123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708 |
- /*
- * Primary bucket allocation code
- *
- * Copyright 2012 Google, Inc.
- *
- * Allocation in bcache is done in terms of buckets:
- *
- * Each bucket has associated an 8 bit gen; this gen corresponds to the gen in
- * btree pointers - they must match for the pointer to be considered valid.
- *
- * Thus (assuming a bucket has no dirty data or metadata in it) we can reuse a
- * bucket simply by incrementing its gen.
- *
- * The gens (along with the priorities; it's really the gens are important but
- * the code is named as if it's the priorities) are written in an arbitrary list
- * of buckets on disk, with a pointer to them in the journal header.
- *
- * When we invalidate a bucket, we have to write its new gen to disk and wait
- * for that write to complete before we use it - otherwise after a crash we
- * could have pointers that appeared to be good but pointed to data that had
- * been overwritten.
- *
- * Since the gens and priorities are all stored contiguously on disk, we can
- * batch this up: We fill up the free_inc list with freshly invalidated buckets,
- * call prio_write(), and when prio_write() finishes we pull buckets off the
- * free_inc list and optionally discard them.
- *
- * free_inc isn't the only freelist - if it was, we'd often to sleep while
- * priorities and gens were being written before we could allocate. c->free is a
- * smaller freelist, and buckets on that list are always ready to be used.
- *
- * If we've got discards enabled, that happens when a bucket moves from the
- * free_inc list to the free list.
- *
- * There is another freelist, because sometimes we have buckets that we know
- * have nothing pointing into them - these we can reuse without waiting for
- * priorities to be rewritten. These come from freed btree nodes and buckets
- * that garbage collection discovered no longer had valid keys pointing into
- * them (because they were overwritten). That's the unused list - buckets on the
- * unused list move to the free list, optionally being discarded in the process.
- *
- * It's also important to ensure that gens don't wrap around - with respect to
- * either the oldest gen in the btree or the gen on disk. This is quite
- * difficult to do in practice, but we explicitly guard against it anyways - if
- * a bucket is in danger of wrapping around we simply skip invalidating it that
- * time around, and we garbage collect or rewrite the priorities sooner than we
- * would have otherwise.
- *
- * bch_bucket_alloc() allocates a single bucket from a specific cache.
- *
- * bch_bucket_alloc_set() allocates one or more buckets from different caches
- * out of a cache set.
- *
- * free_some_buckets() drives all the processes described above. It's called
- * from bch_bucket_alloc() and a few other places that need to make sure free
- * buckets are ready.
- *
- * invalidate_buckets_(lru|fifo)() find buckets that are available to be
- * invalidated, and then invalidate them and stick them on the free_inc list -
- * in either lru or fifo order.
- */
- #include "bcache.h"
- #include "btree.h"
- #include <linux/blkdev.h>
- #include <linux/freezer.h>
- #include <linux/kthread.h>
- #include <linux/random.h>
- #include <trace/events/bcache.h>
- /* Bucket heap / gen */
- uint8_t bch_inc_gen(struct cache *ca, struct bucket *b)
- {
- uint8_t ret = ++b->gen;
- ca->set->need_gc = max(ca->set->need_gc, bucket_gc_gen(b));
- WARN_ON_ONCE(ca->set->need_gc > BUCKET_GC_GEN_MAX);
- return ret;
- }
- void bch_rescale_priorities(struct cache_set *c, int sectors)
- {
- struct cache *ca;
- struct bucket *b;
- unsigned next = c->nbuckets * c->sb.bucket_size / 1024;
- unsigned i;
- int r;
- atomic_sub(sectors, &c->rescale);
- do {
- r = atomic_read(&c->rescale);
- if (r >= 0)
- return;
- } while (atomic_cmpxchg(&c->rescale, r, r + next) != r);
- mutex_lock(&c->bucket_lock);
- c->min_prio = USHRT_MAX;
- for_each_cache(ca, c, i)
- for_each_bucket(b, ca)
- if (b->prio &&
- b->prio != BTREE_PRIO &&
- !atomic_read(&b->pin)) {
- b->prio--;
- c->min_prio = min(c->min_prio, b->prio);
- }
- mutex_unlock(&c->bucket_lock);
- }
- /*
- * Background allocation thread: scans for buckets to be invalidated,
- * invalidates them, rewrites prios/gens (marking them as invalidated on disk),
- * then optionally issues discard commands to the newly free buckets, then puts
- * them on the various freelists.
- */
- static inline bool can_inc_bucket_gen(struct bucket *b)
- {
- return bucket_gc_gen(b) < BUCKET_GC_GEN_MAX;
- }
- bool bch_can_invalidate_bucket(struct cache *ca, struct bucket *b)
- {
- BUG_ON(!ca->set->gc_mark_valid);
- return (!GC_MARK(b) ||
- GC_MARK(b) == GC_MARK_RECLAIMABLE) &&
- !atomic_read(&b->pin) &&
- can_inc_bucket_gen(b);
- }
- void __bch_invalidate_one_bucket(struct cache *ca, struct bucket *b)
- {
- lockdep_assert_held(&ca->set->bucket_lock);
- BUG_ON(GC_MARK(b) && GC_MARK(b) != GC_MARK_RECLAIMABLE);
- if (GC_SECTORS_USED(b))
- trace_bcache_invalidate(ca, b - ca->buckets);
- bch_inc_gen(ca, b);
- b->prio = INITIAL_PRIO;
- atomic_inc(&b->pin);
- }
- static void bch_invalidate_one_bucket(struct cache *ca, struct bucket *b)
- {
- __bch_invalidate_one_bucket(ca, b);
- fifo_push(&ca->free_inc, b - ca->buckets);
- }
- /*
- * Determines what order we're going to reuse buckets, smallest bucket_prio()
- * first: we also take into account the number of sectors of live data in that
- * bucket, and in order for that multiply to make sense we have to scale bucket
- *
- * Thus, we scale the bucket priorities so that the bucket with the smallest
- * prio is worth 1/8th of what INITIAL_PRIO is worth.
- */
- #define bucket_prio(b) \
- ({ \
- unsigned min_prio = (INITIAL_PRIO - ca->set->min_prio) / 8; \
- \
- (b->prio - ca->set->min_prio + min_prio) * GC_SECTORS_USED(b); \
- })
- #define bucket_max_cmp(l, r) (bucket_prio(l) < bucket_prio(r))
- #define bucket_min_cmp(l, r) (bucket_prio(l) > bucket_prio(r))
- static void invalidate_buckets_lru(struct cache *ca)
- {
- struct bucket *b;
- ssize_t i;
- ca->heap.used = 0;
- for_each_bucket(b, ca) {
- if (!bch_can_invalidate_bucket(ca, b))
- continue;
- if (!heap_full(&ca->heap))
- heap_add(&ca->heap, b, bucket_max_cmp);
- else if (bucket_max_cmp(b, heap_peek(&ca->heap))) {
- ca->heap.data[0] = b;
- heap_sift(&ca->heap, 0, bucket_max_cmp);
- }
- }
- for (i = ca->heap.used / 2 - 1; i >= 0; --i)
- heap_sift(&ca->heap, i, bucket_min_cmp);
- while (!fifo_full(&ca->free_inc)) {
- if (!heap_pop(&ca->heap, b, bucket_min_cmp)) {
- /*
- * We don't want to be calling invalidate_buckets()
- * multiple times when it can't do anything
- */
- ca->invalidate_needs_gc = 1;
- wake_up_gc(ca->set);
- return;
- }
- bch_invalidate_one_bucket(ca, b);
- }
- }
- static void invalidate_buckets_fifo(struct cache *ca)
- {
- struct bucket *b;
- size_t checked = 0;
- while (!fifo_full(&ca->free_inc)) {
- if (ca->fifo_last_bucket < ca->sb.first_bucket ||
- ca->fifo_last_bucket >= ca->sb.nbuckets)
- ca->fifo_last_bucket = ca->sb.first_bucket;
- b = ca->buckets + ca->fifo_last_bucket++;
- if (bch_can_invalidate_bucket(ca, b))
- bch_invalidate_one_bucket(ca, b);
- if (++checked >= ca->sb.nbuckets) {
- ca->invalidate_needs_gc = 1;
- wake_up_gc(ca->set);
- return;
- }
- }
- }
- static void invalidate_buckets_random(struct cache *ca)
- {
- struct bucket *b;
- size_t checked = 0;
- while (!fifo_full(&ca->free_inc)) {
- size_t n;
- get_random_bytes(&n, sizeof(n));
- n %= (size_t) (ca->sb.nbuckets - ca->sb.first_bucket);
- n += ca->sb.first_bucket;
- b = ca->buckets + n;
- if (bch_can_invalidate_bucket(ca, b))
- bch_invalidate_one_bucket(ca, b);
- if (++checked >= ca->sb.nbuckets / 2) {
- ca->invalidate_needs_gc = 1;
- wake_up_gc(ca->set);
- return;
- }
- }
- }
- static void invalidate_buckets(struct cache *ca)
- {
- BUG_ON(ca->invalidate_needs_gc);
- switch (CACHE_REPLACEMENT(&ca->sb)) {
- case CACHE_REPLACEMENT_LRU:
- invalidate_buckets_lru(ca);
- break;
- case CACHE_REPLACEMENT_FIFO:
- invalidate_buckets_fifo(ca);
- break;
- case CACHE_REPLACEMENT_RANDOM:
- invalidate_buckets_random(ca);
- break;
- }
- }
- #define allocator_wait(ca, cond) \
- do { \
- while (1) { \
- set_current_state(TASK_INTERRUPTIBLE); \
- if (cond) \
- break; \
- \
- mutex_unlock(&(ca)->set->bucket_lock); \
- if (kthread_should_stop()) { \
- set_current_state(TASK_RUNNING); \
- return 0; \
- } \
- \
- try_to_freeze(); \
- schedule(); \
- mutex_lock(&(ca)->set->bucket_lock); \
- } \
- __set_current_state(TASK_RUNNING); \
- } while (0)
- static int bch_allocator_push(struct cache *ca, long bucket)
- {
- unsigned i;
- /* Prios/gens are actually the most important reserve */
- if (fifo_push(&ca->free[RESERVE_PRIO], bucket))
- return true;
- for (i = 0; i < RESERVE_NR; i++)
- if (fifo_push(&ca->free[i], bucket))
- return true;
- return false;
- }
- static int bch_allocator_thread(void *arg)
- {
- struct cache *ca = arg;
- mutex_lock(&ca->set->bucket_lock);
- while (1) {
- /*
- * First, we pull buckets off of the unused and free_inc lists,
- * possibly issue discards to them, then we add the bucket to
- * the free list:
- */
- while (!fifo_empty(&ca->free_inc)) {
- long bucket;
- fifo_pop(&ca->free_inc, bucket);
- if (ca->discard) {
- mutex_unlock(&ca->set->bucket_lock);
- blkdev_issue_discard(ca->bdev,
- bucket_to_sector(ca->set, bucket),
- ca->sb.bucket_size, GFP_KERNEL, 0);
- mutex_lock(&ca->set->bucket_lock);
- }
- allocator_wait(ca, bch_allocator_push(ca, bucket));
- wake_up(&ca->set->btree_cache_wait);
- wake_up(&ca->set->bucket_wait);
- }
- /*
- * We've run out of free buckets, we need to find some buckets
- * we can invalidate. First, invalidate them in memory and add
- * them to the free_inc list:
- */
- retry_invalidate:
- allocator_wait(ca, ca->set->gc_mark_valid &&
- !ca->invalidate_needs_gc);
- invalidate_buckets(ca);
- /*
- * Now, we write their new gens to disk so we can start writing
- * new stuff to them:
- */
- allocator_wait(ca, !atomic_read(&ca->set->prio_blocked));
- if (CACHE_SYNC(&ca->set->sb)) {
- /*
- * This could deadlock if an allocation with a btree
- * node locked ever blocked - having the btree node
- * locked would block garbage collection, but here we're
- * waiting on garbage collection before we invalidate
- * and free anything.
- *
- * But this should be safe since the btree code always
- * uses btree_check_reserve() before allocating now, and
- * if it fails it blocks without btree nodes locked.
- */
- if (!fifo_full(&ca->free_inc))
- goto retry_invalidate;
- bch_prio_write(ca);
- }
- }
- }
- /* Allocation */
- long bch_bucket_alloc(struct cache *ca, unsigned reserve, bool wait)
- {
- DEFINE_WAIT(w);
- struct bucket *b;
- long r;
- /* fastpath */
- if (fifo_pop(&ca->free[RESERVE_NONE], r) ||
- fifo_pop(&ca->free[reserve], r))
- goto out;
- if (!wait) {
- trace_bcache_alloc_fail(ca, reserve);
- return -1;
- }
- do {
- prepare_to_wait(&ca->set->bucket_wait, &w,
- TASK_UNINTERRUPTIBLE);
- mutex_unlock(&ca->set->bucket_lock);
- schedule();
- mutex_lock(&ca->set->bucket_lock);
- } while (!fifo_pop(&ca->free[RESERVE_NONE], r) &&
- !fifo_pop(&ca->free[reserve], r));
- finish_wait(&ca->set->bucket_wait, &w);
- out:
- if (ca->alloc_thread)
- wake_up_process(ca->alloc_thread);
- trace_bcache_alloc(ca, reserve);
- if (expensive_debug_checks(ca->set)) {
- size_t iter;
- long i;
- unsigned j;
- for (iter = 0; iter < prio_buckets(ca) * 2; iter++)
- BUG_ON(ca->prio_buckets[iter] == (uint64_t) r);
- for (j = 0; j < RESERVE_NR; j++)
- fifo_for_each(i, &ca->free[j], iter)
- BUG_ON(i == r);
- fifo_for_each(i, &ca->free_inc, iter)
- BUG_ON(i == r);
- }
- b = ca->buckets + r;
- BUG_ON(atomic_read(&b->pin) != 1);
- SET_GC_SECTORS_USED(b, ca->sb.bucket_size);
- if (reserve <= RESERVE_PRIO) {
- SET_GC_MARK(b, GC_MARK_METADATA);
- SET_GC_MOVE(b, 0);
- b->prio = BTREE_PRIO;
- } else {
- SET_GC_MARK(b, GC_MARK_RECLAIMABLE);
- SET_GC_MOVE(b, 0);
- b->prio = INITIAL_PRIO;
- }
- return r;
- }
- void __bch_bucket_free(struct cache *ca, struct bucket *b)
- {
- SET_GC_MARK(b, 0);
- SET_GC_SECTORS_USED(b, 0);
- }
- void bch_bucket_free(struct cache_set *c, struct bkey *k)
- {
- unsigned i;
- for (i = 0; i < KEY_PTRS(k); i++)
- __bch_bucket_free(PTR_CACHE(c, k, i),
- PTR_BUCKET(c, k, i));
- }
- int __bch_bucket_alloc_set(struct cache_set *c, unsigned reserve,
- struct bkey *k, int n, bool wait)
- {
- int i;
- lockdep_assert_held(&c->bucket_lock);
- BUG_ON(!n || n > c->caches_loaded || n > 8);
- bkey_init(k);
- /* sort by free space/prio of oldest data in caches */
- for (i = 0; i < n; i++) {
- struct cache *ca = c->cache_by_alloc[i];
- long b = bch_bucket_alloc(ca, reserve, wait);
- if (b == -1)
- goto err;
- k->ptr[i] = MAKE_PTR(ca->buckets[b].gen,
- bucket_to_sector(c, b),
- ca->sb.nr_this_dev);
- SET_KEY_PTRS(k, i + 1);
- }
- return 0;
- err:
- bch_bucket_free(c, k);
- bkey_put(c, k);
- return -1;
- }
- int bch_bucket_alloc_set(struct cache_set *c, unsigned reserve,
- struct bkey *k, int n, bool wait)
- {
- int ret;
- mutex_lock(&c->bucket_lock);
- ret = __bch_bucket_alloc_set(c, reserve, k, n, wait);
- mutex_unlock(&c->bucket_lock);
- return ret;
- }
- /* Sector allocator */
- struct open_bucket {
- struct list_head list;
- unsigned last_write_point;
- unsigned sectors_free;
- BKEY_PADDED(key);
- };
- /*
- * We keep multiple buckets open for writes, and try to segregate different
- * write streams for better cache utilization: first we try to segregate flash
- * only volume write streams from cached devices, secondly we look for a bucket
- * where the last write to it was sequential with the current write, and
- * failing that we look for a bucket that was last used by the same task.
- *
- * The ideas is if you've got multiple tasks pulling data into the cache at the
- * same time, you'll get better cache utilization if you try to segregate their
- * data and preserve locality.
- *
- * For example, dirty sectors of flash only volume is not reclaimable, if their
- * dirty sectors mixed with dirty sectors of cached device, such buckets will
- * be marked as dirty and won't be reclaimed, though the dirty data of cached
- * device have been written back to backend device.
- *
- * And say you've starting Firefox at the same time you're copying a
- * bunch of files. Firefox will likely end up being fairly hot and stay in the
- * cache awhile, but the data you copied might not be; if you wrote all that
- * data to the same buckets it'd get invalidated at the same time.
- *
- * Both of those tasks will be doing fairly random IO so we can't rely on
- * detecting sequential IO to segregate their data, but going off of the task
- * should be a sane heuristic.
- */
- static struct open_bucket *pick_data_bucket(struct cache_set *c,
- const struct bkey *search,
- unsigned write_point,
- struct bkey *alloc)
- {
- struct open_bucket *ret, *ret_task = NULL;
- list_for_each_entry_reverse(ret, &c->data_buckets, list)
- if (UUID_FLASH_ONLY(&c->uuids[KEY_INODE(&ret->key)]) !=
- UUID_FLASH_ONLY(&c->uuids[KEY_INODE(search)]))
- continue;
- else if (!bkey_cmp(&ret->key, search))
- goto found;
- else if (ret->last_write_point == write_point)
- ret_task = ret;
- ret = ret_task ?: list_first_entry(&c->data_buckets,
- struct open_bucket, list);
- found:
- if (!ret->sectors_free && KEY_PTRS(alloc)) {
- ret->sectors_free = c->sb.bucket_size;
- bkey_copy(&ret->key, alloc);
- bkey_init(alloc);
- }
- if (!ret->sectors_free)
- ret = NULL;
- return ret;
- }
- /*
- * Allocates some space in the cache to write to, and k to point to the newly
- * allocated space, and updates KEY_SIZE(k) and KEY_OFFSET(k) (to point to the
- * end of the newly allocated space).
- *
- * May allocate fewer sectors than @sectors, KEY_SIZE(k) indicates how many
- * sectors were actually allocated.
- *
- * If s->writeback is true, will not fail.
- */
- bool bch_alloc_sectors(struct cache_set *c, struct bkey *k, unsigned sectors,
- unsigned write_point, unsigned write_prio, bool wait)
- {
- struct open_bucket *b;
- BKEY_PADDED(key) alloc;
- unsigned i;
- /*
- * We might have to allocate a new bucket, which we can't do with a
- * spinlock held. So if we have to allocate, we drop the lock, allocate
- * and then retry. KEY_PTRS() indicates whether alloc points to
- * allocated bucket(s).
- */
- bkey_init(&alloc.key);
- spin_lock(&c->data_bucket_lock);
- while (!(b = pick_data_bucket(c, k, write_point, &alloc.key))) {
- unsigned watermark = write_prio
- ? RESERVE_MOVINGGC
- : RESERVE_NONE;
- spin_unlock(&c->data_bucket_lock);
- if (bch_bucket_alloc_set(c, watermark, &alloc.key, 1, wait))
- return false;
- spin_lock(&c->data_bucket_lock);
- }
- /*
- * If we had to allocate, we might race and not need to allocate the
- * second time we call find_data_bucket(). If we allocated a bucket but
- * didn't use it, drop the refcount bch_bucket_alloc_set() took:
- */
- if (KEY_PTRS(&alloc.key))
- bkey_put(c, &alloc.key);
- for (i = 0; i < KEY_PTRS(&b->key); i++)
- EBUG_ON(ptr_stale(c, &b->key, i));
- /* Set up the pointer to the space we're allocating: */
- for (i = 0; i < KEY_PTRS(&b->key); i++)
- k->ptr[i] = b->key.ptr[i];
- sectors = min(sectors, b->sectors_free);
- SET_KEY_OFFSET(k, KEY_OFFSET(k) + sectors);
- SET_KEY_SIZE(k, sectors);
- SET_KEY_PTRS(k, KEY_PTRS(&b->key));
- /*
- * Move b to the end of the lru, and keep track of what this bucket was
- * last used for:
- */
- list_move_tail(&b->list, &c->data_buckets);
- bkey_copy_key(&b->key, k);
- b->last_write_point = write_point;
- b->sectors_free -= sectors;
- for (i = 0; i < KEY_PTRS(&b->key); i++) {
- SET_PTR_OFFSET(&b->key, i, PTR_OFFSET(&b->key, i) + sectors);
- atomic_long_add(sectors,
- &PTR_CACHE(c, &b->key, i)->sectors_written);
- }
- if (b->sectors_free < c->sb.block_size)
- b->sectors_free = 0;
- /*
- * k takes refcounts on the buckets it points to until it's inserted
- * into the btree, but if we're done with this bucket we just transfer
- * get_data_bucket()'s refcount.
- */
- if (b->sectors_free)
- for (i = 0; i < KEY_PTRS(&b->key); i++)
- atomic_inc(&PTR_BUCKET(c, &b->key, i)->pin);
- spin_unlock(&c->data_bucket_lock);
- return true;
- }
- /* Init */
- void bch_open_buckets_free(struct cache_set *c)
- {
- struct open_bucket *b;
- while (!list_empty(&c->data_buckets)) {
- b = list_first_entry(&c->data_buckets,
- struct open_bucket, list);
- list_del(&b->list);
- kfree(b);
- }
- }
- int bch_open_buckets_alloc(struct cache_set *c)
- {
- int i;
- spin_lock_init(&c->data_bucket_lock);
- for (i = 0; i < 6; i++) {
- struct open_bucket *b = kzalloc(sizeof(*b), GFP_KERNEL);
- if (!b)
- return -ENOMEM;
- list_add(&b->list, &c->data_buckets);
- }
- return 0;
- }
- int bch_cache_allocator_start(struct cache *ca)
- {
- struct task_struct *k = kthread_run(bch_allocator_thread,
- ca, "bcache_allocator");
- if (IS_ERR(k))
- return PTR_ERR(k);
- ca->alloc_thread = k;
- return 0;
- }
|