i2c-mpc.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856
  1. /*
  2. * (C) Copyright 2003-2004
  3. * Humboldt Solutions Ltd, adrian@humboldt.co.uk.
  4. * This is a combined i2c adapter and algorithm driver for the
  5. * MPC107/Tsi107 PowerPC northbridge and processors that include
  6. * the same I2C unit (8240, 8245, 85xx).
  7. *
  8. * Release 0.8
  9. *
  10. * This file is licensed under the terms of the GNU General Public
  11. * License version 2. This program is licensed "as is" without any
  12. * warranty of any kind, whether express or implied.
  13. */
  14. #include <linux/kernel.h>
  15. #include <linux/module.h>
  16. #include <linux/sched.h>
  17. #include <linux/of_address.h>
  18. #include <linux/of_irq.h>
  19. #include <linux/of_platform.h>
  20. #include <linux/slab.h>
  21. #include <linux/clk.h>
  22. #include <linux/io.h>
  23. #include <linux/fsl_devices.h>
  24. #include <linux/i2c.h>
  25. #include <linux/interrupt.h>
  26. #include <linux/delay.h>
  27. #include <asm/mpc52xx.h>
  28. #include <asm/mpc85xx.h>
  29. #include <sysdev/fsl_soc.h>
  30. #define DRV_NAME "mpc-i2c"
  31. #define MPC_I2C_CLOCK_LEGACY 0
  32. #define MPC_I2C_CLOCK_PRESERVE (~0U)
  33. #define MPC_I2C_FDR 0x04
  34. #define MPC_I2C_CR 0x08
  35. #define MPC_I2C_SR 0x0c
  36. #define MPC_I2C_DR 0x10
  37. #define MPC_I2C_DFSRR 0x14
  38. #define CCR_MEN 0x80
  39. #define CCR_MIEN 0x40
  40. #define CCR_MSTA 0x20
  41. #define CCR_MTX 0x10
  42. #define CCR_TXAK 0x08
  43. #define CCR_RSTA 0x04
  44. #define CSR_MCF 0x80
  45. #define CSR_MAAS 0x40
  46. #define CSR_MBB 0x20
  47. #define CSR_MAL 0x10
  48. #define CSR_SRW 0x04
  49. #define CSR_MIF 0x02
  50. #define CSR_RXAK 0x01
  51. struct mpc_i2c {
  52. struct device *dev;
  53. void __iomem *base;
  54. u32 interrupt;
  55. wait_queue_head_t queue;
  56. struct i2c_adapter adap;
  57. int irq;
  58. u32 real_clk;
  59. #ifdef CONFIG_PM_SLEEP
  60. u8 fdr, dfsrr;
  61. #endif
  62. struct clk *clk_per;
  63. };
  64. struct mpc_i2c_divider {
  65. u16 divider;
  66. u16 fdr; /* including dfsrr */
  67. };
  68. struct mpc_i2c_data {
  69. void (*setup)(struct device_node *node, struct mpc_i2c *i2c,
  70. u32 clock, u32 prescaler);
  71. u32 prescaler;
  72. };
  73. static inline void writeccr(struct mpc_i2c *i2c, u32 x)
  74. {
  75. writeb(x, i2c->base + MPC_I2C_CR);
  76. }
  77. static irqreturn_t mpc_i2c_isr(int irq, void *dev_id)
  78. {
  79. struct mpc_i2c *i2c = dev_id;
  80. if (readb(i2c->base + MPC_I2C_SR) & CSR_MIF) {
  81. /* Read again to allow register to stabilise */
  82. i2c->interrupt = readb(i2c->base + MPC_I2C_SR);
  83. writeb(0, i2c->base + MPC_I2C_SR);
  84. wake_up(&i2c->queue);
  85. return IRQ_HANDLED;
  86. }
  87. return IRQ_NONE;
  88. }
  89. /* Sometimes 9th clock pulse isn't generated, and slave doesn't release
  90. * the bus, because it wants to send ACK.
  91. * Following sequence of enabling/disabling and sending start/stop generates
  92. * the 9 pulses, so it's all OK.
  93. */
  94. static void mpc_i2c_fixup(struct mpc_i2c *i2c)
  95. {
  96. int k;
  97. u32 delay_val = 1000000 / i2c->real_clk + 1;
  98. if (delay_val < 2)
  99. delay_val = 2;
  100. for (k = 9; k; k--) {
  101. writeccr(i2c, 0);
  102. writeccr(i2c, CCR_MSTA | CCR_MTX | CCR_MEN);
  103. readb(i2c->base + MPC_I2C_DR);
  104. writeccr(i2c, CCR_MEN);
  105. udelay(delay_val << 1);
  106. }
  107. }
  108. static int i2c_wait(struct mpc_i2c *i2c, unsigned timeout, int writing)
  109. {
  110. unsigned long orig_jiffies = jiffies;
  111. u32 cmd_err;
  112. int result = 0;
  113. if (!i2c->irq) {
  114. while (!(readb(i2c->base + MPC_I2C_SR) & CSR_MIF)) {
  115. schedule();
  116. if (time_after(jiffies, orig_jiffies + timeout)) {
  117. dev_dbg(i2c->dev, "timeout\n");
  118. writeccr(i2c, 0);
  119. result = -ETIMEDOUT;
  120. break;
  121. }
  122. }
  123. cmd_err = readb(i2c->base + MPC_I2C_SR);
  124. writeb(0, i2c->base + MPC_I2C_SR);
  125. } else {
  126. /* Interrupt mode */
  127. result = wait_event_timeout(i2c->queue,
  128. (i2c->interrupt & CSR_MIF), timeout);
  129. if (unlikely(!(i2c->interrupt & CSR_MIF))) {
  130. dev_dbg(i2c->dev, "wait timeout\n");
  131. writeccr(i2c, 0);
  132. result = -ETIMEDOUT;
  133. }
  134. cmd_err = i2c->interrupt;
  135. i2c->interrupt = 0;
  136. }
  137. if (result < 0)
  138. return result;
  139. if (!(cmd_err & CSR_MCF)) {
  140. dev_dbg(i2c->dev, "unfinished\n");
  141. return -EIO;
  142. }
  143. if (cmd_err & CSR_MAL) {
  144. dev_dbg(i2c->dev, "MAL\n");
  145. return -EAGAIN;
  146. }
  147. if (writing && (cmd_err & CSR_RXAK)) {
  148. dev_dbg(i2c->dev, "No RXAK\n");
  149. /* generate stop */
  150. writeccr(i2c, CCR_MEN);
  151. return -ENXIO;
  152. }
  153. return 0;
  154. }
  155. #if defined(CONFIG_PPC_MPC52xx) || defined(CONFIG_PPC_MPC512x)
  156. static const struct mpc_i2c_divider mpc_i2c_dividers_52xx[] = {
  157. {20, 0x20}, {22, 0x21}, {24, 0x22}, {26, 0x23},
  158. {28, 0x24}, {30, 0x01}, {32, 0x25}, {34, 0x02},
  159. {36, 0x26}, {40, 0x27}, {44, 0x04}, {48, 0x28},
  160. {52, 0x63}, {56, 0x29}, {60, 0x41}, {64, 0x2a},
  161. {68, 0x07}, {72, 0x2b}, {80, 0x2c}, {88, 0x09},
  162. {96, 0x2d}, {104, 0x0a}, {112, 0x2e}, {120, 0x81},
  163. {128, 0x2f}, {136, 0x47}, {144, 0x0c}, {160, 0x30},
  164. {176, 0x49}, {192, 0x31}, {208, 0x4a}, {224, 0x32},
  165. {240, 0x0f}, {256, 0x33}, {272, 0x87}, {288, 0x10},
  166. {320, 0x34}, {352, 0x89}, {384, 0x35}, {416, 0x8a},
  167. {448, 0x36}, {480, 0x13}, {512, 0x37}, {576, 0x14},
  168. {640, 0x38}, {768, 0x39}, {896, 0x3a}, {960, 0x17},
  169. {1024, 0x3b}, {1152, 0x18}, {1280, 0x3c}, {1536, 0x3d},
  170. {1792, 0x3e}, {1920, 0x1b}, {2048, 0x3f}, {2304, 0x1c},
  171. {2560, 0x1d}, {3072, 0x1e}, {3584, 0x7e}, {3840, 0x1f},
  172. {4096, 0x7f}, {4608, 0x5c}, {5120, 0x5d}, {6144, 0x5e},
  173. {7168, 0xbe}, {7680, 0x5f}, {8192, 0xbf}, {9216, 0x9c},
  174. {10240, 0x9d}, {12288, 0x9e}, {15360, 0x9f}
  175. };
  176. static int mpc_i2c_get_fdr_52xx(struct device_node *node, u32 clock,
  177. int prescaler, u32 *real_clk)
  178. {
  179. const struct mpc_i2c_divider *div = NULL;
  180. unsigned int pvr = mfspr(SPRN_PVR);
  181. u32 divider;
  182. int i;
  183. if (clock == MPC_I2C_CLOCK_LEGACY) {
  184. /* see below - default fdr = 0x3f -> div = 2048 */
  185. *real_clk = mpc5xxx_get_bus_frequency(node) / 2048;
  186. return -EINVAL;
  187. }
  188. /* Determine divider value */
  189. divider = mpc5xxx_get_bus_frequency(node) / clock;
  190. /*
  191. * We want to choose an FDR/DFSR that generates an I2C bus speed that
  192. * is equal to or lower than the requested speed.
  193. */
  194. for (i = 0; i < ARRAY_SIZE(mpc_i2c_dividers_52xx); i++) {
  195. div = &mpc_i2c_dividers_52xx[i];
  196. /* Old MPC5200 rev A CPUs do not support the high bits */
  197. if (div->fdr & 0xc0 && pvr == 0x80822011)
  198. continue;
  199. if (div->divider >= divider)
  200. break;
  201. }
  202. *real_clk = mpc5xxx_get_bus_frequency(node) / div->divider;
  203. return (int)div->fdr;
  204. }
  205. static void mpc_i2c_setup_52xx(struct device_node *node,
  206. struct mpc_i2c *i2c,
  207. u32 clock, u32 prescaler)
  208. {
  209. int ret, fdr;
  210. if (clock == MPC_I2C_CLOCK_PRESERVE) {
  211. dev_dbg(i2c->dev, "using fdr %d\n",
  212. readb(i2c->base + MPC_I2C_FDR));
  213. return;
  214. }
  215. ret = mpc_i2c_get_fdr_52xx(node, clock, prescaler, &i2c->real_clk);
  216. fdr = (ret >= 0) ? ret : 0x3f; /* backward compatibility */
  217. writeb(fdr & 0xff, i2c->base + MPC_I2C_FDR);
  218. if (ret >= 0)
  219. dev_info(i2c->dev, "clock %u Hz (fdr=%d)\n", i2c->real_clk,
  220. fdr);
  221. }
  222. #else /* !(CONFIG_PPC_MPC52xx || CONFIG_PPC_MPC512x) */
  223. static void mpc_i2c_setup_52xx(struct device_node *node,
  224. struct mpc_i2c *i2c,
  225. u32 clock, u32 prescaler)
  226. {
  227. }
  228. #endif /* CONFIG_PPC_MPC52xx || CONFIG_PPC_MPC512x */
  229. #ifdef CONFIG_PPC_MPC512x
  230. static void mpc_i2c_setup_512x(struct device_node *node,
  231. struct mpc_i2c *i2c,
  232. u32 clock, u32 prescaler)
  233. {
  234. struct device_node *node_ctrl;
  235. void __iomem *ctrl;
  236. const u32 *pval;
  237. u32 idx;
  238. /* Enable I2C interrupts for mpc5121 */
  239. node_ctrl = of_find_compatible_node(NULL, NULL,
  240. "fsl,mpc5121-i2c-ctrl");
  241. if (node_ctrl) {
  242. ctrl = of_iomap(node_ctrl, 0);
  243. if (ctrl) {
  244. /* Interrupt enable bits for i2c-0/1/2: bit 24/26/28 */
  245. pval = of_get_property(node, "reg", NULL);
  246. idx = (*pval & 0xff) / 0x20;
  247. setbits32(ctrl, 1 << (24 + idx * 2));
  248. iounmap(ctrl);
  249. }
  250. of_node_put(node_ctrl);
  251. }
  252. /* The clock setup for the 52xx works also fine for the 512x */
  253. mpc_i2c_setup_52xx(node, i2c, clock, prescaler);
  254. }
  255. #else /* CONFIG_PPC_MPC512x */
  256. static void mpc_i2c_setup_512x(struct device_node *node,
  257. struct mpc_i2c *i2c,
  258. u32 clock, u32 prescaler)
  259. {
  260. }
  261. #endif /* CONFIG_PPC_MPC512x */
  262. #ifdef CONFIG_FSL_SOC
  263. static const struct mpc_i2c_divider mpc_i2c_dividers_8xxx[] = {
  264. {160, 0x0120}, {192, 0x0121}, {224, 0x0122}, {256, 0x0123},
  265. {288, 0x0100}, {320, 0x0101}, {352, 0x0601}, {384, 0x0102},
  266. {416, 0x0602}, {448, 0x0126}, {480, 0x0103}, {512, 0x0127},
  267. {544, 0x0b03}, {576, 0x0104}, {608, 0x1603}, {640, 0x0105},
  268. {672, 0x2003}, {704, 0x0b05}, {736, 0x2b03}, {768, 0x0106},
  269. {800, 0x3603}, {832, 0x0b06}, {896, 0x012a}, {960, 0x0107},
  270. {1024, 0x012b}, {1088, 0x1607}, {1152, 0x0108}, {1216, 0x2b07},
  271. {1280, 0x0109}, {1408, 0x1609}, {1536, 0x010a}, {1664, 0x160a},
  272. {1792, 0x012e}, {1920, 0x010b}, {2048, 0x012f}, {2176, 0x2b0b},
  273. {2304, 0x010c}, {2560, 0x010d}, {2816, 0x2b0d}, {3072, 0x010e},
  274. {3328, 0x2b0e}, {3584, 0x0132}, {3840, 0x010f}, {4096, 0x0133},
  275. {4608, 0x0110}, {5120, 0x0111}, {6144, 0x0112}, {7168, 0x0136},
  276. {7680, 0x0113}, {8192, 0x0137}, {9216, 0x0114}, {10240, 0x0115},
  277. {12288, 0x0116}, {14336, 0x013a}, {15360, 0x0117}, {16384, 0x013b},
  278. {18432, 0x0118}, {20480, 0x0119}, {24576, 0x011a}, {28672, 0x013e},
  279. {30720, 0x011b}, {32768, 0x013f}, {36864, 0x011c}, {40960, 0x011d},
  280. {49152, 0x011e}, {61440, 0x011f}
  281. };
  282. static u32 mpc_i2c_get_sec_cfg_8xxx(void)
  283. {
  284. struct device_node *node = NULL;
  285. u32 __iomem *reg;
  286. u32 val = 0;
  287. node = of_find_node_by_name(NULL, "global-utilities");
  288. if (node) {
  289. const u32 *prop = of_get_property(node, "reg", NULL);
  290. if (prop) {
  291. /*
  292. * Map and check POR Device Status Register 2
  293. * (PORDEVSR2) at 0xE0014
  294. */
  295. reg = ioremap(get_immrbase() + *prop + 0x14, 0x4);
  296. if (!reg)
  297. printk(KERN_ERR
  298. "Error: couldn't map PORDEVSR2\n");
  299. else
  300. val = in_be32(reg) & 0x00000080; /* sec-cfg */
  301. iounmap(reg);
  302. }
  303. }
  304. of_node_put(node);
  305. return val;
  306. }
  307. static u32 mpc_i2c_get_prescaler_8xxx(void)
  308. {
  309. /* mpc83xx and mpc82xx all have prescaler 1 */
  310. u32 prescaler = 1;
  311. /* mpc85xx */
  312. if (pvr_version_is(PVR_VER_E500V1) || pvr_version_is(PVR_VER_E500V2)
  313. || pvr_version_is(PVR_VER_E500MC)
  314. || pvr_version_is(PVR_VER_E5500)
  315. || pvr_version_is(PVR_VER_E6500)) {
  316. unsigned int svr = mfspr(SPRN_SVR);
  317. if ((SVR_SOC_VER(svr) == SVR_8540)
  318. || (SVR_SOC_VER(svr) == SVR_8541)
  319. || (SVR_SOC_VER(svr) == SVR_8560)
  320. || (SVR_SOC_VER(svr) == SVR_8555)
  321. || (SVR_SOC_VER(svr) == SVR_8610))
  322. /* the above 85xx SoCs have prescaler 1 */
  323. prescaler = 1;
  324. else
  325. /* all the other 85xx have prescaler 2 */
  326. prescaler = 2;
  327. }
  328. return prescaler;
  329. }
  330. static int mpc_i2c_get_fdr_8xxx(struct device_node *node, u32 clock,
  331. u32 prescaler, u32 *real_clk)
  332. {
  333. const struct mpc_i2c_divider *div = NULL;
  334. u32 divider;
  335. int i;
  336. if (clock == MPC_I2C_CLOCK_LEGACY) {
  337. /* see below - default fdr = 0x1031 -> div = 16 * 3072 */
  338. *real_clk = fsl_get_sys_freq() / prescaler / (16 * 3072);
  339. return -EINVAL;
  340. }
  341. /* Determine proper divider value */
  342. if (of_device_is_compatible(node, "fsl,mpc8544-i2c"))
  343. prescaler = mpc_i2c_get_sec_cfg_8xxx() ? 3 : 2;
  344. if (!prescaler)
  345. prescaler = mpc_i2c_get_prescaler_8xxx();
  346. divider = fsl_get_sys_freq() / clock / prescaler;
  347. pr_debug("I2C: src_clock=%d clock=%d divider=%d\n",
  348. fsl_get_sys_freq(), clock, divider);
  349. /*
  350. * We want to choose an FDR/DFSR that generates an I2C bus speed that
  351. * is equal to or lower than the requested speed.
  352. */
  353. for (i = 0; i < ARRAY_SIZE(mpc_i2c_dividers_8xxx); i++) {
  354. div = &mpc_i2c_dividers_8xxx[i];
  355. if (div->divider >= divider)
  356. break;
  357. }
  358. *real_clk = fsl_get_sys_freq() / prescaler / div->divider;
  359. return div ? (int)div->fdr : -EINVAL;
  360. }
  361. static void mpc_i2c_setup_8xxx(struct device_node *node,
  362. struct mpc_i2c *i2c,
  363. u32 clock, u32 prescaler)
  364. {
  365. int ret, fdr;
  366. if (clock == MPC_I2C_CLOCK_PRESERVE) {
  367. dev_dbg(i2c->dev, "using dfsrr %d, fdr %d\n",
  368. readb(i2c->base + MPC_I2C_DFSRR),
  369. readb(i2c->base + MPC_I2C_FDR));
  370. return;
  371. }
  372. ret = mpc_i2c_get_fdr_8xxx(node, clock, prescaler, &i2c->real_clk);
  373. fdr = (ret >= 0) ? ret : 0x1031; /* backward compatibility */
  374. writeb(fdr & 0xff, i2c->base + MPC_I2C_FDR);
  375. writeb((fdr >> 8) & 0xff, i2c->base + MPC_I2C_DFSRR);
  376. if (ret >= 0)
  377. dev_info(i2c->dev, "clock %d Hz (dfsrr=%d fdr=%d)\n",
  378. i2c->real_clk, fdr >> 8, fdr & 0xff);
  379. }
  380. #else /* !CONFIG_FSL_SOC */
  381. static void mpc_i2c_setup_8xxx(struct device_node *node,
  382. struct mpc_i2c *i2c,
  383. u32 clock, u32 prescaler)
  384. {
  385. }
  386. #endif /* CONFIG_FSL_SOC */
  387. static void mpc_i2c_start(struct mpc_i2c *i2c)
  388. {
  389. /* Clear arbitration */
  390. writeb(0, i2c->base + MPC_I2C_SR);
  391. /* Start with MEN */
  392. writeccr(i2c, CCR_MEN);
  393. }
  394. static void mpc_i2c_stop(struct mpc_i2c *i2c)
  395. {
  396. writeccr(i2c, CCR_MEN);
  397. }
  398. static int mpc_write(struct mpc_i2c *i2c, int target,
  399. const u8 *data, int length, int restart)
  400. {
  401. int i, result;
  402. unsigned timeout = i2c->adap.timeout;
  403. u32 flags = restart ? CCR_RSTA : 0;
  404. /* Start as master */
  405. writeccr(i2c, CCR_MIEN | CCR_MEN | CCR_MSTA | CCR_MTX | flags);
  406. /* Write target byte */
  407. writeb((target << 1), i2c->base + MPC_I2C_DR);
  408. result = i2c_wait(i2c, timeout, 1);
  409. if (result < 0)
  410. return result;
  411. for (i = 0; i < length; i++) {
  412. /* Write data byte */
  413. writeb(data[i], i2c->base + MPC_I2C_DR);
  414. result = i2c_wait(i2c, timeout, 1);
  415. if (result < 0)
  416. return result;
  417. }
  418. return 0;
  419. }
  420. static int mpc_read(struct mpc_i2c *i2c, int target,
  421. u8 *data, int length, int restart, bool recv_len)
  422. {
  423. unsigned timeout = i2c->adap.timeout;
  424. int i, result;
  425. u32 flags = restart ? CCR_RSTA : 0;
  426. /* Switch to read - restart */
  427. writeccr(i2c, CCR_MIEN | CCR_MEN | CCR_MSTA | CCR_MTX | flags);
  428. /* Write target address byte - this time with the read flag set */
  429. writeb((target << 1) | 1, i2c->base + MPC_I2C_DR);
  430. result = i2c_wait(i2c, timeout, 1);
  431. if (result < 0)
  432. return result;
  433. if (length) {
  434. if (length == 1 && !recv_len)
  435. writeccr(i2c, CCR_MIEN | CCR_MEN | CCR_MSTA | CCR_TXAK);
  436. else
  437. writeccr(i2c, CCR_MIEN | CCR_MEN | CCR_MSTA);
  438. /* Dummy read */
  439. readb(i2c->base + MPC_I2C_DR);
  440. }
  441. for (i = 0; i < length; i++) {
  442. u8 byte;
  443. result = i2c_wait(i2c, timeout, 0);
  444. if (result < 0)
  445. return result;
  446. /*
  447. * For block reads, we have to know the total length (1st byte)
  448. * before we can determine if we are done.
  449. */
  450. if (i || !recv_len) {
  451. /* Generate txack on next to last byte */
  452. if (i == length - 2)
  453. writeccr(i2c, CCR_MIEN | CCR_MEN | CCR_MSTA
  454. | CCR_TXAK);
  455. /* Do not generate stop on last byte */
  456. if (i == length - 1)
  457. writeccr(i2c, CCR_MIEN | CCR_MEN | CCR_MSTA
  458. | CCR_MTX);
  459. }
  460. byte = readb(i2c->base + MPC_I2C_DR);
  461. /*
  462. * Adjust length if first received byte is length.
  463. * The length is 1 length byte plus actually data length
  464. */
  465. if (i == 0 && recv_len) {
  466. if (byte == 0 || byte > I2C_SMBUS_BLOCK_MAX)
  467. return -EPROTO;
  468. length += byte;
  469. /*
  470. * For block reads, generate txack here if data length
  471. * is 1 byte (total length is 2 bytes).
  472. */
  473. if (length == 2)
  474. writeccr(i2c, CCR_MIEN | CCR_MEN | CCR_MSTA
  475. | CCR_TXAK);
  476. }
  477. data[i] = byte;
  478. }
  479. return length;
  480. }
  481. static int mpc_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num)
  482. {
  483. struct i2c_msg *pmsg;
  484. int i;
  485. int ret = 0;
  486. unsigned long orig_jiffies = jiffies;
  487. struct mpc_i2c *i2c = i2c_get_adapdata(adap);
  488. mpc_i2c_start(i2c);
  489. /* Allow bus up to 1s to become not busy */
  490. while (readb(i2c->base + MPC_I2C_SR) & CSR_MBB) {
  491. if (signal_pending(current)) {
  492. dev_dbg(i2c->dev, "Interrupted\n");
  493. writeccr(i2c, 0);
  494. return -EINTR;
  495. }
  496. if (time_after(jiffies, orig_jiffies + HZ)) {
  497. u8 status = readb(i2c->base + MPC_I2C_SR);
  498. dev_dbg(i2c->dev, "timeout\n");
  499. if ((status & (CSR_MCF | CSR_MBB | CSR_RXAK)) != 0) {
  500. writeb(status & ~CSR_MAL,
  501. i2c->base + MPC_I2C_SR);
  502. mpc_i2c_fixup(i2c);
  503. }
  504. return -EIO;
  505. }
  506. schedule();
  507. }
  508. for (i = 0; ret >= 0 && i < num; i++) {
  509. pmsg = &msgs[i];
  510. dev_dbg(i2c->dev,
  511. "Doing %s %d bytes to 0x%02x - %d of %d messages\n",
  512. pmsg->flags & I2C_M_RD ? "read" : "write",
  513. pmsg->len, pmsg->addr, i + 1, num);
  514. if (pmsg->flags & I2C_M_RD) {
  515. bool recv_len = pmsg->flags & I2C_M_RECV_LEN;
  516. ret = mpc_read(i2c, pmsg->addr, pmsg->buf, pmsg->len, i,
  517. recv_len);
  518. if (recv_len && ret > 0)
  519. pmsg->len = ret;
  520. } else {
  521. ret =
  522. mpc_write(i2c, pmsg->addr, pmsg->buf, pmsg->len, i);
  523. }
  524. }
  525. mpc_i2c_stop(i2c); /* Initiate STOP */
  526. orig_jiffies = jiffies;
  527. /* Wait until STOP is seen, allow up to 1 s */
  528. while (readb(i2c->base + MPC_I2C_SR) & CSR_MBB) {
  529. if (time_after(jiffies, orig_jiffies + HZ)) {
  530. u8 status = readb(i2c->base + MPC_I2C_SR);
  531. dev_dbg(i2c->dev, "timeout\n");
  532. if ((status & (CSR_MCF | CSR_MBB | CSR_RXAK)) != 0) {
  533. writeb(status & ~CSR_MAL,
  534. i2c->base + MPC_I2C_SR);
  535. mpc_i2c_fixup(i2c);
  536. }
  537. return -EIO;
  538. }
  539. cond_resched();
  540. }
  541. return (ret < 0) ? ret : num;
  542. }
  543. static u32 mpc_functionality(struct i2c_adapter *adap)
  544. {
  545. return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL
  546. | I2C_FUNC_SMBUS_READ_BLOCK_DATA | I2C_FUNC_SMBUS_BLOCK_PROC_CALL;
  547. }
  548. static const struct i2c_algorithm mpc_algo = {
  549. .master_xfer = mpc_xfer,
  550. .functionality = mpc_functionality,
  551. };
  552. static struct i2c_adapter mpc_ops = {
  553. .owner = THIS_MODULE,
  554. .algo = &mpc_algo,
  555. .timeout = HZ,
  556. };
  557. static const struct of_device_id mpc_i2c_of_match[];
  558. static int fsl_i2c_probe(struct platform_device *op)
  559. {
  560. const struct of_device_id *match;
  561. struct mpc_i2c *i2c;
  562. const u32 *prop;
  563. u32 clock = MPC_I2C_CLOCK_LEGACY;
  564. int result = 0;
  565. int plen;
  566. struct resource res;
  567. struct clk *clk;
  568. int err;
  569. match = of_match_device(mpc_i2c_of_match, &op->dev);
  570. if (!match)
  571. return -EINVAL;
  572. i2c = kzalloc(sizeof(*i2c), GFP_KERNEL);
  573. if (!i2c)
  574. return -ENOMEM;
  575. i2c->dev = &op->dev; /* for debug and error output */
  576. init_waitqueue_head(&i2c->queue);
  577. i2c->base = of_iomap(op->dev.of_node, 0);
  578. if (!i2c->base) {
  579. dev_err(i2c->dev, "failed to map controller\n");
  580. result = -ENOMEM;
  581. goto fail_map;
  582. }
  583. i2c->irq = irq_of_parse_and_map(op->dev.of_node, 0);
  584. if (i2c->irq) { /* no i2c->irq implies polling */
  585. result = request_irq(i2c->irq, mpc_i2c_isr,
  586. IRQF_SHARED, "i2c-mpc", i2c);
  587. if (result < 0) {
  588. dev_err(i2c->dev, "failed to attach interrupt\n");
  589. goto fail_request;
  590. }
  591. }
  592. /*
  593. * enable clock for the I2C peripheral (non fatal),
  594. * keep a reference upon successful allocation
  595. */
  596. clk = devm_clk_get(&op->dev, NULL);
  597. if (!IS_ERR(clk)) {
  598. err = clk_prepare_enable(clk);
  599. if (err) {
  600. dev_err(&op->dev, "failed to enable clock\n");
  601. goto fail_request;
  602. } else {
  603. i2c->clk_per = clk;
  604. }
  605. }
  606. if (of_get_property(op->dev.of_node, "fsl,preserve-clocking", NULL)) {
  607. clock = MPC_I2C_CLOCK_PRESERVE;
  608. } else {
  609. prop = of_get_property(op->dev.of_node, "clock-frequency",
  610. &plen);
  611. if (prop && plen == sizeof(u32))
  612. clock = *prop;
  613. }
  614. if (match->data) {
  615. const struct mpc_i2c_data *data = match->data;
  616. data->setup(op->dev.of_node, i2c, clock, data->prescaler);
  617. } else {
  618. /* Backwards compatibility */
  619. if (of_get_property(op->dev.of_node, "dfsrr", NULL))
  620. mpc_i2c_setup_8xxx(op->dev.of_node, i2c, clock, 0);
  621. }
  622. prop = of_get_property(op->dev.of_node, "fsl,timeout", &plen);
  623. if (prop && plen == sizeof(u32)) {
  624. mpc_ops.timeout = *prop * HZ / 1000000;
  625. if (mpc_ops.timeout < 5)
  626. mpc_ops.timeout = 5;
  627. }
  628. dev_info(i2c->dev, "timeout %u us\n", mpc_ops.timeout * 1000000 / HZ);
  629. platform_set_drvdata(op, i2c);
  630. i2c->adap = mpc_ops;
  631. of_address_to_resource(op->dev.of_node, 0, &res);
  632. scnprintf(i2c->adap.name, sizeof(i2c->adap.name),
  633. "MPC adapter at 0x%llx", (unsigned long long)res.start);
  634. i2c_set_adapdata(&i2c->adap, i2c);
  635. i2c->adap.dev.parent = &op->dev;
  636. i2c->adap.dev.of_node = of_node_get(op->dev.of_node);
  637. result = i2c_add_adapter(&i2c->adap);
  638. if (result < 0) {
  639. dev_err(i2c->dev, "failed to add adapter\n");
  640. goto fail_add;
  641. }
  642. return result;
  643. fail_add:
  644. if (i2c->clk_per)
  645. clk_disable_unprepare(i2c->clk_per);
  646. free_irq(i2c->irq, i2c);
  647. fail_request:
  648. irq_dispose_mapping(i2c->irq);
  649. iounmap(i2c->base);
  650. fail_map:
  651. kfree(i2c);
  652. return result;
  653. };
  654. static int fsl_i2c_remove(struct platform_device *op)
  655. {
  656. struct mpc_i2c *i2c = platform_get_drvdata(op);
  657. i2c_del_adapter(&i2c->adap);
  658. if (i2c->clk_per)
  659. clk_disable_unprepare(i2c->clk_per);
  660. if (i2c->irq)
  661. free_irq(i2c->irq, i2c);
  662. irq_dispose_mapping(i2c->irq);
  663. iounmap(i2c->base);
  664. kfree(i2c);
  665. return 0;
  666. };
  667. #ifdef CONFIG_PM_SLEEP
  668. static int mpc_i2c_suspend(struct device *dev)
  669. {
  670. struct mpc_i2c *i2c = dev_get_drvdata(dev);
  671. i2c->fdr = readb(i2c->base + MPC_I2C_FDR);
  672. i2c->dfsrr = readb(i2c->base + MPC_I2C_DFSRR);
  673. return 0;
  674. }
  675. static int mpc_i2c_resume(struct device *dev)
  676. {
  677. struct mpc_i2c *i2c = dev_get_drvdata(dev);
  678. writeb(i2c->fdr, i2c->base + MPC_I2C_FDR);
  679. writeb(i2c->dfsrr, i2c->base + MPC_I2C_DFSRR);
  680. return 0;
  681. }
  682. static SIMPLE_DEV_PM_OPS(mpc_i2c_pm_ops, mpc_i2c_suspend, mpc_i2c_resume);
  683. #define MPC_I2C_PM_OPS (&mpc_i2c_pm_ops)
  684. #else
  685. #define MPC_I2C_PM_OPS NULL
  686. #endif
  687. static const struct mpc_i2c_data mpc_i2c_data_512x = {
  688. .setup = mpc_i2c_setup_512x,
  689. };
  690. static const struct mpc_i2c_data mpc_i2c_data_52xx = {
  691. .setup = mpc_i2c_setup_52xx,
  692. };
  693. static const struct mpc_i2c_data mpc_i2c_data_8313 = {
  694. .setup = mpc_i2c_setup_8xxx,
  695. };
  696. static const struct mpc_i2c_data mpc_i2c_data_8543 = {
  697. .setup = mpc_i2c_setup_8xxx,
  698. .prescaler = 2,
  699. };
  700. static const struct mpc_i2c_data mpc_i2c_data_8544 = {
  701. .setup = mpc_i2c_setup_8xxx,
  702. .prescaler = 3,
  703. };
  704. static const struct of_device_id mpc_i2c_of_match[] = {
  705. {.compatible = "mpc5200-i2c", .data = &mpc_i2c_data_52xx, },
  706. {.compatible = "fsl,mpc5200b-i2c", .data = &mpc_i2c_data_52xx, },
  707. {.compatible = "fsl,mpc5200-i2c", .data = &mpc_i2c_data_52xx, },
  708. {.compatible = "fsl,mpc5121-i2c", .data = &mpc_i2c_data_512x, },
  709. {.compatible = "fsl,mpc8313-i2c", .data = &mpc_i2c_data_8313, },
  710. {.compatible = "fsl,mpc8543-i2c", .data = &mpc_i2c_data_8543, },
  711. {.compatible = "fsl,mpc8544-i2c", .data = &mpc_i2c_data_8544, },
  712. /* Backward compatibility */
  713. {.compatible = "fsl-i2c", },
  714. {},
  715. };
  716. MODULE_DEVICE_TABLE(of, mpc_i2c_of_match);
  717. /* Structure for a device driver */
  718. static struct platform_driver mpc_i2c_driver = {
  719. .probe = fsl_i2c_probe,
  720. .remove = fsl_i2c_remove,
  721. .driver = {
  722. .name = DRV_NAME,
  723. .of_match_table = mpc_i2c_of_match,
  724. .pm = MPC_I2C_PM_OPS,
  725. },
  726. };
  727. module_platform_driver(mpc_i2c_driver);
  728. MODULE_AUTHOR("Adrian Cox <adrian@humboldt.co.uk>");
  729. MODULE_DESCRIPTION("I2C-Bus adapter for MPC107 bridge and "
  730. "MPC824x/83xx/85xx/86xx/512x/52xx processors");
  731. MODULE_LICENSE("GPL");