mt9v011.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593
  1. /*
  2. * mt9v011 -Micron 1/4-Inch VGA Digital Image Sensor
  3. *
  4. * Copyright (c) 2009 Mauro Carvalho Chehab
  5. * This code is placed under the terms of the GNU General Public License v2
  6. */
  7. #include <linux/i2c.h>
  8. #include <linux/slab.h>
  9. #include <linux/videodev2.h>
  10. #include <linux/delay.h>
  11. #include <linux/module.h>
  12. #include <asm/div64.h>
  13. #include <media/v4l2-device.h>
  14. #include <media/v4l2-ctrls.h>
  15. #include <media/mt9v011.h>
  16. MODULE_DESCRIPTION("Micron mt9v011 sensor driver");
  17. MODULE_AUTHOR("Mauro Carvalho Chehab");
  18. MODULE_LICENSE("GPL");
  19. static int debug;
  20. module_param(debug, int, 0);
  21. MODULE_PARM_DESC(debug, "Debug level (0-2)");
  22. #define R00_MT9V011_CHIP_VERSION 0x00
  23. #define R01_MT9V011_ROWSTART 0x01
  24. #define R02_MT9V011_COLSTART 0x02
  25. #define R03_MT9V011_HEIGHT 0x03
  26. #define R04_MT9V011_WIDTH 0x04
  27. #define R05_MT9V011_HBLANK 0x05
  28. #define R06_MT9V011_VBLANK 0x06
  29. #define R07_MT9V011_OUT_CTRL 0x07
  30. #define R09_MT9V011_SHUTTER_WIDTH 0x09
  31. #define R0A_MT9V011_CLK_SPEED 0x0a
  32. #define R0B_MT9V011_RESTART 0x0b
  33. #define R0C_MT9V011_SHUTTER_DELAY 0x0c
  34. #define R0D_MT9V011_RESET 0x0d
  35. #define R1E_MT9V011_DIGITAL_ZOOM 0x1e
  36. #define R20_MT9V011_READ_MODE 0x20
  37. #define R2B_MT9V011_GREEN_1_GAIN 0x2b
  38. #define R2C_MT9V011_BLUE_GAIN 0x2c
  39. #define R2D_MT9V011_RED_GAIN 0x2d
  40. #define R2E_MT9V011_GREEN_2_GAIN 0x2e
  41. #define R35_MT9V011_GLOBAL_GAIN 0x35
  42. #define RF1_MT9V011_CHIP_ENABLE 0xf1
  43. #define MT9V011_VERSION 0x8232
  44. #define MT9V011_REV_B_VERSION 0x8243
  45. struct mt9v011 {
  46. struct v4l2_subdev sd;
  47. struct v4l2_ctrl_handler ctrls;
  48. unsigned width, height;
  49. unsigned xtal;
  50. unsigned hflip:1;
  51. unsigned vflip:1;
  52. u16 global_gain, exposure;
  53. s16 red_bal, blue_bal;
  54. };
  55. static inline struct mt9v011 *to_mt9v011(struct v4l2_subdev *sd)
  56. {
  57. return container_of(sd, struct mt9v011, sd);
  58. }
  59. static int mt9v011_read(struct v4l2_subdev *sd, unsigned char addr)
  60. {
  61. struct i2c_client *c = v4l2_get_subdevdata(sd);
  62. __be16 buffer;
  63. int rc, val;
  64. rc = i2c_master_send(c, &addr, 1);
  65. if (rc != 1)
  66. v4l2_dbg(0, debug, sd,
  67. "i2c i/o error: rc == %d (should be 1)\n", rc);
  68. msleep(10);
  69. rc = i2c_master_recv(c, (char *)&buffer, 2);
  70. if (rc != 2)
  71. v4l2_dbg(0, debug, sd,
  72. "i2c i/o error: rc == %d (should be 2)\n", rc);
  73. val = be16_to_cpu(buffer);
  74. v4l2_dbg(2, debug, sd, "mt9v011: read 0x%02x = 0x%04x\n", addr, val);
  75. return val;
  76. }
  77. static void mt9v011_write(struct v4l2_subdev *sd, unsigned char addr,
  78. u16 value)
  79. {
  80. struct i2c_client *c = v4l2_get_subdevdata(sd);
  81. unsigned char buffer[3];
  82. int rc;
  83. buffer[0] = addr;
  84. buffer[1] = value >> 8;
  85. buffer[2] = value & 0xff;
  86. v4l2_dbg(2, debug, sd,
  87. "mt9v011: writing 0x%02x 0x%04x\n", buffer[0], value);
  88. rc = i2c_master_send(c, buffer, 3);
  89. if (rc != 3)
  90. v4l2_dbg(0, debug, sd,
  91. "i2c i/o error: rc == %d (should be 3)\n", rc);
  92. }
  93. struct i2c_reg_value {
  94. unsigned char reg;
  95. u16 value;
  96. };
  97. /*
  98. * Values used at the original driver
  99. * Some values are marked as Reserved at the datasheet
  100. */
  101. static const struct i2c_reg_value mt9v011_init_default[] = {
  102. { R0D_MT9V011_RESET, 0x0001 },
  103. { R0D_MT9V011_RESET, 0x0000 },
  104. { R0C_MT9V011_SHUTTER_DELAY, 0x0000 },
  105. { R09_MT9V011_SHUTTER_WIDTH, 0x1fc },
  106. { R0A_MT9V011_CLK_SPEED, 0x0000 },
  107. { R1E_MT9V011_DIGITAL_ZOOM, 0x0000 },
  108. { R07_MT9V011_OUT_CTRL, 0x0002 }, /* chip enable */
  109. };
  110. static u16 calc_mt9v011_gain(s16 lineargain)
  111. {
  112. u16 digitalgain = 0;
  113. u16 analogmult = 0;
  114. u16 analoginit = 0;
  115. if (lineargain < 0)
  116. lineargain = 0;
  117. /* recommended minimum */
  118. lineargain += 0x0020;
  119. if (lineargain > 2047)
  120. lineargain = 2047;
  121. if (lineargain > 1023) {
  122. digitalgain = 3;
  123. analogmult = 3;
  124. analoginit = lineargain / 16;
  125. } else if (lineargain > 511) {
  126. digitalgain = 1;
  127. analogmult = 3;
  128. analoginit = lineargain / 8;
  129. } else if (lineargain > 255) {
  130. analogmult = 3;
  131. analoginit = lineargain / 4;
  132. } else if (lineargain > 127) {
  133. analogmult = 1;
  134. analoginit = lineargain / 2;
  135. } else
  136. analoginit = lineargain;
  137. return analoginit + (analogmult << 7) + (digitalgain << 9);
  138. }
  139. static void set_balance(struct v4l2_subdev *sd)
  140. {
  141. struct mt9v011 *core = to_mt9v011(sd);
  142. u16 green_gain, blue_gain, red_gain;
  143. u16 exposure;
  144. s16 bal;
  145. exposure = core->exposure;
  146. green_gain = calc_mt9v011_gain(core->global_gain);
  147. bal = core->global_gain;
  148. bal += (core->blue_bal * core->global_gain / (1 << 7));
  149. blue_gain = calc_mt9v011_gain(bal);
  150. bal = core->global_gain;
  151. bal += (core->red_bal * core->global_gain / (1 << 7));
  152. red_gain = calc_mt9v011_gain(bal);
  153. mt9v011_write(sd, R2B_MT9V011_GREEN_1_GAIN, green_gain);
  154. mt9v011_write(sd, R2E_MT9V011_GREEN_2_GAIN, green_gain);
  155. mt9v011_write(sd, R2C_MT9V011_BLUE_GAIN, blue_gain);
  156. mt9v011_write(sd, R2D_MT9V011_RED_GAIN, red_gain);
  157. mt9v011_write(sd, R09_MT9V011_SHUTTER_WIDTH, exposure);
  158. }
  159. static void calc_fps(struct v4l2_subdev *sd, u32 *numerator, u32 *denominator)
  160. {
  161. struct mt9v011 *core = to_mt9v011(sd);
  162. unsigned height, width, hblank, vblank, speed;
  163. unsigned row_time, t_time;
  164. u64 frames_per_ms;
  165. unsigned tmp;
  166. height = mt9v011_read(sd, R03_MT9V011_HEIGHT);
  167. width = mt9v011_read(sd, R04_MT9V011_WIDTH);
  168. hblank = mt9v011_read(sd, R05_MT9V011_HBLANK);
  169. vblank = mt9v011_read(sd, R06_MT9V011_VBLANK);
  170. speed = mt9v011_read(sd, R0A_MT9V011_CLK_SPEED);
  171. row_time = (width + 113 + hblank) * (speed + 2);
  172. t_time = row_time * (height + vblank + 1);
  173. frames_per_ms = core->xtal * 1000l;
  174. do_div(frames_per_ms, t_time);
  175. tmp = frames_per_ms;
  176. v4l2_dbg(1, debug, sd, "Programmed to %u.%03u fps (%d pixel clcks)\n",
  177. tmp / 1000, tmp % 1000, t_time);
  178. if (numerator && denominator) {
  179. *numerator = 1000;
  180. *denominator = (u32)frames_per_ms;
  181. }
  182. }
  183. static u16 calc_speed(struct v4l2_subdev *sd, u32 numerator, u32 denominator)
  184. {
  185. struct mt9v011 *core = to_mt9v011(sd);
  186. unsigned height, width, hblank, vblank;
  187. unsigned row_time, line_time;
  188. u64 t_time, speed;
  189. /* Avoid bogus calculus */
  190. if (!numerator || !denominator)
  191. return 0;
  192. height = mt9v011_read(sd, R03_MT9V011_HEIGHT);
  193. width = mt9v011_read(sd, R04_MT9V011_WIDTH);
  194. hblank = mt9v011_read(sd, R05_MT9V011_HBLANK);
  195. vblank = mt9v011_read(sd, R06_MT9V011_VBLANK);
  196. row_time = width + 113 + hblank;
  197. line_time = height + vblank + 1;
  198. t_time = core->xtal * ((u64)numerator);
  199. /* round to the closest value */
  200. t_time += denominator / 2;
  201. do_div(t_time, denominator);
  202. speed = t_time;
  203. do_div(speed, row_time * line_time);
  204. /* Avoid having a negative value for speed */
  205. if (speed < 2)
  206. speed = 0;
  207. else
  208. speed -= 2;
  209. /* Avoid speed overflow */
  210. if (speed > 15)
  211. return 15;
  212. return (u16)speed;
  213. }
  214. static void set_res(struct v4l2_subdev *sd)
  215. {
  216. struct mt9v011 *core = to_mt9v011(sd);
  217. unsigned vstart, hstart;
  218. /*
  219. * The mt9v011 doesn't have scaling. So, in order to select the desired
  220. * resolution, we're cropping at the middle of the sensor.
  221. * hblank and vblank should be adjusted, in order to warrant that
  222. * we'll preserve the line timings for 30 fps, no matter what resolution
  223. * is selected.
  224. * NOTE: datasheet says that width (and height) should be filled with
  225. * width-1. However, this doesn't work, since one pixel per line will
  226. * be missing.
  227. */
  228. hstart = 20 + (640 - core->width) / 2;
  229. mt9v011_write(sd, R02_MT9V011_COLSTART, hstart);
  230. mt9v011_write(sd, R04_MT9V011_WIDTH, core->width);
  231. mt9v011_write(sd, R05_MT9V011_HBLANK, 771 - core->width);
  232. vstart = 8 + (480 - core->height) / 2;
  233. mt9v011_write(sd, R01_MT9V011_ROWSTART, vstart);
  234. mt9v011_write(sd, R03_MT9V011_HEIGHT, core->height);
  235. mt9v011_write(sd, R06_MT9V011_VBLANK, 508 - core->height);
  236. calc_fps(sd, NULL, NULL);
  237. };
  238. static void set_read_mode(struct v4l2_subdev *sd)
  239. {
  240. struct mt9v011 *core = to_mt9v011(sd);
  241. unsigned mode = 0x1000;
  242. if (core->hflip)
  243. mode |= 0x4000;
  244. if (core->vflip)
  245. mode |= 0x8000;
  246. mt9v011_write(sd, R20_MT9V011_READ_MODE, mode);
  247. }
  248. static int mt9v011_reset(struct v4l2_subdev *sd, u32 val)
  249. {
  250. int i;
  251. for (i = 0; i < ARRAY_SIZE(mt9v011_init_default); i++)
  252. mt9v011_write(sd, mt9v011_init_default[i].reg,
  253. mt9v011_init_default[i].value);
  254. set_balance(sd);
  255. set_res(sd);
  256. set_read_mode(sd);
  257. return 0;
  258. }
  259. static int mt9v011_enum_mbus_code(struct v4l2_subdev *sd,
  260. struct v4l2_subdev_pad_config *cfg,
  261. struct v4l2_subdev_mbus_code_enum *code)
  262. {
  263. if (code->pad || code->index > 0)
  264. return -EINVAL;
  265. code->code = MEDIA_BUS_FMT_SGRBG8_1X8;
  266. return 0;
  267. }
  268. static int mt9v011_set_fmt(struct v4l2_subdev *sd,
  269. struct v4l2_subdev_pad_config *cfg,
  270. struct v4l2_subdev_format *format)
  271. {
  272. struct v4l2_mbus_framefmt *fmt = &format->format;
  273. struct mt9v011 *core = to_mt9v011(sd);
  274. if (format->pad || fmt->code != MEDIA_BUS_FMT_SGRBG8_1X8)
  275. return -EINVAL;
  276. v4l_bound_align_image(&fmt->width, 48, 639, 1,
  277. &fmt->height, 32, 480, 1, 0);
  278. fmt->field = V4L2_FIELD_NONE;
  279. fmt->colorspace = V4L2_COLORSPACE_SRGB;
  280. if (format->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
  281. core->width = fmt->width;
  282. core->height = fmt->height;
  283. set_res(sd);
  284. } else {
  285. cfg->try_fmt = *fmt;
  286. }
  287. return 0;
  288. }
  289. static int mt9v011_g_parm(struct v4l2_subdev *sd, struct v4l2_streamparm *parms)
  290. {
  291. struct v4l2_captureparm *cp = &parms->parm.capture;
  292. if (parms->type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
  293. return -EINVAL;
  294. memset(cp, 0, sizeof(struct v4l2_captureparm));
  295. cp->capability = V4L2_CAP_TIMEPERFRAME;
  296. calc_fps(sd,
  297. &cp->timeperframe.numerator,
  298. &cp->timeperframe.denominator);
  299. return 0;
  300. }
  301. static int mt9v011_s_parm(struct v4l2_subdev *sd, struct v4l2_streamparm *parms)
  302. {
  303. struct v4l2_captureparm *cp = &parms->parm.capture;
  304. struct v4l2_fract *tpf = &cp->timeperframe;
  305. u16 speed;
  306. if (parms->type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
  307. return -EINVAL;
  308. if (cp->extendedmode != 0)
  309. return -EINVAL;
  310. speed = calc_speed(sd, tpf->numerator, tpf->denominator);
  311. mt9v011_write(sd, R0A_MT9V011_CLK_SPEED, speed);
  312. v4l2_dbg(1, debug, sd, "Setting speed to %d\n", speed);
  313. /* Recalculate and update fps info */
  314. calc_fps(sd, &tpf->numerator, &tpf->denominator);
  315. return 0;
  316. }
  317. #ifdef CONFIG_VIDEO_ADV_DEBUG
  318. static int mt9v011_g_register(struct v4l2_subdev *sd,
  319. struct v4l2_dbg_register *reg)
  320. {
  321. reg->val = mt9v011_read(sd, reg->reg & 0xff);
  322. reg->size = 2;
  323. return 0;
  324. }
  325. static int mt9v011_s_register(struct v4l2_subdev *sd,
  326. const struct v4l2_dbg_register *reg)
  327. {
  328. mt9v011_write(sd, reg->reg & 0xff, reg->val & 0xffff);
  329. return 0;
  330. }
  331. #endif
  332. static int mt9v011_s_ctrl(struct v4l2_ctrl *ctrl)
  333. {
  334. struct mt9v011 *core =
  335. container_of(ctrl->handler, struct mt9v011, ctrls);
  336. struct v4l2_subdev *sd = &core->sd;
  337. switch (ctrl->id) {
  338. case V4L2_CID_GAIN:
  339. core->global_gain = ctrl->val;
  340. break;
  341. case V4L2_CID_EXPOSURE:
  342. core->exposure = ctrl->val;
  343. break;
  344. case V4L2_CID_RED_BALANCE:
  345. core->red_bal = ctrl->val;
  346. break;
  347. case V4L2_CID_BLUE_BALANCE:
  348. core->blue_bal = ctrl->val;
  349. break;
  350. case V4L2_CID_HFLIP:
  351. core->hflip = ctrl->val;
  352. set_read_mode(sd);
  353. return 0;
  354. case V4L2_CID_VFLIP:
  355. core->vflip = ctrl->val;
  356. set_read_mode(sd);
  357. return 0;
  358. default:
  359. return -EINVAL;
  360. }
  361. set_balance(sd);
  362. return 0;
  363. }
  364. static struct v4l2_ctrl_ops mt9v011_ctrl_ops = {
  365. .s_ctrl = mt9v011_s_ctrl,
  366. };
  367. static const struct v4l2_subdev_core_ops mt9v011_core_ops = {
  368. .reset = mt9v011_reset,
  369. #ifdef CONFIG_VIDEO_ADV_DEBUG
  370. .g_register = mt9v011_g_register,
  371. .s_register = mt9v011_s_register,
  372. #endif
  373. };
  374. static const struct v4l2_subdev_video_ops mt9v011_video_ops = {
  375. .g_parm = mt9v011_g_parm,
  376. .s_parm = mt9v011_s_parm,
  377. };
  378. static const struct v4l2_subdev_pad_ops mt9v011_pad_ops = {
  379. .enum_mbus_code = mt9v011_enum_mbus_code,
  380. .set_fmt = mt9v011_set_fmt,
  381. };
  382. static const struct v4l2_subdev_ops mt9v011_ops = {
  383. .core = &mt9v011_core_ops,
  384. .video = &mt9v011_video_ops,
  385. .pad = &mt9v011_pad_ops,
  386. };
  387. /****************************************************************************
  388. I2C Client & Driver
  389. ****************************************************************************/
  390. static int mt9v011_probe(struct i2c_client *c,
  391. const struct i2c_device_id *id)
  392. {
  393. u16 version;
  394. struct mt9v011 *core;
  395. struct v4l2_subdev *sd;
  396. /* Check if the adapter supports the needed features */
  397. if (!i2c_check_functionality(c->adapter,
  398. I2C_FUNC_SMBUS_READ_BYTE | I2C_FUNC_SMBUS_WRITE_BYTE_DATA))
  399. return -EIO;
  400. core = devm_kzalloc(&c->dev, sizeof(struct mt9v011), GFP_KERNEL);
  401. if (!core)
  402. return -ENOMEM;
  403. sd = &core->sd;
  404. v4l2_i2c_subdev_init(sd, c, &mt9v011_ops);
  405. /* Check if the sensor is really a MT9V011 */
  406. version = mt9v011_read(sd, R00_MT9V011_CHIP_VERSION);
  407. if ((version != MT9V011_VERSION) &&
  408. (version != MT9V011_REV_B_VERSION)) {
  409. v4l2_info(sd, "*** unknown micron chip detected (0x%04x).\n",
  410. version);
  411. return -EINVAL;
  412. }
  413. v4l2_ctrl_handler_init(&core->ctrls, 5);
  414. v4l2_ctrl_new_std(&core->ctrls, &mt9v011_ctrl_ops,
  415. V4L2_CID_GAIN, 0, (1 << 12) - 1 - 0x20, 1, 0x20);
  416. v4l2_ctrl_new_std(&core->ctrls, &mt9v011_ctrl_ops,
  417. V4L2_CID_EXPOSURE, 0, 2047, 1, 0x01fc);
  418. v4l2_ctrl_new_std(&core->ctrls, &mt9v011_ctrl_ops,
  419. V4L2_CID_RED_BALANCE, -(1 << 9), (1 << 9) - 1, 1, 0);
  420. v4l2_ctrl_new_std(&core->ctrls, &mt9v011_ctrl_ops,
  421. V4L2_CID_BLUE_BALANCE, -(1 << 9), (1 << 9) - 1, 1, 0);
  422. v4l2_ctrl_new_std(&core->ctrls, &mt9v011_ctrl_ops,
  423. V4L2_CID_HFLIP, 0, 1, 1, 0);
  424. v4l2_ctrl_new_std(&core->ctrls, &mt9v011_ctrl_ops,
  425. V4L2_CID_VFLIP, 0, 1, 1, 0);
  426. if (core->ctrls.error) {
  427. int ret = core->ctrls.error;
  428. v4l2_err(sd, "control initialization error %d\n", ret);
  429. v4l2_ctrl_handler_free(&core->ctrls);
  430. return ret;
  431. }
  432. core->sd.ctrl_handler = &core->ctrls;
  433. core->global_gain = 0x0024;
  434. core->exposure = 0x01fc;
  435. core->width = 640;
  436. core->height = 480;
  437. core->xtal = 27000000; /* Hz */
  438. if (c->dev.platform_data) {
  439. struct mt9v011_platform_data *pdata = c->dev.platform_data;
  440. core->xtal = pdata->xtal;
  441. v4l2_dbg(1, debug, sd, "xtal set to %d.%03d MHz\n",
  442. core->xtal / 1000000, (core->xtal / 1000) % 1000);
  443. }
  444. v4l_info(c, "chip found @ 0x%02x (%s - chip version 0x%04x)\n",
  445. c->addr << 1, c->adapter->name, version);
  446. return 0;
  447. }
  448. static int mt9v011_remove(struct i2c_client *c)
  449. {
  450. struct v4l2_subdev *sd = i2c_get_clientdata(c);
  451. struct mt9v011 *core = to_mt9v011(sd);
  452. v4l2_dbg(1, debug, sd,
  453. "mt9v011.c: removing mt9v011 adapter on address 0x%x\n",
  454. c->addr << 1);
  455. v4l2_device_unregister_subdev(sd);
  456. v4l2_ctrl_handler_free(&core->ctrls);
  457. return 0;
  458. }
  459. /* ----------------------------------------------------------------------- */
  460. static const struct i2c_device_id mt9v011_id[] = {
  461. { "mt9v011", 0 },
  462. { }
  463. };
  464. MODULE_DEVICE_TABLE(i2c, mt9v011_id);
  465. static struct i2c_driver mt9v011_driver = {
  466. .driver = {
  467. .name = "mt9v011",
  468. },
  469. .probe = mt9v011_probe,
  470. .remove = mt9v011_remove,
  471. .id_table = mt9v011_id,
  472. };
  473. module_i2c_driver(mt9v011_driver);