txx9dmac.c 34 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314
  1. /*
  2. * Driver for the TXx9 SoC DMA Controller
  3. *
  4. * Copyright (C) 2009 Atsushi Nemoto
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. */
  10. #include <linux/dma-mapping.h>
  11. #include <linux/init.h>
  12. #include <linux/interrupt.h>
  13. #include <linux/io.h>
  14. #include <linux/module.h>
  15. #include <linux/platform_device.h>
  16. #include <linux/slab.h>
  17. #include <linux/scatterlist.h>
  18. #include "dmaengine.h"
  19. #include "txx9dmac.h"
  20. static struct txx9dmac_chan *to_txx9dmac_chan(struct dma_chan *chan)
  21. {
  22. return container_of(chan, struct txx9dmac_chan, chan);
  23. }
  24. static struct txx9dmac_cregs __iomem *__dma_regs(const struct txx9dmac_chan *dc)
  25. {
  26. return dc->ch_regs;
  27. }
  28. static struct txx9dmac_cregs32 __iomem *__dma_regs32(
  29. const struct txx9dmac_chan *dc)
  30. {
  31. return dc->ch_regs;
  32. }
  33. #define channel64_readq(dc, name) \
  34. __raw_readq(&(__dma_regs(dc)->name))
  35. #define channel64_writeq(dc, name, val) \
  36. __raw_writeq((val), &(__dma_regs(dc)->name))
  37. #define channel64_readl(dc, name) \
  38. __raw_readl(&(__dma_regs(dc)->name))
  39. #define channel64_writel(dc, name, val) \
  40. __raw_writel((val), &(__dma_regs(dc)->name))
  41. #define channel32_readl(dc, name) \
  42. __raw_readl(&(__dma_regs32(dc)->name))
  43. #define channel32_writel(dc, name, val) \
  44. __raw_writel((val), &(__dma_regs32(dc)->name))
  45. #define channel_readq(dc, name) channel64_readq(dc, name)
  46. #define channel_writeq(dc, name, val) channel64_writeq(dc, name, val)
  47. #define channel_readl(dc, name) \
  48. (is_dmac64(dc) ? \
  49. channel64_readl(dc, name) : channel32_readl(dc, name))
  50. #define channel_writel(dc, name, val) \
  51. (is_dmac64(dc) ? \
  52. channel64_writel(dc, name, val) : channel32_writel(dc, name, val))
  53. static dma_addr_t channel64_read_CHAR(const struct txx9dmac_chan *dc)
  54. {
  55. if (sizeof(__dma_regs(dc)->CHAR) == sizeof(u64))
  56. return channel64_readq(dc, CHAR);
  57. else
  58. return channel64_readl(dc, CHAR);
  59. }
  60. static void channel64_write_CHAR(const struct txx9dmac_chan *dc, dma_addr_t val)
  61. {
  62. if (sizeof(__dma_regs(dc)->CHAR) == sizeof(u64))
  63. channel64_writeq(dc, CHAR, val);
  64. else
  65. channel64_writel(dc, CHAR, val);
  66. }
  67. static void channel64_clear_CHAR(const struct txx9dmac_chan *dc)
  68. {
  69. #if defined(CONFIG_32BIT) && !defined(CONFIG_PHYS_ADDR_T_64BIT)
  70. channel64_writel(dc, CHAR, 0);
  71. channel64_writel(dc, __pad_CHAR, 0);
  72. #else
  73. channel64_writeq(dc, CHAR, 0);
  74. #endif
  75. }
  76. static dma_addr_t channel_read_CHAR(const struct txx9dmac_chan *dc)
  77. {
  78. if (is_dmac64(dc))
  79. return channel64_read_CHAR(dc);
  80. else
  81. return channel32_readl(dc, CHAR);
  82. }
  83. static void channel_write_CHAR(const struct txx9dmac_chan *dc, dma_addr_t val)
  84. {
  85. if (is_dmac64(dc))
  86. channel64_write_CHAR(dc, val);
  87. else
  88. channel32_writel(dc, CHAR, val);
  89. }
  90. static struct txx9dmac_regs __iomem *__txx9dmac_regs(
  91. const struct txx9dmac_dev *ddev)
  92. {
  93. return ddev->regs;
  94. }
  95. static struct txx9dmac_regs32 __iomem *__txx9dmac_regs32(
  96. const struct txx9dmac_dev *ddev)
  97. {
  98. return ddev->regs;
  99. }
  100. #define dma64_readl(ddev, name) \
  101. __raw_readl(&(__txx9dmac_regs(ddev)->name))
  102. #define dma64_writel(ddev, name, val) \
  103. __raw_writel((val), &(__txx9dmac_regs(ddev)->name))
  104. #define dma32_readl(ddev, name) \
  105. __raw_readl(&(__txx9dmac_regs32(ddev)->name))
  106. #define dma32_writel(ddev, name, val) \
  107. __raw_writel((val), &(__txx9dmac_regs32(ddev)->name))
  108. #define dma_readl(ddev, name) \
  109. (__is_dmac64(ddev) ? \
  110. dma64_readl(ddev, name) : dma32_readl(ddev, name))
  111. #define dma_writel(ddev, name, val) \
  112. (__is_dmac64(ddev) ? \
  113. dma64_writel(ddev, name, val) : dma32_writel(ddev, name, val))
  114. static struct device *chan2dev(struct dma_chan *chan)
  115. {
  116. return &chan->dev->device;
  117. }
  118. static struct device *chan2parent(struct dma_chan *chan)
  119. {
  120. return chan->dev->device.parent;
  121. }
  122. static struct txx9dmac_desc *
  123. txd_to_txx9dmac_desc(struct dma_async_tx_descriptor *txd)
  124. {
  125. return container_of(txd, struct txx9dmac_desc, txd);
  126. }
  127. static dma_addr_t desc_read_CHAR(const struct txx9dmac_chan *dc,
  128. const struct txx9dmac_desc *desc)
  129. {
  130. return is_dmac64(dc) ? desc->hwdesc.CHAR : desc->hwdesc32.CHAR;
  131. }
  132. static void desc_write_CHAR(const struct txx9dmac_chan *dc,
  133. struct txx9dmac_desc *desc, dma_addr_t val)
  134. {
  135. if (is_dmac64(dc))
  136. desc->hwdesc.CHAR = val;
  137. else
  138. desc->hwdesc32.CHAR = val;
  139. }
  140. #define TXX9_DMA_MAX_COUNT 0x04000000
  141. #define TXX9_DMA_INITIAL_DESC_COUNT 64
  142. static struct txx9dmac_desc *txx9dmac_first_active(struct txx9dmac_chan *dc)
  143. {
  144. return list_entry(dc->active_list.next,
  145. struct txx9dmac_desc, desc_node);
  146. }
  147. static struct txx9dmac_desc *txx9dmac_last_active(struct txx9dmac_chan *dc)
  148. {
  149. return list_entry(dc->active_list.prev,
  150. struct txx9dmac_desc, desc_node);
  151. }
  152. static struct txx9dmac_desc *txx9dmac_first_queued(struct txx9dmac_chan *dc)
  153. {
  154. return list_entry(dc->queue.next, struct txx9dmac_desc, desc_node);
  155. }
  156. static struct txx9dmac_desc *txx9dmac_last_child(struct txx9dmac_desc *desc)
  157. {
  158. if (!list_empty(&desc->tx_list))
  159. desc = list_entry(desc->tx_list.prev, typeof(*desc), desc_node);
  160. return desc;
  161. }
  162. static dma_cookie_t txx9dmac_tx_submit(struct dma_async_tx_descriptor *tx);
  163. static struct txx9dmac_desc *txx9dmac_desc_alloc(struct txx9dmac_chan *dc,
  164. gfp_t flags)
  165. {
  166. struct txx9dmac_dev *ddev = dc->ddev;
  167. struct txx9dmac_desc *desc;
  168. desc = kzalloc(sizeof(*desc), flags);
  169. if (!desc)
  170. return NULL;
  171. INIT_LIST_HEAD(&desc->tx_list);
  172. dma_async_tx_descriptor_init(&desc->txd, &dc->chan);
  173. desc->txd.tx_submit = txx9dmac_tx_submit;
  174. /* txd.flags will be overwritten in prep funcs */
  175. desc->txd.flags = DMA_CTRL_ACK;
  176. desc->txd.phys = dma_map_single(chan2parent(&dc->chan), &desc->hwdesc,
  177. ddev->descsize, DMA_TO_DEVICE);
  178. return desc;
  179. }
  180. static struct txx9dmac_desc *txx9dmac_desc_get(struct txx9dmac_chan *dc)
  181. {
  182. struct txx9dmac_desc *desc, *_desc;
  183. struct txx9dmac_desc *ret = NULL;
  184. unsigned int i = 0;
  185. spin_lock_bh(&dc->lock);
  186. list_for_each_entry_safe(desc, _desc, &dc->free_list, desc_node) {
  187. if (async_tx_test_ack(&desc->txd)) {
  188. list_del(&desc->desc_node);
  189. ret = desc;
  190. break;
  191. }
  192. dev_dbg(chan2dev(&dc->chan), "desc %p not ACKed\n", desc);
  193. i++;
  194. }
  195. spin_unlock_bh(&dc->lock);
  196. dev_vdbg(chan2dev(&dc->chan), "scanned %u descriptors on freelist\n",
  197. i);
  198. if (!ret) {
  199. ret = txx9dmac_desc_alloc(dc, GFP_ATOMIC);
  200. if (ret) {
  201. spin_lock_bh(&dc->lock);
  202. dc->descs_allocated++;
  203. spin_unlock_bh(&dc->lock);
  204. } else
  205. dev_err(chan2dev(&dc->chan),
  206. "not enough descriptors available\n");
  207. }
  208. return ret;
  209. }
  210. static void txx9dmac_sync_desc_for_cpu(struct txx9dmac_chan *dc,
  211. struct txx9dmac_desc *desc)
  212. {
  213. struct txx9dmac_dev *ddev = dc->ddev;
  214. struct txx9dmac_desc *child;
  215. list_for_each_entry(child, &desc->tx_list, desc_node)
  216. dma_sync_single_for_cpu(chan2parent(&dc->chan),
  217. child->txd.phys, ddev->descsize,
  218. DMA_TO_DEVICE);
  219. dma_sync_single_for_cpu(chan2parent(&dc->chan),
  220. desc->txd.phys, ddev->descsize,
  221. DMA_TO_DEVICE);
  222. }
  223. /*
  224. * Move a descriptor, including any children, to the free list.
  225. * `desc' must not be on any lists.
  226. */
  227. static void txx9dmac_desc_put(struct txx9dmac_chan *dc,
  228. struct txx9dmac_desc *desc)
  229. {
  230. if (desc) {
  231. struct txx9dmac_desc *child;
  232. txx9dmac_sync_desc_for_cpu(dc, desc);
  233. spin_lock_bh(&dc->lock);
  234. list_for_each_entry(child, &desc->tx_list, desc_node)
  235. dev_vdbg(chan2dev(&dc->chan),
  236. "moving child desc %p to freelist\n",
  237. child);
  238. list_splice_init(&desc->tx_list, &dc->free_list);
  239. dev_vdbg(chan2dev(&dc->chan), "moving desc %p to freelist\n",
  240. desc);
  241. list_add(&desc->desc_node, &dc->free_list);
  242. spin_unlock_bh(&dc->lock);
  243. }
  244. }
  245. /*----------------------------------------------------------------------*/
  246. static void txx9dmac_dump_regs(struct txx9dmac_chan *dc)
  247. {
  248. if (is_dmac64(dc))
  249. dev_err(chan2dev(&dc->chan),
  250. " CHAR: %#llx SAR: %#llx DAR: %#llx CNTR: %#x"
  251. " SAIR: %#x DAIR: %#x CCR: %#x CSR: %#x\n",
  252. (u64)channel64_read_CHAR(dc),
  253. channel64_readq(dc, SAR),
  254. channel64_readq(dc, DAR),
  255. channel64_readl(dc, CNTR),
  256. channel64_readl(dc, SAIR),
  257. channel64_readl(dc, DAIR),
  258. channel64_readl(dc, CCR),
  259. channel64_readl(dc, CSR));
  260. else
  261. dev_err(chan2dev(&dc->chan),
  262. " CHAR: %#x SAR: %#x DAR: %#x CNTR: %#x"
  263. " SAIR: %#x DAIR: %#x CCR: %#x CSR: %#x\n",
  264. channel32_readl(dc, CHAR),
  265. channel32_readl(dc, SAR),
  266. channel32_readl(dc, DAR),
  267. channel32_readl(dc, CNTR),
  268. channel32_readl(dc, SAIR),
  269. channel32_readl(dc, DAIR),
  270. channel32_readl(dc, CCR),
  271. channel32_readl(dc, CSR));
  272. }
  273. static void txx9dmac_reset_chan(struct txx9dmac_chan *dc)
  274. {
  275. channel_writel(dc, CCR, TXX9_DMA_CCR_CHRST);
  276. if (is_dmac64(dc)) {
  277. channel64_clear_CHAR(dc);
  278. channel_writeq(dc, SAR, 0);
  279. channel_writeq(dc, DAR, 0);
  280. } else {
  281. channel_writel(dc, CHAR, 0);
  282. channel_writel(dc, SAR, 0);
  283. channel_writel(dc, DAR, 0);
  284. }
  285. channel_writel(dc, CNTR, 0);
  286. channel_writel(dc, SAIR, 0);
  287. channel_writel(dc, DAIR, 0);
  288. channel_writel(dc, CCR, 0);
  289. mmiowb();
  290. }
  291. /* Called with dc->lock held and bh disabled */
  292. static void txx9dmac_dostart(struct txx9dmac_chan *dc,
  293. struct txx9dmac_desc *first)
  294. {
  295. struct txx9dmac_slave *ds = dc->chan.private;
  296. u32 sai, dai;
  297. dev_vdbg(chan2dev(&dc->chan), "dostart %u %p\n",
  298. first->txd.cookie, first);
  299. /* ASSERT: channel is idle */
  300. if (channel_readl(dc, CSR) & TXX9_DMA_CSR_XFACT) {
  301. dev_err(chan2dev(&dc->chan),
  302. "BUG: Attempted to start non-idle channel\n");
  303. txx9dmac_dump_regs(dc);
  304. /* The tasklet will hopefully advance the queue... */
  305. return;
  306. }
  307. if (is_dmac64(dc)) {
  308. channel64_writel(dc, CNTR, 0);
  309. channel64_writel(dc, CSR, 0xffffffff);
  310. if (ds) {
  311. if (ds->tx_reg) {
  312. sai = ds->reg_width;
  313. dai = 0;
  314. } else {
  315. sai = 0;
  316. dai = ds->reg_width;
  317. }
  318. } else {
  319. sai = 8;
  320. dai = 8;
  321. }
  322. channel64_writel(dc, SAIR, sai);
  323. channel64_writel(dc, DAIR, dai);
  324. /* All 64-bit DMAC supports SMPCHN */
  325. channel64_writel(dc, CCR, dc->ccr);
  326. /* Writing a non zero value to CHAR will assert XFACT */
  327. channel64_write_CHAR(dc, first->txd.phys);
  328. } else {
  329. channel32_writel(dc, CNTR, 0);
  330. channel32_writel(dc, CSR, 0xffffffff);
  331. if (ds) {
  332. if (ds->tx_reg) {
  333. sai = ds->reg_width;
  334. dai = 0;
  335. } else {
  336. sai = 0;
  337. dai = ds->reg_width;
  338. }
  339. } else {
  340. sai = 4;
  341. dai = 4;
  342. }
  343. channel32_writel(dc, SAIR, sai);
  344. channel32_writel(dc, DAIR, dai);
  345. if (txx9_dma_have_SMPCHN()) {
  346. channel32_writel(dc, CCR, dc->ccr);
  347. /* Writing a non zero value to CHAR will assert XFACT */
  348. channel32_writel(dc, CHAR, first->txd.phys);
  349. } else {
  350. channel32_writel(dc, CHAR, first->txd.phys);
  351. channel32_writel(dc, CCR, dc->ccr);
  352. }
  353. }
  354. }
  355. /*----------------------------------------------------------------------*/
  356. static void
  357. txx9dmac_descriptor_complete(struct txx9dmac_chan *dc,
  358. struct txx9dmac_desc *desc)
  359. {
  360. dma_async_tx_callback callback;
  361. void *param;
  362. struct dma_async_tx_descriptor *txd = &desc->txd;
  363. dev_vdbg(chan2dev(&dc->chan), "descriptor %u %p complete\n",
  364. txd->cookie, desc);
  365. dma_cookie_complete(txd);
  366. callback = txd->callback;
  367. param = txd->callback_param;
  368. txx9dmac_sync_desc_for_cpu(dc, desc);
  369. list_splice_init(&desc->tx_list, &dc->free_list);
  370. list_move(&desc->desc_node, &dc->free_list);
  371. dma_descriptor_unmap(txd);
  372. /*
  373. * The API requires that no submissions are done from a
  374. * callback, so we don't need to drop the lock here
  375. */
  376. if (callback)
  377. callback(param);
  378. dma_run_dependencies(txd);
  379. }
  380. static void txx9dmac_dequeue(struct txx9dmac_chan *dc, struct list_head *list)
  381. {
  382. struct txx9dmac_dev *ddev = dc->ddev;
  383. struct txx9dmac_desc *desc;
  384. struct txx9dmac_desc *prev = NULL;
  385. BUG_ON(!list_empty(list));
  386. do {
  387. desc = txx9dmac_first_queued(dc);
  388. if (prev) {
  389. desc_write_CHAR(dc, prev, desc->txd.phys);
  390. dma_sync_single_for_device(chan2parent(&dc->chan),
  391. prev->txd.phys, ddev->descsize,
  392. DMA_TO_DEVICE);
  393. }
  394. prev = txx9dmac_last_child(desc);
  395. list_move_tail(&desc->desc_node, list);
  396. /* Make chain-completion interrupt happen */
  397. if ((desc->txd.flags & DMA_PREP_INTERRUPT) &&
  398. !txx9dmac_chan_INTENT(dc))
  399. break;
  400. } while (!list_empty(&dc->queue));
  401. }
  402. static void txx9dmac_complete_all(struct txx9dmac_chan *dc)
  403. {
  404. struct txx9dmac_desc *desc, *_desc;
  405. LIST_HEAD(list);
  406. /*
  407. * Submit queued descriptors ASAP, i.e. before we go through
  408. * the completed ones.
  409. */
  410. list_splice_init(&dc->active_list, &list);
  411. if (!list_empty(&dc->queue)) {
  412. txx9dmac_dequeue(dc, &dc->active_list);
  413. txx9dmac_dostart(dc, txx9dmac_first_active(dc));
  414. }
  415. list_for_each_entry_safe(desc, _desc, &list, desc_node)
  416. txx9dmac_descriptor_complete(dc, desc);
  417. }
  418. static void txx9dmac_dump_desc(struct txx9dmac_chan *dc,
  419. struct txx9dmac_hwdesc *desc)
  420. {
  421. if (is_dmac64(dc)) {
  422. #ifdef TXX9_DMA_USE_SIMPLE_CHAIN
  423. dev_crit(chan2dev(&dc->chan),
  424. " desc: ch%#llx s%#llx d%#llx c%#x\n",
  425. (u64)desc->CHAR, desc->SAR, desc->DAR, desc->CNTR);
  426. #else
  427. dev_crit(chan2dev(&dc->chan),
  428. " desc: ch%#llx s%#llx d%#llx c%#x"
  429. " si%#x di%#x cc%#x cs%#x\n",
  430. (u64)desc->CHAR, desc->SAR, desc->DAR, desc->CNTR,
  431. desc->SAIR, desc->DAIR, desc->CCR, desc->CSR);
  432. #endif
  433. } else {
  434. struct txx9dmac_hwdesc32 *d = (struct txx9dmac_hwdesc32 *)desc;
  435. #ifdef TXX9_DMA_USE_SIMPLE_CHAIN
  436. dev_crit(chan2dev(&dc->chan),
  437. " desc: ch%#x s%#x d%#x c%#x\n",
  438. d->CHAR, d->SAR, d->DAR, d->CNTR);
  439. #else
  440. dev_crit(chan2dev(&dc->chan),
  441. " desc: ch%#x s%#x d%#x c%#x"
  442. " si%#x di%#x cc%#x cs%#x\n",
  443. d->CHAR, d->SAR, d->DAR, d->CNTR,
  444. d->SAIR, d->DAIR, d->CCR, d->CSR);
  445. #endif
  446. }
  447. }
  448. static void txx9dmac_handle_error(struct txx9dmac_chan *dc, u32 csr)
  449. {
  450. struct txx9dmac_desc *bad_desc;
  451. struct txx9dmac_desc *child;
  452. u32 errors;
  453. /*
  454. * The descriptor currently at the head of the active list is
  455. * borked. Since we don't have any way to report errors, we'll
  456. * just have to scream loudly and try to carry on.
  457. */
  458. dev_crit(chan2dev(&dc->chan), "Abnormal Chain Completion\n");
  459. txx9dmac_dump_regs(dc);
  460. bad_desc = txx9dmac_first_active(dc);
  461. list_del_init(&bad_desc->desc_node);
  462. /* Clear all error flags and try to restart the controller */
  463. errors = csr & (TXX9_DMA_CSR_ABCHC |
  464. TXX9_DMA_CSR_CFERR | TXX9_DMA_CSR_CHERR |
  465. TXX9_DMA_CSR_DESERR | TXX9_DMA_CSR_SORERR);
  466. channel_writel(dc, CSR, errors);
  467. if (list_empty(&dc->active_list) && !list_empty(&dc->queue))
  468. txx9dmac_dequeue(dc, &dc->active_list);
  469. if (!list_empty(&dc->active_list))
  470. txx9dmac_dostart(dc, txx9dmac_first_active(dc));
  471. dev_crit(chan2dev(&dc->chan),
  472. "Bad descriptor submitted for DMA! (cookie: %d)\n",
  473. bad_desc->txd.cookie);
  474. txx9dmac_dump_desc(dc, &bad_desc->hwdesc);
  475. list_for_each_entry(child, &bad_desc->tx_list, desc_node)
  476. txx9dmac_dump_desc(dc, &child->hwdesc);
  477. /* Pretend the descriptor completed successfully */
  478. txx9dmac_descriptor_complete(dc, bad_desc);
  479. }
  480. static void txx9dmac_scan_descriptors(struct txx9dmac_chan *dc)
  481. {
  482. dma_addr_t chain;
  483. struct txx9dmac_desc *desc, *_desc;
  484. struct txx9dmac_desc *child;
  485. u32 csr;
  486. if (is_dmac64(dc)) {
  487. chain = channel64_read_CHAR(dc);
  488. csr = channel64_readl(dc, CSR);
  489. channel64_writel(dc, CSR, csr);
  490. } else {
  491. chain = channel32_readl(dc, CHAR);
  492. csr = channel32_readl(dc, CSR);
  493. channel32_writel(dc, CSR, csr);
  494. }
  495. /* For dynamic chain, we should look at XFACT instead of NCHNC */
  496. if (!(csr & (TXX9_DMA_CSR_XFACT | TXX9_DMA_CSR_ABCHC))) {
  497. /* Everything we've submitted is done */
  498. txx9dmac_complete_all(dc);
  499. return;
  500. }
  501. if (!(csr & TXX9_DMA_CSR_CHNEN))
  502. chain = 0; /* last descriptor of this chain */
  503. dev_vdbg(chan2dev(&dc->chan), "scan_descriptors: char=%#llx\n",
  504. (u64)chain);
  505. list_for_each_entry_safe(desc, _desc, &dc->active_list, desc_node) {
  506. if (desc_read_CHAR(dc, desc) == chain) {
  507. /* This one is currently in progress */
  508. if (csr & TXX9_DMA_CSR_ABCHC)
  509. goto scan_done;
  510. return;
  511. }
  512. list_for_each_entry(child, &desc->tx_list, desc_node)
  513. if (desc_read_CHAR(dc, child) == chain) {
  514. /* Currently in progress */
  515. if (csr & TXX9_DMA_CSR_ABCHC)
  516. goto scan_done;
  517. return;
  518. }
  519. /*
  520. * No descriptors so far seem to be in progress, i.e.
  521. * this one must be done.
  522. */
  523. txx9dmac_descriptor_complete(dc, desc);
  524. }
  525. scan_done:
  526. if (csr & TXX9_DMA_CSR_ABCHC) {
  527. txx9dmac_handle_error(dc, csr);
  528. return;
  529. }
  530. dev_err(chan2dev(&dc->chan),
  531. "BUG: All descriptors done, but channel not idle!\n");
  532. /* Try to continue after resetting the channel... */
  533. txx9dmac_reset_chan(dc);
  534. if (!list_empty(&dc->queue)) {
  535. txx9dmac_dequeue(dc, &dc->active_list);
  536. txx9dmac_dostart(dc, txx9dmac_first_active(dc));
  537. }
  538. }
  539. static void txx9dmac_chan_tasklet(unsigned long data)
  540. {
  541. int irq;
  542. u32 csr;
  543. struct txx9dmac_chan *dc;
  544. dc = (struct txx9dmac_chan *)data;
  545. csr = channel_readl(dc, CSR);
  546. dev_vdbg(chan2dev(&dc->chan), "tasklet: status=%x\n", csr);
  547. spin_lock(&dc->lock);
  548. if (csr & (TXX9_DMA_CSR_ABCHC | TXX9_DMA_CSR_NCHNC |
  549. TXX9_DMA_CSR_NTRNFC))
  550. txx9dmac_scan_descriptors(dc);
  551. spin_unlock(&dc->lock);
  552. irq = dc->irq;
  553. enable_irq(irq);
  554. }
  555. static irqreturn_t txx9dmac_chan_interrupt(int irq, void *dev_id)
  556. {
  557. struct txx9dmac_chan *dc = dev_id;
  558. dev_vdbg(chan2dev(&dc->chan), "interrupt: status=%#x\n",
  559. channel_readl(dc, CSR));
  560. tasklet_schedule(&dc->tasklet);
  561. /*
  562. * Just disable the interrupts. We'll turn them back on in the
  563. * softirq handler.
  564. */
  565. disable_irq_nosync(irq);
  566. return IRQ_HANDLED;
  567. }
  568. static void txx9dmac_tasklet(unsigned long data)
  569. {
  570. int irq;
  571. u32 csr;
  572. struct txx9dmac_chan *dc;
  573. struct txx9dmac_dev *ddev = (struct txx9dmac_dev *)data;
  574. u32 mcr;
  575. int i;
  576. mcr = dma_readl(ddev, MCR);
  577. dev_vdbg(ddev->chan[0]->dma.dev, "tasklet: mcr=%x\n", mcr);
  578. for (i = 0; i < TXX9_DMA_MAX_NR_CHANNELS; i++) {
  579. if ((mcr >> (24 + i)) & 0x11) {
  580. dc = ddev->chan[i];
  581. csr = channel_readl(dc, CSR);
  582. dev_vdbg(chan2dev(&dc->chan), "tasklet: status=%x\n",
  583. csr);
  584. spin_lock(&dc->lock);
  585. if (csr & (TXX9_DMA_CSR_ABCHC | TXX9_DMA_CSR_NCHNC |
  586. TXX9_DMA_CSR_NTRNFC))
  587. txx9dmac_scan_descriptors(dc);
  588. spin_unlock(&dc->lock);
  589. }
  590. }
  591. irq = ddev->irq;
  592. enable_irq(irq);
  593. }
  594. static irqreturn_t txx9dmac_interrupt(int irq, void *dev_id)
  595. {
  596. struct txx9dmac_dev *ddev = dev_id;
  597. dev_vdbg(ddev->chan[0]->dma.dev, "interrupt: status=%#x\n",
  598. dma_readl(ddev, MCR));
  599. tasklet_schedule(&ddev->tasklet);
  600. /*
  601. * Just disable the interrupts. We'll turn them back on in the
  602. * softirq handler.
  603. */
  604. disable_irq_nosync(irq);
  605. return IRQ_HANDLED;
  606. }
  607. /*----------------------------------------------------------------------*/
  608. static dma_cookie_t txx9dmac_tx_submit(struct dma_async_tx_descriptor *tx)
  609. {
  610. struct txx9dmac_desc *desc = txd_to_txx9dmac_desc(tx);
  611. struct txx9dmac_chan *dc = to_txx9dmac_chan(tx->chan);
  612. dma_cookie_t cookie;
  613. spin_lock_bh(&dc->lock);
  614. cookie = dma_cookie_assign(tx);
  615. dev_vdbg(chan2dev(tx->chan), "tx_submit: queued %u %p\n",
  616. desc->txd.cookie, desc);
  617. list_add_tail(&desc->desc_node, &dc->queue);
  618. spin_unlock_bh(&dc->lock);
  619. return cookie;
  620. }
  621. static struct dma_async_tx_descriptor *
  622. txx9dmac_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
  623. size_t len, unsigned long flags)
  624. {
  625. struct txx9dmac_chan *dc = to_txx9dmac_chan(chan);
  626. struct txx9dmac_dev *ddev = dc->ddev;
  627. struct txx9dmac_desc *desc;
  628. struct txx9dmac_desc *first;
  629. struct txx9dmac_desc *prev;
  630. size_t xfer_count;
  631. size_t offset;
  632. dev_vdbg(chan2dev(chan), "prep_dma_memcpy d%#llx s%#llx l%#zx f%#lx\n",
  633. (u64)dest, (u64)src, len, flags);
  634. if (unlikely(!len)) {
  635. dev_dbg(chan2dev(chan), "prep_dma_memcpy: length is zero!\n");
  636. return NULL;
  637. }
  638. prev = first = NULL;
  639. for (offset = 0; offset < len; offset += xfer_count) {
  640. xfer_count = min_t(size_t, len - offset, TXX9_DMA_MAX_COUNT);
  641. /*
  642. * Workaround for ERT-TX49H2-033, ERT-TX49H3-020,
  643. * ERT-TX49H4-016 (slightly conservative)
  644. */
  645. if (__is_dmac64(ddev)) {
  646. if (xfer_count > 0x100 &&
  647. (xfer_count & 0xff) >= 0xfa &&
  648. (xfer_count & 0xff) <= 0xff)
  649. xfer_count -= 0x20;
  650. } else {
  651. if (xfer_count > 0x80 &&
  652. (xfer_count & 0x7f) >= 0x7e &&
  653. (xfer_count & 0x7f) <= 0x7f)
  654. xfer_count -= 0x20;
  655. }
  656. desc = txx9dmac_desc_get(dc);
  657. if (!desc) {
  658. txx9dmac_desc_put(dc, first);
  659. return NULL;
  660. }
  661. if (__is_dmac64(ddev)) {
  662. desc->hwdesc.SAR = src + offset;
  663. desc->hwdesc.DAR = dest + offset;
  664. desc->hwdesc.CNTR = xfer_count;
  665. txx9dmac_desc_set_nosimple(ddev, desc, 8, 8,
  666. dc->ccr | TXX9_DMA_CCR_XFACT);
  667. } else {
  668. desc->hwdesc32.SAR = src + offset;
  669. desc->hwdesc32.DAR = dest + offset;
  670. desc->hwdesc32.CNTR = xfer_count;
  671. txx9dmac_desc_set_nosimple(ddev, desc, 4, 4,
  672. dc->ccr | TXX9_DMA_CCR_XFACT);
  673. }
  674. /*
  675. * The descriptors on tx_list are not reachable from
  676. * the dc->queue list or dc->active_list after a
  677. * submit. If we put all descriptors on active_list,
  678. * calling of callback on the completion will be more
  679. * complex.
  680. */
  681. if (!first) {
  682. first = desc;
  683. } else {
  684. desc_write_CHAR(dc, prev, desc->txd.phys);
  685. dma_sync_single_for_device(chan2parent(&dc->chan),
  686. prev->txd.phys, ddev->descsize,
  687. DMA_TO_DEVICE);
  688. list_add_tail(&desc->desc_node, &first->tx_list);
  689. }
  690. prev = desc;
  691. }
  692. /* Trigger interrupt after last block */
  693. if (flags & DMA_PREP_INTERRUPT)
  694. txx9dmac_desc_set_INTENT(ddev, prev);
  695. desc_write_CHAR(dc, prev, 0);
  696. dma_sync_single_for_device(chan2parent(&dc->chan),
  697. prev->txd.phys, ddev->descsize,
  698. DMA_TO_DEVICE);
  699. first->txd.flags = flags;
  700. first->len = len;
  701. return &first->txd;
  702. }
  703. static struct dma_async_tx_descriptor *
  704. txx9dmac_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
  705. unsigned int sg_len, enum dma_transfer_direction direction,
  706. unsigned long flags, void *context)
  707. {
  708. struct txx9dmac_chan *dc = to_txx9dmac_chan(chan);
  709. struct txx9dmac_dev *ddev = dc->ddev;
  710. struct txx9dmac_slave *ds = chan->private;
  711. struct txx9dmac_desc *prev;
  712. struct txx9dmac_desc *first;
  713. unsigned int i;
  714. struct scatterlist *sg;
  715. dev_vdbg(chan2dev(chan), "prep_dma_slave\n");
  716. BUG_ON(!ds || !ds->reg_width);
  717. if (ds->tx_reg)
  718. BUG_ON(direction != DMA_MEM_TO_DEV);
  719. else
  720. BUG_ON(direction != DMA_DEV_TO_MEM);
  721. if (unlikely(!sg_len))
  722. return NULL;
  723. prev = first = NULL;
  724. for_each_sg(sgl, sg, sg_len, i) {
  725. struct txx9dmac_desc *desc;
  726. dma_addr_t mem;
  727. u32 sai, dai;
  728. desc = txx9dmac_desc_get(dc);
  729. if (!desc) {
  730. txx9dmac_desc_put(dc, first);
  731. return NULL;
  732. }
  733. mem = sg_dma_address(sg);
  734. if (__is_dmac64(ddev)) {
  735. if (direction == DMA_MEM_TO_DEV) {
  736. desc->hwdesc.SAR = mem;
  737. desc->hwdesc.DAR = ds->tx_reg;
  738. } else {
  739. desc->hwdesc.SAR = ds->rx_reg;
  740. desc->hwdesc.DAR = mem;
  741. }
  742. desc->hwdesc.CNTR = sg_dma_len(sg);
  743. } else {
  744. if (direction == DMA_MEM_TO_DEV) {
  745. desc->hwdesc32.SAR = mem;
  746. desc->hwdesc32.DAR = ds->tx_reg;
  747. } else {
  748. desc->hwdesc32.SAR = ds->rx_reg;
  749. desc->hwdesc32.DAR = mem;
  750. }
  751. desc->hwdesc32.CNTR = sg_dma_len(sg);
  752. }
  753. if (direction == DMA_MEM_TO_DEV) {
  754. sai = ds->reg_width;
  755. dai = 0;
  756. } else {
  757. sai = 0;
  758. dai = ds->reg_width;
  759. }
  760. txx9dmac_desc_set_nosimple(ddev, desc, sai, dai,
  761. dc->ccr | TXX9_DMA_CCR_XFACT);
  762. if (!first) {
  763. first = desc;
  764. } else {
  765. desc_write_CHAR(dc, prev, desc->txd.phys);
  766. dma_sync_single_for_device(chan2parent(&dc->chan),
  767. prev->txd.phys,
  768. ddev->descsize,
  769. DMA_TO_DEVICE);
  770. list_add_tail(&desc->desc_node, &first->tx_list);
  771. }
  772. prev = desc;
  773. }
  774. /* Trigger interrupt after last block */
  775. if (flags & DMA_PREP_INTERRUPT)
  776. txx9dmac_desc_set_INTENT(ddev, prev);
  777. desc_write_CHAR(dc, prev, 0);
  778. dma_sync_single_for_device(chan2parent(&dc->chan),
  779. prev->txd.phys, ddev->descsize,
  780. DMA_TO_DEVICE);
  781. first->txd.flags = flags;
  782. first->len = 0;
  783. return &first->txd;
  784. }
  785. static int txx9dmac_terminate_all(struct dma_chan *chan)
  786. {
  787. struct txx9dmac_chan *dc = to_txx9dmac_chan(chan);
  788. struct txx9dmac_desc *desc, *_desc;
  789. LIST_HEAD(list);
  790. dev_vdbg(chan2dev(chan), "terminate_all\n");
  791. spin_lock_bh(&dc->lock);
  792. txx9dmac_reset_chan(dc);
  793. /* active_list entries will end up before queued entries */
  794. list_splice_init(&dc->queue, &list);
  795. list_splice_init(&dc->active_list, &list);
  796. spin_unlock_bh(&dc->lock);
  797. /* Flush all pending and queued descriptors */
  798. list_for_each_entry_safe(desc, _desc, &list, desc_node)
  799. txx9dmac_descriptor_complete(dc, desc);
  800. return 0;
  801. }
  802. static enum dma_status
  803. txx9dmac_tx_status(struct dma_chan *chan, dma_cookie_t cookie,
  804. struct dma_tx_state *txstate)
  805. {
  806. struct txx9dmac_chan *dc = to_txx9dmac_chan(chan);
  807. enum dma_status ret;
  808. ret = dma_cookie_status(chan, cookie, txstate);
  809. if (ret == DMA_COMPLETE)
  810. return DMA_COMPLETE;
  811. spin_lock_bh(&dc->lock);
  812. txx9dmac_scan_descriptors(dc);
  813. spin_unlock_bh(&dc->lock);
  814. return dma_cookie_status(chan, cookie, txstate);
  815. }
  816. static void txx9dmac_chain_dynamic(struct txx9dmac_chan *dc,
  817. struct txx9dmac_desc *prev)
  818. {
  819. struct txx9dmac_dev *ddev = dc->ddev;
  820. struct txx9dmac_desc *desc;
  821. LIST_HEAD(list);
  822. prev = txx9dmac_last_child(prev);
  823. txx9dmac_dequeue(dc, &list);
  824. desc = list_entry(list.next, struct txx9dmac_desc, desc_node);
  825. desc_write_CHAR(dc, prev, desc->txd.phys);
  826. dma_sync_single_for_device(chan2parent(&dc->chan),
  827. prev->txd.phys, ddev->descsize,
  828. DMA_TO_DEVICE);
  829. mmiowb();
  830. if (!(channel_readl(dc, CSR) & TXX9_DMA_CSR_CHNEN) &&
  831. channel_read_CHAR(dc) == prev->txd.phys)
  832. /* Restart chain DMA */
  833. channel_write_CHAR(dc, desc->txd.phys);
  834. list_splice_tail(&list, &dc->active_list);
  835. }
  836. static void txx9dmac_issue_pending(struct dma_chan *chan)
  837. {
  838. struct txx9dmac_chan *dc = to_txx9dmac_chan(chan);
  839. spin_lock_bh(&dc->lock);
  840. if (!list_empty(&dc->active_list))
  841. txx9dmac_scan_descriptors(dc);
  842. if (!list_empty(&dc->queue)) {
  843. if (list_empty(&dc->active_list)) {
  844. txx9dmac_dequeue(dc, &dc->active_list);
  845. txx9dmac_dostart(dc, txx9dmac_first_active(dc));
  846. } else if (txx9_dma_have_SMPCHN()) {
  847. struct txx9dmac_desc *prev = txx9dmac_last_active(dc);
  848. if (!(prev->txd.flags & DMA_PREP_INTERRUPT) ||
  849. txx9dmac_chan_INTENT(dc))
  850. txx9dmac_chain_dynamic(dc, prev);
  851. }
  852. }
  853. spin_unlock_bh(&dc->lock);
  854. }
  855. static int txx9dmac_alloc_chan_resources(struct dma_chan *chan)
  856. {
  857. struct txx9dmac_chan *dc = to_txx9dmac_chan(chan);
  858. struct txx9dmac_slave *ds = chan->private;
  859. struct txx9dmac_desc *desc;
  860. int i;
  861. dev_vdbg(chan2dev(chan), "alloc_chan_resources\n");
  862. /* ASSERT: channel is idle */
  863. if (channel_readl(dc, CSR) & TXX9_DMA_CSR_XFACT) {
  864. dev_dbg(chan2dev(chan), "DMA channel not idle?\n");
  865. return -EIO;
  866. }
  867. dma_cookie_init(chan);
  868. dc->ccr = TXX9_DMA_CCR_IMMCHN | TXX9_DMA_CCR_INTENE | CCR_LE;
  869. txx9dmac_chan_set_SMPCHN(dc);
  870. if (!txx9_dma_have_SMPCHN() || (dc->ccr & TXX9_DMA_CCR_SMPCHN))
  871. dc->ccr |= TXX9_DMA_CCR_INTENC;
  872. if (chan->device->device_prep_dma_memcpy) {
  873. if (ds)
  874. return -EINVAL;
  875. dc->ccr |= TXX9_DMA_CCR_XFSZ_X8;
  876. } else {
  877. if (!ds ||
  878. (ds->tx_reg && ds->rx_reg) || (!ds->tx_reg && !ds->rx_reg))
  879. return -EINVAL;
  880. dc->ccr |= TXX9_DMA_CCR_EXTRQ |
  881. TXX9_DMA_CCR_XFSZ(__ffs(ds->reg_width));
  882. txx9dmac_chan_set_INTENT(dc);
  883. }
  884. spin_lock_bh(&dc->lock);
  885. i = dc->descs_allocated;
  886. while (dc->descs_allocated < TXX9_DMA_INITIAL_DESC_COUNT) {
  887. spin_unlock_bh(&dc->lock);
  888. desc = txx9dmac_desc_alloc(dc, GFP_KERNEL);
  889. if (!desc) {
  890. dev_info(chan2dev(chan),
  891. "only allocated %d descriptors\n", i);
  892. spin_lock_bh(&dc->lock);
  893. break;
  894. }
  895. txx9dmac_desc_put(dc, desc);
  896. spin_lock_bh(&dc->lock);
  897. i = ++dc->descs_allocated;
  898. }
  899. spin_unlock_bh(&dc->lock);
  900. dev_dbg(chan2dev(chan),
  901. "alloc_chan_resources allocated %d descriptors\n", i);
  902. return i;
  903. }
  904. static void txx9dmac_free_chan_resources(struct dma_chan *chan)
  905. {
  906. struct txx9dmac_chan *dc = to_txx9dmac_chan(chan);
  907. struct txx9dmac_dev *ddev = dc->ddev;
  908. struct txx9dmac_desc *desc, *_desc;
  909. LIST_HEAD(list);
  910. dev_dbg(chan2dev(chan), "free_chan_resources (descs allocated=%u)\n",
  911. dc->descs_allocated);
  912. /* ASSERT: channel is idle */
  913. BUG_ON(!list_empty(&dc->active_list));
  914. BUG_ON(!list_empty(&dc->queue));
  915. BUG_ON(channel_readl(dc, CSR) & TXX9_DMA_CSR_XFACT);
  916. spin_lock_bh(&dc->lock);
  917. list_splice_init(&dc->free_list, &list);
  918. dc->descs_allocated = 0;
  919. spin_unlock_bh(&dc->lock);
  920. list_for_each_entry_safe(desc, _desc, &list, desc_node) {
  921. dev_vdbg(chan2dev(chan), " freeing descriptor %p\n", desc);
  922. dma_unmap_single(chan2parent(chan), desc->txd.phys,
  923. ddev->descsize, DMA_TO_DEVICE);
  924. kfree(desc);
  925. }
  926. dev_vdbg(chan2dev(chan), "free_chan_resources done\n");
  927. }
  928. /*----------------------------------------------------------------------*/
  929. static void txx9dmac_off(struct txx9dmac_dev *ddev)
  930. {
  931. dma_writel(ddev, MCR, 0);
  932. mmiowb();
  933. }
  934. static int __init txx9dmac_chan_probe(struct platform_device *pdev)
  935. {
  936. struct txx9dmac_chan_platform_data *cpdata =
  937. dev_get_platdata(&pdev->dev);
  938. struct platform_device *dmac_dev = cpdata->dmac_dev;
  939. struct txx9dmac_platform_data *pdata = dev_get_platdata(&dmac_dev->dev);
  940. struct txx9dmac_chan *dc;
  941. int err;
  942. int ch = pdev->id % TXX9_DMA_MAX_NR_CHANNELS;
  943. int irq;
  944. dc = devm_kzalloc(&pdev->dev, sizeof(*dc), GFP_KERNEL);
  945. if (!dc)
  946. return -ENOMEM;
  947. dc->dma.dev = &pdev->dev;
  948. dc->dma.device_alloc_chan_resources = txx9dmac_alloc_chan_resources;
  949. dc->dma.device_free_chan_resources = txx9dmac_free_chan_resources;
  950. dc->dma.device_terminate_all = txx9dmac_terminate_all;
  951. dc->dma.device_tx_status = txx9dmac_tx_status;
  952. dc->dma.device_issue_pending = txx9dmac_issue_pending;
  953. if (pdata && pdata->memcpy_chan == ch) {
  954. dc->dma.device_prep_dma_memcpy = txx9dmac_prep_dma_memcpy;
  955. dma_cap_set(DMA_MEMCPY, dc->dma.cap_mask);
  956. } else {
  957. dc->dma.device_prep_slave_sg = txx9dmac_prep_slave_sg;
  958. dma_cap_set(DMA_SLAVE, dc->dma.cap_mask);
  959. dma_cap_set(DMA_PRIVATE, dc->dma.cap_mask);
  960. }
  961. INIT_LIST_HEAD(&dc->dma.channels);
  962. dc->ddev = platform_get_drvdata(dmac_dev);
  963. if (dc->ddev->irq < 0) {
  964. irq = platform_get_irq(pdev, 0);
  965. if (irq < 0)
  966. return irq;
  967. tasklet_init(&dc->tasklet, txx9dmac_chan_tasklet,
  968. (unsigned long)dc);
  969. dc->irq = irq;
  970. err = devm_request_irq(&pdev->dev, dc->irq,
  971. txx9dmac_chan_interrupt, 0, dev_name(&pdev->dev), dc);
  972. if (err)
  973. return err;
  974. } else
  975. dc->irq = -1;
  976. dc->ddev->chan[ch] = dc;
  977. dc->chan.device = &dc->dma;
  978. list_add_tail(&dc->chan.device_node, &dc->chan.device->channels);
  979. dma_cookie_init(&dc->chan);
  980. if (is_dmac64(dc))
  981. dc->ch_regs = &__txx9dmac_regs(dc->ddev)->CHAN[ch];
  982. else
  983. dc->ch_regs = &__txx9dmac_regs32(dc->ddev)->CHAN[ch];
  984. spin_lock_init(&dc->lock);
  985. INIT_LIST_HEAD(&dc->active_list);
  986. INIT_LIST_HEAD(&dc->queue);
  987. INIT_LIST_HEAD(&dc->free_list);
  988. txx9dmac_reset_chan(dc);
  989. platform_set_drvdata(pdev, dc);
  990. err = dma_async_device_register(&dc->dma);
  991. if (err)
  992. return err;
  993. dev_dbg(&pdev->dev, "TXx9 DMA Channel (dma%d%s%s)\n",
  994. dc->dma.dev_id,
  995. dma_has_cap(DMA_MEMCPY, dc->dma.cap_mask) ? " memcpy" : "",
  996. dma_has_cap(DMA_SLAVE, dc->dma.cap_mask) ? " slave" : "");
  997. return 0;
  998. }
  999. static int txx9dmac_chan_remove(struct platform_device *pdev)
  1000. {
  1001. struct txx9dmac_chan *dc = platform_get_drvdata(pdev);
  1002. dma_async_device_unregister(&dc->dma);
  1003. if (dc->irq >= 0)
  1004. tasklet_kill(&dc->tasklet);
  1005. dc->ddev->chan[pdev->id % TXX9_DMA_MAX_NR_CHANNELS] = NULL;
  1006. return 0;
  1007. }
  1008. static int __init txx9dmac_probe(struct platform_device *pdev)
  1009. {
  1010. struct txx9dmac_platform_data *pdata = dev_get_platdata(&pdev->dev);
  1011. struct resource *io;
  1012. struct txx9dmac_dev *ddev;
  1013. u32 mcr;
  1014. int err;
  1015. io = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1016. if (!io)
  1017. return -EINVAL;
  1018. ddev = devm_kzalloc(&pdev->dev, sizeof(*ddev), GFP_KERNEL);
  1019. if (!ddev)
  1020. return -ENOMEM;
  1021. if (!devm_request_mem_region(&pdev->dev, io->start, resource_size(io),
  1022. dev_name(&pdev->dev)))
  1023. return -EBUSY;
  1024. ddev->regs = devm_ioremap(&pdev->dev, io->start, resource_size(io));
  1025. if (!ddev->regs)
  1026. return -ENOMEM;
  1027. ddev->have_64bit_regs = pdata->have_64bit_regs;
  1028. if (__is_dmac64(ddev))
  1029. ddev->descsize = sizeof(struct txx9dmac_hwdesc);
  1030. else
  1031. ddev->descsize = sizeof(struct txx9dmac_hwdesc32);
  1032. /* force dma off, just in case */
  1033. txx9dmac_off(ddev);
  1034. ddev->irq = platform_get_irq(pdev, 0);
  1035. if (ddev->irq >= 0) {
  1036. tasklet_init(&ddev->tasklet, txx9dmac_tasklet,
  1037. (unsigned long)ddev);
  1038. err = devm_request_irq(&pdev->dev, ddev->irq,
  1039. txx9dmac_interrupt, 0, dev_name(&pdev->dev), ddev);
  1040. if (err)
  1041. return err;
  1042. }
  1043. mcr = TXX9_DMA_MCR_MSTEN | MCR_LE;
  1044. if (pdata && pdata->memcpy_chan >= 0)
  1045. mcr |= TXX9_DMA_MCR_FIFUM(pdata->memcpy_chan);
  1046. dma_writel(ddev, MCR, mcr);
  1047. platform_set_drvdata(pdev, ddev);
  1048. return 0;
  1049. }
  1050. static int txx9dmac_remove(struct platform_device *pdev)
  1051. {
  1052. struct txx9dmac_dev *ddev = platform_get_drvdata(pdev);
  1053. txx9dmac_off(ddev);
  1054. if (ddev->irq >= 0)
  1055. tasklet_kill(&ddev->tasklet);
  1056. return 0;
  1057. }
  1058. static void txx9dmac_shutdown(struct platform_device *pdev)
  1059. {
  1060. struct txx9dmac_dev *ddev = platform_get_drvdata(pdev);
  1061. txx9dmac_off(ddev);
  1062. }
  1063. static int txx9dmac_suspend_noirq(struct device *dev)
  1064. {
  1065. struct platform_device *pdev = to_platform_device(dev);
  1066. struct txx9dmac_dev *ddev = platform_get_drvdata(pdev);
  1067. txx9dmac_off(ddev);
  1068. return 0;
  1069. }
  1070. static int txx9dmac_resume_noirq(struct device *dev)
  1071. {
  1072. struct platform_device *pdev = to_platform_device(dev);
  1073. struct txx9dmac_dev *ddev = platform_get_drvdata(pdev);
  1074. struct txx9dmac_platform_data *pdata = dev_get_platdata(&pdev->dev);
  1075. u32 mcr;
  1076. mcr = TXX9_DMA_MCR_MSTEN | MCR_LE;
  1077. if (pdata && pdata->memcpy_chan >= 0)
  1078. mcr |= TXX9_DMA_MCR_FIFUM(pdata->memcpy_chan);
  1079. dma_writel(ddev, MCR, mcr);
  1080. return 0;
  1081. }
  1082. static const struct dev_pm_ops txx9dmac_dev_pm_ops = {
  1083. .suspend_noirq = txx9dmac_suspend_noirq,
  1084. .resume_noirq = txx9dmac_resume_noirq,
  1085. };
  1086. static struct platform_driver txx9dmac_chan_driver = {
  1087. .remove = txx9dmac_chan_remove,
  1088. .driver = {
  1089. .name = "txx9dmac-chan",
  1090. },
  1091. };
  1092. static struct platform_driver txx9dmac_driver = {
  1093. .remove = txx9dmac_remove,
  1094. .shutdown = txx9dmac_shutdown,
  1095. .driver = {
  1096. .name = "txx9dmac",
  1097. .pm = &txx9dmac_dev_pm_ops,
  1098. },
  1099. };
  1100. static int __init txx9dmac_init(void)
  1101. {
  1102. int rc;
  1103. rc = platform_driver_probe(&txx9dmac_driver, txx9dmac_probe);
  1104. if (!rc) {
  1105. rc = platform_driver_probe(&txx9dmac_chan_driver,
  1106. txx9dmac_chan_probe);
  1107. if (rc)
  1108. platform_driver_unregister(&txx9dmac_driver);
  1109. }
  1110. return rc;
  1111. }
  1112. module_init(txx9dmac_init);
  1113. static void __exit txx9dmac_exit(void)
  1114. {
  1115. platform_driver_unregister(&txx9dmac_chan_driver);
  1116. platform_driver_unregister(&txx9dmac_driver);
  1117. }
  1118. module_exit(txx9dmac_exit);
  1119. MODULE_LICENSE("GPL");
  1120. MODULE_DESCRIPTION("TXx9 DMA Controller driver");
  1121. MODULE_AUTHOR("Atsushi Nemoto <anemo@mba.ocn.ne.jp>");
  1122. MODULE_ALIAS("platform:txx9dmac");
  1123. MODULE_ALIAS("platform:txx9dmac-chan");