arm_arch_timer.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868
  1. /*
  2. * linux/drivers/clocksource/arm_arch_timer.c
  3. *
  4. * Copyright (C) 2011 ARM Ltd.
  5. * All Rights Reserved
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/init.h>
  12. #include <linux/kernel.h>
  13. #include <linux/device.h>
  14. #include <linux/smp.h>
  15. #include <linux/cpu.h>
  16. #include <linux/cpu_pm.h>
  17. #include <linux/clockchips.h>
  18. #include <linux/clocksource.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/of_irq.h>
  21. #include <linux/of_address.h>
  22. #include <linux/io.h>
  23. #include <linux/slab.h>
  24. #include <linux/sched_clock.h>
  25. #include <linux/acpi.h>
  26. #include <asm/arch_timer.h>
  27. #include <asm/virt.h>
  28. #include <clocksource/arm_arch_timer.h>
  29. #define CNTTIDR 0x08
  30. #define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4))
  31. #define CNTVCT_LO 0x08
  32. #define CNTVCT_HI 0x0c
  33. #define CNTFRQ 0x10
  34. #define CNTP_TVAL 0x28
  35. #define CNTP_CTL 0x2c
  36. #define CNTV_TVAL 0x38
  37. #define CNTV_CTL 0x3c
  38. #define ARCH_CP15_TIMER BIT(0)
  39. #define ARCH_MEM_TIMER BIT(1)
  40. static unsigned arch_timers_present __initdata;
  41. static void __iomem *arch_counter_base;
  42. struct arch_timer {
  43. void __iomem *base;
  44. struct clock_event_device evt;
  45. };
  46. #define to_arch_timer(e) container_of(e, struct arch_timer, evt)
  47. static u32 arch_timer_rate;
  48. enum ppi_nr {
  49. PHYS_SECURE_PPI,
  50. PHYS_NONSECURE_PPI,
  51. VIRT_PPI,
  52. HYP_PPI,
  53. MAX_TIMER_PPI
  54. };
  55. static int arch_timer_ppi[MAX_TIMER_PPI];
  56. static struct clock_event_device __percpu *arch_timer_evt;
  57. static bool arch_timer_use_virtual = true;
  58. static bool arch_timer_c3stop;
  59. static bool arch_timer_mem_use_virtual;
  60. /*
  61. * Architected system timer support.
  62. */
  63. static __always_inline
  64. void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
  65. struct clock_event_device *clk)
  66. {
  67. if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
  68. struct arch_timer *timer = to_arch_timer(clk);
  69. switch (reg) {
  70. case ARCH_TIMER_REG_CTRL:
  71. writel_relaxed(val, timer->base + CNTP_CTL);
  72. break;
  73. case ARCH_TIMER_REG_TVAL:
  74. writel_relaxed(val, timer->base + CNTP_TVAL);
  75. break;
  76. }
  77. } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
  78. struct arch_timer *timer = to_arch_timer(clk);
  79. switch (reg) {
  80. case ARCH_TIMER_REG_CTRL:
  81. writel_relaxed(val, timer->base + CNTV_CTL);
  82. break;
  83. case ARCH_TIMER_REG_TVAL:
  84. writel_relaxed(val, timer->base + CNTV_TVAL);
  85. break;
  86. }
  87. } else {
  88. arch_timer_reg_write_cp15(access, reg, val);
  89. }
  90. }
  91. static __always_inline
  92. u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
  93. struct clock_event_device *clk)
  94. {
  95. u32 val;
  96. if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
  97. struct arch_timer *timer = to_arch_timer(clk);
  98. switch (reg) {
  99. case ARCH_TIMER_REG_CTRL:
  100. val = readl_relaxed(timer->base + CNTP_CTL);
  101. break;
  102. case ARCH_TIMER_REG_TVAL:
  103. val = readl_relaxed(timer->base + CNTP_TVAL);
  104. break;
  105. }
  106. } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
  107. struct arch_timer *timer = to_arch_timer(clk);
  108. switch (reg) {
  109. case ARCH_TIMER_REG_CTRL:
  110. val = readl_relaxed(timer->base + CNTV_CTL);
  111. break;
  112. case ARCH_TIMER_REG_TVAL:
  113. val = readl_relaxed(timer->base + CNTV_TVAL);
  114. break;
  115. }
  116. } else {
  117. val = arch_timer_reg_read_cp15(access, reg);
  118. }
  119. return val;
  120. }
  121. static __always_inline irqreturn_t timer_handler(const int access,
  122. struct clock_event_device *evt)
  123. {
  124. unsigned long ctrl;
  125. ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
  126. if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
  127. ctrl |= ARCH_TIMER_CTRL_IT_MASK;
  128. arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
  129. evt->event_handler(evt);
  130. return IRQ_HANDLED;
  131. }
  132. return IRQ_NONE;
  133. }
  134. static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
  135. {
  136. struct clock_event_device *evt = dev_id;
  137. return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
  138. }
  139. static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
  140. {
  141. struct clock_event_device *evt = dev_id;
  142. return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
  143. }
  144. static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
  145. {
  146. struct clock_event_device *evt = dev_id;
  147. return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
  148. }
  149. static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
  150. {
  151. struct clock_event_device *evt = dev_id;
  152. return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
  153. }
  154. static __always_inline int timer_shutdown(const int access,
  155. struct clock_event_device *clk)
  156. {
  157. unsigned long ctrl;
  158. ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
  159. ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
  160. arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
  161. return 0;
  162. }
  163. static int arch_timer_shutdown_virt(struct clock_event_device *clk)
  164. {
  165. return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
  166. }
  167. static int arch_timer_shutdown_phys(struct clock_event_device *clk)
  168. {
  169. return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
  170. }
  171. static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
  172. {
  173. return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
  174. }
  175. static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
  176. {
  177. return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
  178. }
  179. static __always_inline void set_next_event(const int access, unsigned long evt,
  180. struct clock_event_device *clk)
  181. {
  182. unsigned long ctrl;
  183. ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
  184. ctrl |= ARCH_TIMER_CTRL_ENABLE;
  185. ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
  186. arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
  187. arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
  188. }
  189. static int arch_timer_set_next_event_virt(unsigned long evt,
  190. struct clock_event_device *clk)
  191. {
  192. set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
  193. return 0;
  194. }
  195. static int arch_timer_set_next_event_phys(unsigned long evt,
  196. struct clock_event_device *clk)
  197. {
  198. set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
  199. return 0;
  200. }
  201. static int arch_timer_set_next_event_virt_mem(unsigned long evt,
  202. struct clock_event_device *clk)
  203. {
  204. set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
  205. return 0;
  206. }
  207. static int arch_timer_set_next_event_phys_mem(unsigned long evt,
  208. struct clock_event_device *clk)
  209. {
  210. set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
  211. return 0;
  212. }
  213. static void __arch_timer_setup(unsigned type,
  214. struct clock_event_device *clk)
  215. {
  216. clk->features = CLOCK_EVT_FEAT_ONESHOT;
  217. if (type == ARCH_CP15_TIMER) {
  218. if (arch_timer_c3stop)
  219. clk->features |= CLOCK_EVT_FEAT_C3STOP;
  220. clk->name = "arch_sys_timer";
  221. clk->rating = 450;
  222. clk->cpumask = cpumask_of(smp_processor_id());
  223. if (arch_timer_use_virtual) {
  224. clk->irq = arch_timer_ppi[VIRT_PPI];
  225. clk->set_state_shutdown = arch_timer_shutdown_virt;
  226. clk->set_next_event = arch_timer_set_next_event_virt;
  227. } else {
  228. clk->irq = arch_timer_ppi[PHYS_SECURE_PPI];
  229. clk->set_state_shutdown = arch_timer_shutdown_phys;
  230. clk->set_next_event = arch_timer_set_next_event_phys;
  231. }
  232. } else {
  233. clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
  234. clk->name = "arch_mem_timer";
  235. clk->rating = 400;
  236. clk->cpumask = cpu_all_mask;
  237. if (arch_timer_mem_use_virtual) {
  238. clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
  239. clk->set_next_event =
  240. arch_timer_set_next_event_virt_mem;
  241. } else {
  242. clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
  243. clk->set_next_event =
  244. arch_timer_set_next_event_phys_mem;
  245. }
  246. }
  247. clk->set_state_shutdown(clk);
  248. clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
  249. }
  250. static void arch_timer_evtstrm_enable(int divider)
  251. {
  252. u32 cntkctl = arch_timer_get_cntkctl();
  253. cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
  254. /* Set the divider and enable virtual event stream */
  255. cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
  256. | ARCH_TIMER_VIRT_EVT_EN;
  257. arch_timer_set_cntkctl(cntkctl);
  258. elf_hwcap |= HWCAP_EVTSTRM;
  259. #ifdef CONFIG_COMPAT
  260. compat_elf_hwcap |= COMPAT_HWCAP_EVTSTRM;
  261. #endif
  262. }
  263. static void arch_timer_configure_evtstream(void)
  264. {
  265. int evt_stream_div, pos;
  266. /* Find the closest power of two to the divisor */
  267. evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ;
  268. pos = fls(evt_stream_div);
  269. if (pos > 1 && !(evt_stream_div & (1 << (pos - 2))))
  270. pos--;
  271. /* enable event stream */
  272. arch_timer_evtstrm_enable(min(pos, 15));
  273. }
  274. static void arch_counter_set_user_access(void)
  275. {
  276. u32 cntkctl = arch_timer_get_cntkctl();
  277. /* Disable user access to the timers and the physical counter */
  278. /* Also disable virtual event stream */
  279. cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
  280. | ARCH_TIMER_USR_VT_ACCESS_EN
  281. | ARCH_TIMER_VIRT_EVT_EN
  282. | ARCH_TIMER_USR_PCT_ACCESS_EN);
  283. /* Enable user access to the virtual counter */
  284. cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
  285. arch_timer_set_cntkctl(cntkctl);
  286. }
  287. static int arch_timer_setup(struct clock_event_device *clk)
  288. {
  289. __arch_timer_setup(ARCH_CP15_TIMER, clk);
  290. if (arch_timer_use_virtual)
  291. enable_percpu_irq(arch_timer_ppi[VIRT_PPI], 0);
  292. else {
  293. enable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI], 0);
  294. if (arch_timer_ppi[PHYS_NONSECURE_PPI])
  295. enable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI], 0);
  296. }
  297. arch_counter_set_user_access();
  298. if (IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM))
  299. arch_timer_configure_evtstream();
  300. return 0;
  301. }
  302. static void
  303. arch_timer_detect_rate(void __iomem *cntbase, struct device_node *np)
  304. {
  305. /* Who has more than one independent system counter? */
  306. if (arch_timer_rate)
  307. return;
  308. /*
  309. * Try to determine the frequency from the device tree or CNTFRQ,
  310. * if ACPI is enabled, get the frequency from CNTFRQ ONLY.
  311. */
  312. if (!acpi_disabled ||
  313. of_property_read_u32(np, "clock-frequency", &arch_timer_rate)) {
  314. if (cntbase)
  315. arch_timer_rate = readl_relaxed(cntbase + CNTFRQ);
  316. else
  317. arch_timer_rate = arch_timer_get_cntfrq();
  318. }
  319. /* Check the timer frequency. */
  320. if (arch_timer_rate == 0)
  321. pr_warn("Architected timer frequency not available\n");
  322. }
  323. static void arch_timer_banner(unsigned type)
  324. {
  325. pr_info("Architected %s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
  326. type & ARCH_CP15_TIMER ? "cp15" : "",
  327. type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ? " and " : "",
  328. type & ARCH_MEM_TIMER ? "mmio" : "",
  329. (unsigned long)arch_timer_rate / 1000000,
  330. (unsigned long)(arch_timer_rate / 10000) % 100,
  331. type & ARCH_CP15_TIMER ?
  332. arch_timer_use_virtual ? "virt" : "phys" :
  333. "",
  334. type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ? "/" : "",
  335. type & ARCH_MEM_TIMER ?
  336. arch_timer_mem_use_virtual ? "virt" : "phys" :
  337. "");
  338. }
  339. u32 arch_timer_get_rate(void)
  340. {
  341. return arch_timer_rate;
  342. }
  343. static u64 arch_counter_get_cntvct_mem(void)
  344. {
  345. u32 vct_lo, vct_hi, tmp_hi;
  346. do {
  347. vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
  348. vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
  349. tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
  350. } while (vct_hi != tmp_hi);
  351. return ((u64) vct_hi << 32) | vct_lo;
  352. }
  353. /*
  354. * Default to cp15 based access because arm64 uses this function for
  355. * sched_clock() before DT is probed and the cp15 method is guaranteed
  356. * to exist on arm64. arm doesn't use this before DT is probed so even
  357. * if we don't have the cp15 accessors we won't have a problem.
  358. */
  359. u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct;
  360. static cycle_t arch_counter_read(struct clocksource *cs)
  361. {
  362. return arch_timer_read_counter();
  363. }
  364. static cycle_t arch_counter_read_cc(const struct cyclecounter *cc)
  365. {
  366. return arch_timer_read_counter();
  367. }
  368. static struct clocksource clocksource_counter = {
  369. .name = "arch_sys_counter",
  370. .rating = 400,
  371. .read = arch_counter_read,
  372. .mask = CLOCKSOURCE_MASK(56),
  373. .flags = CLOCK_SOURCE_IS_CONTINUOUS | CLOCK_SOURCE_SUSPEND_NONSTOP,
  374. };
  375. static struct cyclecounter cyclecounter = {
  376. .read = arch_counter_read_cc,
  377. .mask = CLOCKSOURCE_MASK(56),
  378. };
  379. static struct timecounter timecounter;
  380. struct timecounter *arch_timer_get_timecounter(void)
  381. {
  382. return &timecounter;
  383. }
  384. static void __init arch_counter_register(unsigned type)
  385. {
  386. u64 start_count;
  387. /* Register the CP15 based counter if we have one */
  388. if (type & ARCH_CP15_TIMER) {
  389. if (IS_ENABLED(CONFIG_ARM64) || arch_timer_use_virtual)
  390. arch_timer_read_counter = arch_counter_get_cntvct;
  391. else
  392. arch_timer_read_counter = arch_counter_get_cntpct;
  393. } else {
  394. arch_timer_read_counter = arch_counter_get_cntvct_mem;
  395. /* If the clocksource name is "arch_sys_counter" the
  396. * VDSO will attempt to read the CP15-based counter.
  397. * Ensure this does not happen when CP15-based
  398. * counter is not available.
  399. */
  400. clocksource_counter.name = "arch_mem_counter";
  401. }
  402. start_count = arch_timer_read_counter();
  403. clocksource_register_hz(&clocksource_counter, arch_timer_rate);
  404. cyclecounter.mult = clocksource_counter.mult;
  405. cyclecounter.shift = clocksource_counter.shift;
  406. timecounter_init(&timecounter, &cyclecounter, start_count);
  407. /* 56 bits minimum, so we assume worst case rollover */
  408. sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate);
  409. }
  410. static void arch_timer_stop(struct clock_event_device *clk)
  411. {
  412. pr_debug("arch_timer_teardown disable IRQ%d cpu #%d\n",
  413. clk->irq, smp_processor_id());
  414. if (arch_timer_use_virtual)
  415. disable_percpu_irq(arch_timer_ppi[VIRT_PPI]);
  416. else {
  417. disable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI]);
  418. if (arch_timer_ppi[PHYS_NONSECURE_PPI])
  419. disable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI]);
  420. }
  421. clk->set_state_shutdown(clk);
  422. }
  423. static int arch_timer_cpu_notify(struct notifier_block *self,
  424. unsigned long action, void *hcpu)
  425. {
  426. /*
  427. * Grab cpu pointer in each case to avoid spurious
  428. * preemptible warnings
  429. */
  430. switch (action & ~CPU_TASKS_FROZEN) {
  431. case CPU_STARTING:
  432. arch_timer_setup(this_cpu_ptr(arch_timer_evt));
  433. break;
  434. case CPU_DYING:
  435. arch_timer_stop(this_cpu_ptr(arch_timer_evt));
  436. break;
  437. }
  438. return NOTIFY_OK;
  439. }
  440. static struct notifier_block arch_timer_cpu_nb = {
  441. .notifier_call = arch_timer_cpu_notify,
  442. };
  443. #ifdef CONFIG_CPU_PM
  444. static unsigned int saved_cntkctl;
  445. static int arch_timer_cpu_pm_notify(struct notifier_block *self,
  446. unsigned long action, void *hcpu)
  447. {
  448. if (action == CPU_PM_ENTER)
  449. saved_cntkctl = arch_timer_get_cntkctl();
  450. else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT)
  451. arch_timer_set_cntkctl(saved_cntkctl);
  452. return NOTIFY_OK;
  453. }
  454. static struct notifier_block arch_timer_cpu_pm_notifier = {
  455. .notifier_call = arch_timer_cpu_pm_notify,
  456. };
  457. static int __init arch_timer_cpu_pm_init(void)
  458. {
  459. return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
  460. }
  461. #else
  462. static int __init arch_timer_cpu_pm_init(void)
  463. {
  464. return 0;
  465. }
  466. #endif
  467. static int __init arch_timer_register(void)
  468. {
  469. int err;
  470. int ppi;
  471. arch_timer_evt = alloc_percpu(struct clock_event_device);
  472. if (!arch_timer_evt) {
  473. err = -ENOMEM;
  474. goto out;
  475. }
  476. if (arch_timer_use_virtual) {
  477. ppi = arch_timer_ppi[VIRT_PPI];
  478. err = request_percpu_irq(ppi, arch_timer_handler_virt,
  479. "arch_timer", arch_timer_evt);
  480. } else {
  481. ppi = arch_timer_ppi[PHYS_SECURE_PPI];
  482. err = request_percpu_irq(ppi, arch_timer_handler_phys,
  483. "arch_timer", arch_timer_evt);
  484. if (!err && arch_timer_ppi[PHYS_NONSECURE_PPI]) {
  485. ppi = arch_timer_ppi[PHYS_NONSECURE_PPI];
  486. err = request_percpu_irq(ppi, arch_timer_handler_phys,
  487. "arch_timer", arch_timer_evt);
  488. if (err)
  489. free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
  490. arch_timer_evt);
  491. }
  492. }
  493. if (err) {
  494. pr_err("arch_timer: can't register interrupt %d (%d)\n",
  495. ppi, err);
  496. goto out_free;
  497. }
  498. err = register_cpu_notifier(&arch_timer_cpu_nb);
  499. if (err)
  500. goto out_free_irq;
  501. err = arch_timer_cpu_pm_init();
  502. if (err)
  503. goto out_unreg_notify;
  504. /* Immediately configure the timer on the boot CPU */
  505. arch_timer_setup(this_cpu_ptr(arch_timer_evt));
  506. return 0;
  507. out_unreg_notify:
  508. unregister_cpu_notifier(&arch_timer_cpu_nb);
  509. out_free_irq:
  510. if (arch_timer_use_virtual)
  511. free_percpu_irq(arch_timer_ppi[VIRT_PPI], arch_timer_evt);
  512. else {
  513. free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
  514. arch_timer_evt);
  515. if (arch_timer_ppi[PHYS_NONSECURE_PPI])
  516. free_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI],
  517. arch_timer_evt);
  518. }
  519. out_free:
  520. free_percpu(arch_timer_evt);
  521. out:
  522. return err;
  523. }
  524. static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
  525. {
  526. int ret;
  527. irq_handler_t func;
  528. struct arch_timer *t;
  529. t = kzalloc(sizeof(*t), GFP_KERNEL);
  530. if (!t)
  531. return -ENOMEM;
  532. t->base = base;
  533. t->evt.irq = irq;
  534. __arch_timer_setup(ARCH_MEM_TIMER, &t->evt);
  535. if (arch_timer_mem_use_virtual)
  536. func = arch_timer_handler_virt_mem;
  537. else
  538. func = arch_timer_handler_phys_mem;
  539. ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
  540. if (ret) {
  541. pr_err("arch_timer: Failed to request mem timer irq\n");
  542. kfree(t);
  543. }
  544. return ret;
  545. }
  546. static const struct of_device_id arch_timer_of_match[] __initconst = {
  547. { .compatible = "arm,armv7-timer", },
  548. { .compatible = "arm,armv8-timer", },
  549. {},
  550. };
  551. static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
  552. { .compatible = "arm,armv7-timer-mem", },
  553. {},
  554. };
  555. static bool __init
  556. arch_timer_needs_probing(int type, const struct of_device_id *matches)
  557. {
  558. struct device_node *dn;
  559. bool needs_probing = false;
  560. dn = of_find_matching_node(NULL, matches);
  561. if (dn && of_device_is_available(dn) && !(arch_timers_present & type))
  562. needs_probing = true;
  563. of_node_put(dn);
  564. return needs_probing;
  565. }
  566. static void __init arch_timer_common_init(void)
  567. {
  568. unsigned mask = ARCH_CP15_TIMER | ARCH_MEM_TIMER;
  569. /* Wait until both nodes are probed if we have two timers */
  570. if ((arch_timers_present & mask) != mask) {
  571. if (arch_timer_needs_probing(ARCH_MEM_TIMER, arch_timer_mem_of_match))
  572. return;
  573. if (arch_timer_needs_probing(ARCH_CP15_TIMER, arch_timer_of_match))
  574. return;
  575. }
  576. arch_timer_banner(arch_timers_present);
  577. arch_counter_register(arch_timers_present);
  578. arch_timer_arch_init();
  579. }
  580. static void __init arch_timer_init(void)
  581. {
  582. /*
  583. * If HYP mode is available, we know that the physical timer
  584. * has been configured to be accessible from PL1. Use it, so
  585. * that a guest can use the virtual timer instead.
  586. *
  587. * If no interrupt provided for virtual timer, we'll have to
  588. * stick to the physical timer. It'd better be accessible...
  589. */
  590. if (is_hyp_mode_available() || !arch_timer_ppi[VIRT_PPI]) {
  591. arch_timer_use_virtual = false;
  592. if (!arch_timer_ppi[PHYS_SECURE_PPI] ||
  593. !arch_timer_ppi[PHYS_NONSECURE_PPI]) {
  594. pr_warn("arch_timer: No interrupt available, giving up\n");
  595. return;
  596. }
  597. }
  598. arch_timer_register();
  599. arch_timer_common_init();
  600. }
  601. static void __init arch_timer_of_init(struct device_node *np)
  602. {
  603. int i;
  604. if (arch_timers_present & ARCH_CP15_TIMER) {
  605. pr_warn("arch_timer: multiple nodes in dt, skipping\n");
  606. return;
  607. }
  608. arch_timers_present |= ARCH_CP15_TIMER;
  609. for (i = PHYS_SECURE_PPI; i < MAX_TIMER_PPI; i++)
  610. arch_timer_ppi[i] = irq_of_parse_and_map(np, i);
  611. arch_timer_detect_rate(NULL, np);
  612. arch_timer_c3stop = !of_property_read_bool(np, "always-on");
  613. /*
  614. * If we cannot rely on firmware initializing the timer registers then
  615. * we should use the physical timers instead.
  616. */
  617. if (IS_ENABLED(CONFIG_ARM) &&
  618. of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
  619. arch_timer_use_virtual = false;
  620. arch_timer_init();
  621. }
  622. CLOCKSOURCE_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
  623. CLOCKSOURCE_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
  624. static void __init arch_timer_mem_init(struct device_node *np)
  625. {
  626. struct device_node *frame, *best_frame = NULL;
  627. void __iomem *cntctlbase, *base;
  628. unsigned int irq;
  629. u32 cnttidr;
  630. arch_timers_present |= ARCH_MEM_TIMER;
  631. cntctlbase = of_iomap(np, 0);
  632. if (!cntctlbase) {
  633. pr_err("arch_timer: Can't find CNTCTLBase\n");
  634. return;
  635. }
  636. cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
  637. iounmap(cntctlbase);
  638. /*
  639. * Try to find a virtual capable frame. Otherwise fall back to a
  640. * physical capable frame.
  641. */
  642. for_each_available_child_of_node(np, frame) {
  643. int n;
  644. if (of_property_read_u32(frame, "frame-number", &n)) {
  645. pr_err("arch_timer: Missing frame-number\n");
  646. of_node_put(best_frame);
  647. of_node_put(frame);
  648. return;
  649. }
  650. if (cnttidr & CNTTIDR_VIRT(n)) {
  651. of_node_put(best_frame);
  652. best_frame = frame;
  653. arch_timer_mem_use_virtual = true;
  654. break;
  655. }
  656. of_node_put(best_frame);
  657. best_frame = of_node_get(frame);
  658. }
  659. base = arch_counter_base = of_iomap(best_frame, 0);
  660. if (!base) {
  661. pr_err("arch_timer: Can't map frame's registers\n");
  662. of_node_put(best_frame);
  663. return;
  664. }
  665. if (arch_timer_mem_use_virtual)
  666. irq = irq_of_parse_and_map(best_frame, 1);
  667. else
  668. irq = irq_of_parse_and_map(best_frame, 0);
  669. of_node_put(best_frame);
  670. if (!irq) {
  671. pr_err("arch_timer: Frame missing %s irq",
  672. arch_timer_mem_use_virtual ? "virt" : "phys");
  673. return;
  674. }
  675. arch_timer_detect_rate(base, np);
  676. arch_timer_mem_register(base, irq);
  677. arch_timer_common_init();
  678. }
  679. CLOCKSOURCE_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
  680. arch_timer_mem_init);
  681. #ifdef CONFIG_ACPI
  682. static int __init map_generic_timer_interrupt(u32 interrupt, u32 flags)
  683. {
  684. int trigger, polarity;
  685. if (!interrupt)
  686. return 0;
  687. trigger = (flags & ACPI_GTDT_INTERRUPT_MODE) ? ACPI_EDGE_SENSITIVE
  688. : ACPI_LEVEL_SENSITIVE;
  689. polarity = (flags & ACPI_GTDT_INTERRUPT_POLARITY) ? ACPI_ACTIVE_LOW
  690. : ACPI_ACTIVE_HIGH;
  691. return acpi_register_gsi(NULL, interrupt, trigger, polarity);
  692. }
  693. /* Initialize per-processor generic timer */
  694. static int __init arch_timer_acpi_init(struct acpi_table_header *table)
  695. {
  696. struct acpi_table_gtdt *gtdt;
  697. if (arch_timers_present & ARCH_CP15_TIMER) {
  698. pr_warn("arch_timer: already initialized, skipping\n");
  699. return -EINVAL;
  700. }
  701. gtdt = container_of(table, struct acpi_table_gtdt, header);
  702. arch_timers_present |= ARCH_CP15_TIMER;
  703. arch_timer_ppi[PHYS_SECURE_PPI] =
  704. map_generic_timer_interrupt(gtdt->secure_el1_interrupt,
  705. gtdt->secure_el1_flags);
  706. arch_timer_ppi[PHYS_NONSECURE_PPI] =
  707. map_generic_timer_interrupt(gtdt->non_secure_el1_interrupt,
  708. gtdt->non_secure_el1_flags);
  709. arch_timer_ppi[VIRT_PPI] =
  710. map_generic_timer_interrupt(gtdt->virtual_timer_interrupt,
  711. gtdt->virtual_timer_flags);
  712. arch_timer_ppi[HYP_PPI] =
  713. map_generic_timer_interrupt(gtdt->non_secure_el2_interrupt,
  714. gtdt->non_secure_el2_flags);
  715. /* Get the frequency from CNTFRQ */
  716. arch_timer_detect_rate(NULL, NULL);
  717. /* Always-on capability */
  718. arch_timer_c3stop = !(gtdt->non_secure_el1_flags & ACPI_GTDT_ALWAYS_ON);
  719. arch_timer_init();
  720. return 0;
  721. }
  722. CLOCKSOURCE_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
  723. #endif