpu_var(get_random_int_hash);
- hash[0] += current->pid + jiffies + random_get_entropy();
- md5_transform(hash, random_int_secret);
- ret = *(unsigned long *)hash;
- put_cpu_var(get_random_int_hash);
- return ret;
- }
- EXPORT_SYMBOL(get_random_long);
- /*
- * randomize_range() returns a start address such that
- *
- * [...... <range> .....]
- * start end
- *
- * a <range> with size "len" starting at the return value is inside in the
- * area defined by [start, end], but is otherwise randomized.
- */
- unsigned long
- randomize_range(unsigned long start, unsigned long end, unsigned long len)
- {
- unsigned long range = end - len - start;
- if (end <= start + len)
- return 0;
- return PAGE_ALIGN(get_random_int() % range + start);
- }
- /* Interface for in-kernel drivers of true hardware RNGs.
- * Those devices may produce endless random bits and will be throttled
- * when our pool is full.
- */
- void add_hwgenerator_randomness(const char *buffer, size_t count,
- size_t entropy)
- {
- struct entropy_store *poolp = &input_pool;
- if (unlikely(nonblocking_pool.initialized == 0))
- poolp = &nonblocking_pool;
- else {
- /* Suspend writing if we're above the trickle
- * threshold. We'll be woken up again once below
- * random_write_wakeup_thresh, or when the calling
- * thread is about to terminate.
- */
- wait_event_interruptible(random_write_wait,
- kthread_should_stop() ||
- ENTROPY_BITS(&input_pool) <= random_write_wakeup_bits);
- }
- mix_pool_bytes(poolp, buffer, count);
- credit_entropy_bits(poolp, entropy);
- }
- EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);
|