irq-vf610-mscm-ir.c 6.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238
  1. /*
  2. * Copyright (C) 2014-2015 Toradex AG
  3. * Author: Stefan Agner <stefan@agner.ch>
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License version 2 as
  7. * published by the Free Software Foundation.
  8. *
  9. *
  10. * IRQ chip driver for MSCM interrupt router available on Vybrid SoC's.
  11. * The interrupt router is between the CPU's interrupt controller and the
  12. * peripheral. The router allows to route the peripheral interrupts to
  13. * one of the two available CPU's on Vybrid VF6xx SoC's (Cortex-A5 or
  14. * Cortex-M4). The router will be configured transparently on a IRQ
  15. * request.
  16. *
  17. * o All peripheral interrupts of the Vybrid SoC can be routed to
  18. * CPU 0, CPU 1 or both. The routing is useful for dual-core
  19. * variants of Vybrid SoC such as VF6xx. This driver routes the
  20. * requested interrupt to the CPU currently running on.
  21. *
  22. * o It is required to setup the interrupt router even on single-core
  23. * variants of Vybrid.
  24. */
  25. #include <linux/cpu_pm.h>
  26. #include <linux/io.h>
  27. #include <linux/irq.h>
  28. #include <linux/irqchip.h>
  29. #include <linux/irqdomain.h>
  30. #include <linux/mfd/syscon.h>
  31. #include <dt-bindings/interrupt-controller/arm-gic.h>
  32. #include <linux/of.h>
  33. #include <linux/of_address.h>
  34. #include <linux/slab.h>
  35. #include <linux/regmap.h>
  36. #define MSCM_CPxNUM 0x4
  37. #define MSCM_IRSPRC(n) (0x80 + 2 * (n))
  38. #define MSCM_IRSPRC_CPEN_MASK 0x3
  39. #define MSCM_IRSPRC_NUM 112
  40. struct vf610_mscm_ir_chip_data {
  41. void __iomem *mscm_ir_base;
  42. u16 cpu_mask;
  43. u16 saved_irsprc[MSCM_IRSPRC_NUM];
  44. bool is_nvic;
  45. };
  46. static struct vf610_mscm_ir_chip_data *mscm_ir_data;
  47. static inline void vf610_mscm_ir_save(struct vf610_mscm_ir_chip_data *data)
  48. {
  49. int i;
  50. for (i = 0; i < MSCM_IRSPRC_NUM; i++)
  51. data->saved_irsprc[i] = readw_relaxed(data->mscm_ir_base + MSCM_IRSPRC(i));
  52. }
  53. static inline void vf610_mscm_ir_restore(struct vf610_mscm_ir_chip_data *data)
  54. {
  55. int i;
  56. for (i = 0; i < MSCM_IRSPRC_NUM; i++)
  57. writew_relaxed(data->saved_irsprc[i], data->mscm_ir_base + MSCM_IRSPRC(i));
  58. }
  59. static int vf610_mscm_ir_notifier(struct notifier_block *self,
  60. unsigned long cmd, void *v)
  61. {
  62. switch (cmd) {
  63. case CPU_CLUSTER_PM_ENTER:
  64. vf610_mscm_ir_save(mscm_ir_data);
  65. break;
  66. case CPU_CLUSTER_PM_ENTER_FAILED:
  67. case CPU_CLUSTER_PM_EXIT:
  68. vf610_mscm_ir_restore(mscm_ir_data);
  69. break;
  70. }
  71. return NOTIFY_OK;
  72. }
  73. static struct notifier_block mscm_ir_notifier_block = {
  74. .notifier_call = vf610_mscm_ir_notifier,
  75. };
  76. static void vf610_mscm_ir_enable(struct irq_data *data)
  77. {
  78. irq_hw_number_t hwirq = data->hwirq;
  79. struct vf610_mscm_ir_chip_data *chip_data = data->chip_data;
  80. u16 irsprc;
  81. irsprc = readw_relaxed(chip_data->mscm_ir_base + MSCM_IRSPRC(hwirq));
  82. irsprc &= MSCM_IRSPRC_CPEN_MASK;
  83. WARN_ON(irsprc & ~chip_data->cpu_mask);
  84. writew_relaxed(chip_data->cpu_mask,
  85. chip_data->mscm_ir_base + MSCM_IRSPRC(hwirq));
  86. irq_chip_enable_parent(data);
  87. }
  88. static void vf610_mscm_ir_disable(struct irq_data *data)
  89. {
  90. irq_hw_number_t hwirq = data->hwirq;
  91. struct vf610_mscm_ir_chip_data *chip_data = data->chip_data;
  92. writew_relaxed(0x0, chip_data->mscm_ir_base + MSCM_IRSPRC(hwirq));
  93. irq_chip_disable_parent(data);
  94. }
  95. static struct irq_chip vf610_mscm_ir_irq_chip = {
  96. .name = "mscm-ir",
  97. .irq_mask = irq_chip_mask_parent,
  98. .irq_unmask = irq_chip_unmask_parent,
  99. .irq_eoi = irq_chip_eoi_parent,
  100. .irq_enable = vf610_mscm_ir_enable,
  101. .irq_disable = vf610_mscm_ir_disable,
  102. .irq_retrigger = irq_chip_retrigger_hierarchy,
  103. .irq_set_affinity = irq_chip_set_affinity_parent,
  104. };
  105. static int vf610_mscm_ir_domain_alloc(struct irq_domain *domain, unsigned int virq,
  106. unsigned int nr_irqs, void *arg)
  107. {
  108. int i;
  109. irq_hw_number_t hwirq;
  110. struct irq_fwspec *fwspec = arg;
  111. struct irq_fwspec parent_fwspec;
  112. if (!irq_domain_get_of_node(domain->parent))
  113. return -EINVAL;
  114. if (fwspec->param_count != 2)
  115. return -EINVAL;
  116. hwirq = fwspec->param[0];
  117. for (i = 0; i < nr_irqs; i++)
  118. irq_domain_set_hwirq_and_chip(domain, virq + i, hwirq + i,
  119. &vf610_mscm_ir_irq_chip,
  120. domain->host_data);
  121. parent_fwspec.fwnode = domain->parent->fwnode;
  122. if (mscm_ir_data->is_nvic) {
  123. parent_fwspec.param_count = 1;
  124. parent_fwspec.param[0] = fwspec->param[0];
  125. } else {
  126. parent_fwspec.param_count = 3;
  127. parent_fwspec.param[0] = GIC_SPI;
  128. parent_fwspec.param[1] = fwspec->param[0];
  129. parent_fwspec.param[2] = fwspec->param[1];
  130. }
  131. return irq_domain_alloc_irqs_parent(domain, virq, nr_irqs,
  132. &parent_fwspec);
  133. }
  134. static int vf610_mscm_ir_domain_translate(struct irq_domain *d,
  135. struct irq_fwspec *fwspec,
  136. unsigned long *hwirq,
  137. unsigned int *type)
  138. {
  139. if (WARN_ON(fwspec->param_count < 2))
  140. return -EINVAL;
  141. *hwirq = fwspec->param[0];
  142. *type = fwspec->param[1] & IRQ_TYPE_SENSE_MASK;
  143. return 0;
  144. }
  145. static const struct irq_domain_ops mscm_irq_domain_ops = {
  146. .translate = vf610_mscm_ir_domain_translate,
  147. .alloc = vf610_mscm_ir_domain_alloc,
  148. .free = irq_domain_free_irqs_common,
  149. };
  150. static int __init vf610_mscm_ir_of_init(struct device_node *node,
  151. struct device_node *parent)
  152. {
  153. struct irq_domain *domain, *domain_parent;
  154. struct regmap *mscm_cp_regmap;
  155. int ret, cpuid;
  156. domain_parent = irq_find_host(parent);
  157. if (!domain_parent) {
  158. pr_err("vf610_mscm_ir: interrupt-parent not found\n");
  159. return -EINVAL;
  160. }
  161. mscm_ir_data = kzalloc(sizeof(*mscm_ir_data), GFP_KERNEL);
  162. if (!mscm_ir_data)
  163. return -ENOMEM;
  164. mscm_ir_data->mscm_ir_base = of_io_request_and_map(node, 0, "mscm-ir");
  165. if (IS_ERR(mscm_ir_data->mscm_ir_base)) {
  166. pr_err("vf610_mscm_ir: unable to map mscm register\n");
  167. ret = PTR_ERR(mscm_ir_data->mscm_ir_base);
  168. goto out_free;
  169. }
  170. mscm_cp_regmap = syscon_regmap_lookup_by_phandle(node, "fsl,cpucfg");
  171. if (IS_ERR(mscm_cp_regmap)) {
  172. ret = PTR_ERR(mscm_cp_regmap);
  173. pr_err("vf610_mscm_ir: regmap lookup for cpucfg failed\n");
  174. goto out_unmap;
  175. }
  176. regmap_read(mscm_cp_regmap, MSCM_CPxNUM, &cpuid);
  177. mscm_ir_data->cpu_mask = 0x1 << cpuid;
  178. domain = irq_domain_add_hierarchy(domain_parent, 0,
  179. MSCM_IRSPRC_NUM, node,
  180. &mscm_irq_domain_ops, mscm_ir_data);
  181. if (!domain) {
  182. ret = -ENOMEM;
  183. goto out_unmap;
  184. }
  185. if (of_device_is_compatible(irq_domain_get_of_node(domain->parent),
  186. "arm,armv7m-nvic"))
  187. mscm_ir_data->is_nvic = true;
  188. cpu_pm_register_notifier(&mscm_ir_notifier_block);
  189. return 0;
  190. out_unmap:
  191. iounmap(mscm_ir_data->mscm_ir_base);
  192. out_free:
  193. kfree(mscm_ir_data);
  194. return ret;
  195. }
  196. IRQCHIP_DECLARE(vf610_mscm_ir, "fsl,vf610-mscm-ir", vf610_mscm_ir_of_init);