io.c 42 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440
  1. /*
  2. * Copyright (c) International Business Machines Corp., 2006
  3. * Copyright (c) Nokia Corporation, 2006, 2007
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation; either version 2 of the License, or
  8. * (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
  13. * the GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  18. *
  19. * Author: Artem Bityutskiy (Битюцкий Артём)
  20. */
  21. /*
  22. * UBI input/output sub-system.
  23. *
  24. * This sub-system provides a uniform way to work with all kinds of the
  25. * underlying MTD devices. It also implements handy functions for reading and
  26. * writing UBI headers.
  27. *
  28. * We are trying to have a paranoid mindset and not to trust to what we read
  29. * from the flash media in order to be more secure and robust. So this
  30. * sub-system validates every single header it reads from the flash media.
  31. *
  32. * Some words about how the eraseblock headers are stored.
  33. *
  34. * The erase counter header is always stored at offset zero. By default, the
  35. * VID header is stored after the EC header at the closest aligned offset
  36. * (i.e. aligned to the minimum I/O unit size). Data starts next to the VID
  37. * header at the closest aligned offset. But this default layout may be
  38. * changed. For example, for different reasons (e.g., optimization) UBI may be
  39. * asked to put the VID header at further offset, and even at an unaligned
  40. * offset. Of course, if the offset of the VID header is unaligned, UBI adds
  41. * proper padding in front of it. Data offset may also be changed but it has to
  42. * be aligned.
  43. *
  44. * About minimal I/O units. In general, UBI assumes flash device model where
  45. * there is only one minimal I/O unit size. E.g., in case of NOR flash it is 1,
  46. * in case of NAND flash it is a NAND page, etc. This is reported by MTD in the
  47. * @ubi->mtd->writesize field. But as an exception, UBI admits of using another
  48. * (smaller) minimal I/O unit size for EC and VID headers to make it possible
  49. * to do different optimizations.
  50. *
  51. * This is extremely useful in case of NAND flashes which admit of several
  52. * write operations to one NAND page. In this case UBI can fit EC and VID
  53. * headers at one NAND page. Thus, UBI may use "sub-page" size as the minimal
  54. * I/O unit for the headers (the @ubi->hdrs_min_io_size field). But it still
  55. * reports NAND page size (@ubi->min_io_size) as a minimal I/O unit for the UBI
  56. * users.
  57. *
  58. * Example: some Samsung NANDs with 2KiB pages allow 4x 512-byte writes, so
  59. * although the minimal I/O unit is 2K, UBI uses 512 bytes for EC and VID
  60. * headers.
  61. *
  62. * Q: why not just to treat sub-page as a minimal I/O unit of this flash
  63. * device, e.g., make @ubi->min_io_size = 512 in the example above?
  64. *
  65. * A: because when writing a sub-page, MTD still writes a full 2K page but the
  66. * bytes which are not relevant to the sub-page are 0xFF. So, basically,
  67. * writing 4x512 sub-pages is 4 times slower than writing one 2KiB NAND page.
  68. * Thus, we prefer to use sub-pages only for EC and VID headers.
  69. *
  70. * As it was noted above, the VID header may start at a non-aligned offset.
  71. * For example, in case of a 2KiB page NAND flash with a 512 bytes sub-page,
  72. * the VID header may reside at offset 1984 which is the last 64 bytes of the
  73. * last sub-page (EC header is always at offset zero). This causes some
  74. * difficulties when reading and writing VID headers.
  75. *
  76. * Suppose we have a 64-byte buffer and we read a VID header at it. We change
  77. * the data and want to write this VID header out. As we can only write in
  78. * 512-byte chunks, we have to allocate one more buffer and copy our VID header
  79. * to offset 448 of this buffer.
  80. *
  81. * The I/O sub-system does the following trick in order to avoid this extra
  82. * copy. It always allocates a @ubi->vid_hdr_alsize bytes buffer for the VID
  83. * header and returns a pointer to offset @ubi->vid_hdr_shift of this buffer.
  84. * When the VID header is being written out, it shifts the VID header pointer
  85. * back and writes the whole sub-page.
  86. */
  87. #include <linux/crc32.h>
  88. #include <linux/err.h>
  89. #include <linux/slab.h>
  90. #include "ubi.h"
  91. static int self_check_not_bad(const struct ubi_device *ubi, int pnum);
  92. static int self_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum);
  93. static int self_check_ec_hdr(const struct ubi_device *ubi, int pnum,
  94. const struct ubi_ec_hdr *ec_hdr);
  95. static int self_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum);
  96. static int self_check_vid_hdr(const struct ubi_device *ubi, int pnum,
  97. const struct ubi_vid_hdr *vid_hdr);
  98. static int self_check_write(struct ubi_device *ubi, const void *buf, int pnum,
  99. int offset, int len);
  100. /**
  101. * ubi_io_read - read data from a physical eraseblock.
  102. * @ubi: UBI device description object
  103. * @buf: buffer where to store the read data
  104. * @pnum: physical eraseblock number to read from
  105. * @offset: offset within the physical eraseblock from where to read
  106. * @len: how many bytes to read
  107. *
  108. * This function reads data from offset @offset of physical eraseblock @pnum
  109. * and stores the read data in the @buf buffer. The following return codes are
  110. * possible:
  111. *
  112. * o %0 if all the requested data were successfully read;
  113. * o %UBI_IO_BITFLIPS if all the requested data were successfully read, but
  114. * correctable bit-flips were detected; this is harmless but may indicate
  115. * that this eraseblock may become bad soon (but do not have to);
  116. * o %-EBADMSG if the MTD subsystem reported about data integrity problems, for
  117. * example it can be an ECC error in case of NAND; this most probably means
  118. * that the data is corrupted;
  119. * o %-EIO if some I/O error occurred;
  120. * o other negative error codes in case of other errors.
  121. */
  122. int ubi_io_read(const struct ubi_device *ubi, void *buf, int pnum, int offset,
  123. int len)
  124. {
  125. int err, retries = 0;
  126. size_t read;
  127. loff_t addr;
  128. dbg_io("read %d bytes from PEB %d:%d", len, pnum, offset);
  129. ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
  130. ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
  131. ubi_assert(len > 0);
  132. err = self_check_not_bad(ubi, pnum);
  133. if (err)
  134. return err;
  135. /*
  136. * Deliberately corrupt the buffer to improve robustness. Indeed, if we
  137. * do not do this, the following may happen:
  138. * 1. The buffer contains data from previous operation, e.g., read from
  139. * another PEB previously. The data looks like expected, e.g., if we
  140. * just do not read anything and return - the caller would not
  141. * notice this. E.g., if we are reading a VID header, the buffer may
  142. * contain a valid VID header from another PEB.
  143. * 2. The driver is buggy and returns us success or -EBADMSG or
  144. * -EUCLEAN, but it does not actually put any data to the buffer.
  145. *
  146. * This may confuse UBI or upper layers - they may think the buffer
  147. * contains valid data while in fact it is just old data. This is
  148. * especially possible because UBI (and UBIFS) relies on CRC, and
  149. * treats data as correct even in case of ECC errors if the CRC is
  150. * correct.
  151. *
  152. * Try to prevent this situation by changing the first byte of the
  153. * buffer.
  154. */
  155. *((uint8_t *)buf) ^= 0xFF;
  156. addr = (loff_t)pnum * ubi->peb_size + offset;
  157. retry:
  158. err = mtd_read(ubi->mtd, addr, len, &read, buf);
  159. if (err) {
  160. const char *errstr = mtd_is_eccerr(err) ? " (ECC error)" : "";
  161. if (mtd_is_bitflip(err)) {
  162. /*
  163. * -EUCLEAN is reported if there was a bit-flip which
  164. * was corrected, so this is harmless.
  165. *
  166. * We do not report about it here unless debugging is
  167. * enabled. A corresponding message will be printed
  168. * later, when it is has been scrubbed.
  169. */
  170. ubi_msg(ubi, "fixable bit-flip detected at PEB %d",
  171. pnum);
  172. ubi_assert(len == read);
  173. return UBI_IO_BITFLIPS;
  174. }
  175. if (retries++ < UBI_IO_RETRIES) {
  176. ubi_warn(ubi, "error %d%s while reading %d bytes from PEB %d:%d, read only %zd bytes, retry",
  177. err, errstr, len, pnum, offset, read);
  178. yield();
  179. goto retry;
  180. }
  181. ubi_err(ubi, "error %d%s while reading %d bytes from PEB %d:%d, read %zd bytes",
  182. err, errstr, len, pnum, offset, read);
  183. dump_stack();
  184. /*
  185. * The driver should never return -EBADMSG if it failed to read
  186. * all the requested data. But some buggy drivers might do
  187. * this, so we change it to -EIO.
  188. */
  189. if (read != len && mtd_is_eccerr(err)) {
  190. ubi_assert(0);
  191. err = -EIO;
  192. }
  193. } else {
  194. ubi_assert(len == read);
  195. if (ubi_dbg_is_bitflip(ubi)) {
  196. dbg_gen("bit-flip (emulated)");
  197. err = UBI_IO_BITFLIPS;
  198. }
  199. }
  200. return err;
  201. }
  202. /**
  203. * ubi_io_write - write data to a physical eraseblock.
  204. * @ubi: UBI device description object
  205. * @buf: buffer with the data to write
  206. * @pnum: physical eraseblock number to write to
  207. * @offset: offset within the physical eraseblock where to write
  208. * @len: how many bytes to write
  209. *
  210. * This function writes @len bytes of data from buffer @buf to offset @offset
  211. * of physical eraseblock @pnum. If all the data were successfully written,
  212. * zero is returned. If an error occurred, this function returns a negative
  213. * error code. If %-EIO is returned, the physical eraseblock most probably went
  214. * bad.
  215. *
  216. * Note, in case of an error, it is possible that something was still written
  217. * to the flash media, but may be some garbage.
  218. */
  219. int ubi_io_write(struct ubi_device *ubi, const void *buf, int pnum, int offset,
  220. int len)
  221. {
  222. int err;
  223. size_t written;
  224. loff_t addr;
  225. dbg_io("write %d bytes to PEB %d:%d", len, pnum, offset);
  226. ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
  227. ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
  228. ubi_assert(offset % ubi->hdrs_min_io_size == 0);
  229. ubi_assert(len > 0 && len % ubi->hdrs_min_io_size == 0);
  230. if (ubi->ro_mode) {
  231. ubi_err(ubi, "read-only mode");
  232. return -EROFS;
  233. }
  234. err = self_check_not_bad(ubi, pnum);
  235. if (err)
  236. return err;
  237. /* The area we are writing to has to contain all 0xFF bytes */
  238. err = ubi_self_check_all_ff(ubi, pnum, offset, len);
  239. if (err)
  240. return err;
  241. if (offset >= ubi->leb_start) {
  242. /*
  243. * We write to the data area of the physical eraseblock. Make
  244. * sure it has valid EC and VID headers.
  245. */
  246. err = self_check_peb_ec_hdr(ubi, pnum);
  247. if (err)
  248. return err;
  249. err = self_check_peb_vid_hdr(ubi, pnum);
  250. if (err)
  251. return err;
  252. }
  253. if (ubi_dbg_is_write_failure(ubi)) {
  254. ubi_err(ubi, "cannot write %d bytes to PEB %d:%d (emulated)",
  255. len, pnum, offset);
  256. dump_stack();
  257. return -EIO;
  258. }
  259. addr = (loff_t)pnum * ubi->peb_size + offset;
  260. err = mtd_write(ubi->mtd, addr, len, &written, buf);
  261. if (err) {
  262. ubi_err(ubi, "error %d while writing %d bytes to PEB %d:%d, written %zd bytes",
  263. err, len, pnum, offset, written);
  264. dump_stack();
  265. ubi_dump_flash(ubi, pnum, offset, len);
  266. } else
  267. ubi_assert(written == len);
  268. if (!err) {
  269. err = self_check_write(ubi, buf, pnum, offset, len);
  270. if (err)
  271. return err;
  272. /*
  273. * Since we always write sequentially, the rest of the PEB has
  274. * to contain only 0xFF bytes.
  275. */
  276. offset += len;
  277. len = ubi->peb_size - offset;
  278. if (len)
  279. err = ubi_self_check_all_ff(ubi, pnum, offset, len);
  280. }
  281. return err;
  282. }
  283. /**
  284. * erase_callback - MTD erasure call-back.
  285. * @ei: MTD erase information object.
  286. *
  287. * Note, even though MTD erase interface is asynchronous, all the current
  288. * implementations are synchronous anyway.
  289. */
  290. static void erase_callback(struct erase_info *ei)
  291. {
  292. wake_up_interruptible((wait_queue_head_t *)ei->priv);
  293. }
  294. /**
  295. * do_sync_erase - synchronously erase a physical eraseblock.
  296. * @ubi: UBI device description object
  297. * @pnum: the physical eraseblock number to erase
  298. *
  299. * This function synchronously erases physical eraseblock @pnum and returns
  300. * zero in case of success and a negative error code in case of failure. If
  301. * %-EIO is returned, the physical eraseblock most probably went bad.
  302. */
  303. static int do_sync_erase(struct ubi_device *ubi, int pnum)
  304. {
  305. int err, retries = 0;
  306. struct erase_info ei;
  307. wait_queue_head_t wq;
  308. dbg_io("erase PEB %d", pnum);
  309. ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
  310. if (ubi->ro_mode) {
  311. ubi_err(ubi, "read-only mode");
  312. return -EROFS;
  313. }
  314. retry:
  315. init_waitqueue_head(&wq);
  316. memset(&ei, 0, sizeof(struct erase_info));
  317. ei.mtd = ubi->mtd;
  318. ei.addr = (loff_t)pnum * ubi->peb_size;
  319. ei.len = ubi->peb_size;
  320. ei.callback = erase_callback;
  321. ei.priv = (unsigned long)&wq;
  322. err = mtd_erase(ubi->mtd, &ei);
  323. if (err) {
  324. if (retries++ < UBI_IO_RETRIES) {
  325. ubi_warn(ubi, "error %d while erasing PEB %d, retry",
  326. err, pnum);
  327. yield();
  328. goto retry;
  329. }
  330. ubi_err(ubi, "cannot erase PEB %d, error %d", pnum, err);
  331. dump_stack();
  332. return err;
  333. }
  334. err = wait_event_interruptible(wq, ei.state == MTD_ERASE_DONE ||
  335. ei.state == MTD_ERASE_FAILED);
  336. if (err) {
  337. ubi_err(ubi, "interrupted PEB %d erasure", pnum);
  338. return -EINTR;
  339. }
  340. if (ei.state == MTD_ERASE_FAILED) {
  341. if (retries++ < UBI_IO_RETRIES) {
  342. ubi_warn(ubi, "error while erasing PEB %d, retry",
  343. pnum);
  344. yield();
  345. goto retry;
  346. }
  347. ubi_err(ubi, "cannot erase PEB %d", pnum);
  348. dump_stack();
  349. return -EIO;
  350. }
  351. err = ubi_self_check_all_ff(ubi, pnum, 0, ubi->peb_size);
  352. if (err)
  353. return err;
  354. if (ubi_dbg_is_erase_failure(ubi)) {
  355. ubi_err(ubi, "cannot erase PEB %d (emulated)", pnum);
  356. return -EIO;
  357. }
  358. return 0;
  359. }
  360. /* Patterns to write to a physical eraseblock when torturing it */
  361. static uint8_t patterns[] = {0xa5, 0x5a, 0x0};
  362. /**
  363. * torture_peb - test a supposedly bad physical eraseblock.
  364. * @ubi: UBI device description object
  365. * @pnum: the physical eraseblock number to test
  366. *
  367. * This function returns %-EIO if the physical eraseblock did not pass the
  368. * test, a positive number of erase operations done if the test was
  369. * successfully passed, and other negative error codes in case of other errors.
  370. */
  371. static int torture_peb(struct ubi_device *ubi, int pnum)
  372. {
  373. int err, i, patt_count;
  374. ubi_msg(ubi, "run torture test for PEB %d", pnum);
  375. patt_count = ARRAY_SIZE(patterns);
  376. ubi_assert(patt_count > 0);
  377. mutex_lock(&ubi->buf_mutex);
  378. for (i = 0; i < patt_count; i++) {
  379. err = do_sync_erase(ubi, pnum);
  380. if (err)
  381. goto out;
  382. /* Make sure the PEB contains only 0xFF bytes */
  383. err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
  384. if (err)
  385. goto out;
  386. err = ubi_check_pattern(ubi->peb_buf, 0xFF, ubi->peb_size);
  387. if (err == 0) {
  388. ubi_err(ubi, "erased PEB %d, but a non-0xFF byte found",
  389. pnum);
  390. err = -EIO;
  391. goto out;
  392. }
  393. /* Write a pattern and check it */
  394. memset(ubi->peb_buf, patterns[i], ubi->peb_size);
  395. err = ubi_io_write(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
  396. if (err)
  397. goto out;
  398. memset(ubi->peb_buf, ~patterns[i], ubi->peb_size);
  399. err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
  400. if (err)
  401. goto out;
  402. err = ubi_check_pattern(ubi->peb_buf, patterns[i],
  403. ubi->peb_size);
  404. if (err == 0) {
  405. ubi_err(ubi, "pattern %x checking failed for PEB %d",
  406. patterns[i], pnum);
  407. err = -EIO;
  408. goto out;
  409. }
  410. }
  411. err = patt_count;
  412. ubi_msg(ubi, "PEB %d passed torture test, do not mark it as bad", pnum);
  413. out:
  414. mutex_unlock(&ubi->buf_mutex);
  415. if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err)) {
  416. /*
  417. * If a bit-flip or data integrity error was detected, the test
  418. * has not passed because it happened on a freshly erased
  419. * physical eraseblock which means something is wrong with it.
  420. */
  421. ubi_err(ubi, "read problems on freshly erased PEB %d, must be bad",
  422. pnum);
  423. err = -EIO;
  424. }
  425. return err;
  426. }
  427. /**
  428. * nor_erase_prepare - prepare a NOR flash PEB for erasure.
  429. * @ubi: UBI device description object
  430. * @pnum: physical eraseblock number to prepare
  431. *
  432. * NOR flash, or at least some of them, have peculiar embedded PEB erasure
  433. * algorithm: the PEB is first filled with zeroes, then it is erased. And
  434. * filling with zeroes starts from the end of the PEB. This was observed with
  435. * Spansion S29GL512N NOR flash.
  436. *
  437. * This means that in case of a power cut we may end up with intact data at the
  438. * beginning of the PEB, and all zeroes at the end of PEB. In other words, the
  439. * EC and VID headers are OK, but a large chunk of data at the end of PEB is
  440. * zeroed. This makes UBI mistakenly treat this PEB as used and associate it
  441. * with an LEB, which leads to subsequent failures (e.g., UBIFS fails).
  442. *
  443. * This function is called before erasing NOR PEBs and it zeroes out EC and VID
  444. * magic numbers in order to invalidate them and prevent the failures. Returns
  445. * zero in case of success and a negative error code in case of failure.
  446. */
  447. static int nor_erase_prepare(struct ubi_device *ubi, int pnum)
  448. {
  449. int err;
  450. size_t written;
  451. loff_t addr;
  452. uint32_t data = 0;
  453. struct ubi_ec_hdr ec_hdr;
  454. /*
  455. * Note, we cannot generally define VID header buffers on stack,
  456. * because of the way we deal with these buffers (see the header
  457. * comment in this file). But we know this is a NOR-specific piece of
  458. * code, so we can do this. But yes, this is error-prone and we should
  459. * (pre-)allocate VID header buffer instead.
  460. */
  461. struct ubi_vid_hdr vid_hdr;
  462. /*
  463. * If VID or EC is valid, we have to corrupt them before erasing.
  464. * It is important to first invalidate the EC header, and then the VID
  465. * header. Otherwise a power cut may lead to valid EC header and
  466. * invalid VID header, in which case UBI will treat this PEB as
  467. * corrupted and will try to preserve it, and print scary warnings.
  468. */
  469. addr = (loff_t)pnum * ubi->peb_size;
  470. err = ubi_io_read_ec_hdr(ubi, pnum, &ec_hdr, 0);
  471. if (err != UBI_IO_BAD_HDR_EBADMSG && err != UBI_IO_BAD_HDR &&
  472. err != UBI_IO_FF){
  473. err = mtd_write(ubi->mtd, addr, 4, &written, (void *)&data);
  474. if(err)
  475. goto error;
  476. }
  477. err = ubi_io_read_vid_hdr(ubi, pnum, &vid_hdr, 0);
  478. if (err != UBI_IO_BAD_HDR_EBADMSG && err != UBI_IO_BAD_HDR &&
  479. err != UBI_IO_FF){
  480. addr += ubi->vid_hdr_aloffset;
  481. err = mtd_write(ubi->mtd, addr, 4, &written, (void *)&data);
  482. if (err)
  483. goto error;
  484. }
  485. return 0;
  486. error:
  487. /*
  488. * The PEB contains a valid VID or EC header, but we cannot invalidate
  489. * it. Supposedly the flash media or the driver is screwed up, so
  490. * return an error.
  491. */
  492. ubi_err(ubi, "cannot invalidate PEB %d, write returned %d", pnum, err);
  493. ubi_dump_flash(ubi, pnum, 0, ubi->peb_size);
  494. return -EIO;
  495. }
  496. /**
  497. * ubi_io_sync_erase - synchronously erase a physical eraseblock.
  498. * @ubi: UBI device description object
  499. * @pnum: physical eraseblock number to erase
  500. * @torture: if this physical eraseblock has to be tortured
  501. *
  502. * This function synchronously erases physical eraseblock @pnum. If @torture
  503. * flag is not zero, the physical eraseblock is checked by means of writing
  504. * different patterns to it and reading them back. If the torturing is enabled,
  505. * the physical eraseblock is erased more than once.
  506. *
  507. * This function returns the number of erasures made in case of success, %-EIO
  508. * if the erasure failed or the torturing test failed, and other negative error
  509. * codes in case of other errors. Note, %-EIO means that the physical
  510. * eraseblock is bad.
  511. */
  512. int ubi_io_sync_erase(struct ubi_device *ubi, int pnum, int torture)
  513. {
  514. int err, ret = 0;
  515. ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
  516. err = self_check_not_bad(ubi, pnum);
  517. if (err != 0)
  518. return err;
  519. if (ubi->ro_mode) {
  520. ubi_err(ubi, "read-only mode");
  521. return -EROFS;
  522. }
  523. if (ubi->nor_flash) {
  524. err = nor_erase_prepare(ubi, pnum);
  525. if (err)
  526. return err;
  527. }
  528. if (torture) {
  529. ret = torture_peb(ubi, pnum);
  530. if (ret < 0)
  531. return ret;
  532. }
  533. err = do_sync_erase(ubi, pnum);
  534. if (err)
  535. return err;
  536. return ret + 1;
  537. }
  538. /**
  539. * ubi_io_is_bad - check if a physical eraseblock is bad.
  540. * @ubi: UBI device description object
  541. * @pnum: the physical eraseblock number to check
  542. *
  543. * This function returns a positive number if the physical eraseblock is bad,
  544. * zero if not, and a negative error code if an error occurred.
  545. */
  546. int ubi_io_is_bad(const struct ubi_device *ubi, int pnum)
  547. {
  548. struct mtd_info *mtd = ubi->mtd;
  549. ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
  550. if (ubi->bad_allowed) {
  551. int ret;
  552. ret = mtd_block_isbad(mtd, (loff_t)pnum * ubi->peb_size);
  553. if (ret < 0)
  554. ubi_err(ubi, "error %d while checking if PEB %d is bad",
  555. ret, pnum);
  556. else if (ret)
  557. dbg_io("PEB %d is bad", pnum);
  558. return ret;
  559. }
  560. return 0;
  561. }
  562. /**
  563. * ubi_io_mark_bad - mark a physical eraseblock as bad.
  564. * @ubi: UBI device description object
  565. * @pnum: the physical eraseblock number to mark
  566. *
  567. * This function returns zero in case of success and a negative error code in
  568. * case of failure.
  569. */
  570. int ubi_io_mark_bad(const struct ubi_device *ubi, int pnum)
  571. {
  572. int err;
  573. struct mtd_info *mtd = ubi->mtd;
  574. ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
  575. if (ubi->ro_mode) {
  576. ubi_err(ubi, "read-only mode");
  577. return -EROFS;
  578. }
  579. if (!ubi->bad_allowed)
  580. return 0;
  581. err = mtd_block_markbad(mtd, (loff_t)pnum * ubi->peb_size);
  582. if (err)
  583. ubi_err(ubi, "cannot mark PEB %d bad, error %d", pnum, err);
  584. return err;
  585. }
  586. /**
  587. * validate_ec_hdr - validate an erase counter header.
  588. * @ubi: UBI device description object
  589. * @ec_hdr: the erase counter header to check
  590. *
  591. * This function returns zero if the erase counter header is OK, and %1 if
  592. * not.
  593. */
  594. static int validate_ec_hdr(const struct ubi_device *ubi,
  595. const struct ubi_ec_hdr *ec_hdr)
  596. {
  597. long long ec;
  598. int vid_hdr_offset, leb_start;
  599. ec = be64_to_cpu(ec_hdr->ec);
  600. vid_hdr_offset = be32_to_cpu(ec_hdr->vid_hdr_offset);
  601. leb_start = be32_to_cpu(ec_hdr->data_offset);
  602. if (ec_hdr->version != UBI_VERSION) {
  603. ubi_err(ubi, "node with incompatible UBI version found: this UBI version is %d, image version is %d",
  604. UBI_VERSION, (int)ec_hdr->version);
  605. goto bad;
  606. }
  607. if (vid_hdr_offset != ubi->vid_hdr_offset) {
  608. ubi_err(ubi, "bad VID header offset %d, expected %d",
  609. vid_hdr_offset, ubi->vid_hdr_offset);
  610. goto bad;
  611. }
  612. if (leb_start != ubi->leb_start) {
  613. ubi_err(ubi, "bad data offset %d, expected %d",
  614. leb_start, ubi->leb_start);
  615. goto bad;
  616. }
  617. if (ec < 0 || ec > UBI_MAX_ERASECOUNTER) {
  618. ubi_err(ubi, "bad erase counter %lld", ec);
  619. goto bad;
  620. }
  621. return 0;
  622. bad:
  623. ubi_err(ubi, "bad EC header");
  624. ubi_dump_ec_hdr(ec_hdr);
  625. dump_stack();
  626. return 1;
  627. }
  628. /**
  629. * ubi_io_read_ec_hdr - read and check an erase counter header.
  630. * @ubi: UBI device description object
  631. * @pnum: physical eraseblock to read from
  632. * @ec_hdr: a &struct ubi_ec_hdr object where to store the read erase counter
  633. * header
  634. * @verbose: be verbose if the header is corrupted or was not found
  635. *
  636. * This function reads erase counter header from physical eraseblock @pnum and
  637. * stores it in @ec_hdr. This function also checks CRC checksum of the read
  638. * erase counter header. The following codes may be returned:
  639. *
  640. * o %0 if the CRC checksum is correct and the header was successfully read;
  641. * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected
  642. * and corrected by the flash driver; this is harmless but may indicate that
  643. * this eraseblock may become bad soon (but may be not);
  644. * o %UBI_IO_BAD_HDR if the erase counter header is corrupted (a CRC error);
  645. * o %UBI_IO_BAD_HDR_EBADMSG is the same as %UBI_IO_BAD_HDR, but there also was
  646. * a data integrity error (uncorrectable ECC error in case of NAND);
  647. * o %UBI_IO_FF if only 0xFF bytes were read (the PEB is supposedly empty)
  648. * o a negative error code in case of failure.
  649. */
  650. int ubi_io_read_ec_hdr(struct ubi_device *ubi, int pnum,
  651. struct ubi_ec_hdr *ec_hdr, int verbose)
  652. {
  653. int err, read_err;
  654. uint32_t crc, magic, hdr_crc;
  655. dbg_io("read EC header from PEB %d", pnum);
  656. ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
  657. read_err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
  658. if (read_err) {
  659. if (read_err != UBI_IO_BITFLIPS && !mtd_is_eccerr(read_err))
  660. return read_err;
  661. /*
  662. * We read all the data, but either a correctable bit-flip
  663. * occurred, or MTD reported a data integrity error
  664. * (uncorrectable ECC error in case of NAND). The former is
  665. * harmless, the later may mean that the read data is
  666. * corrupted. But we have a CRC check-sum and we will detect
  667. * this. If the EC header is still OK, we just report this as
  668. * there was a bit-flip, to force scrubbing.
  669. */
  670. }
  671. magic = be32_to_cpu(ec_hdr->magic);
  672. if (magic != UBI_EC_HDR_MAGIC) {
  673. if (mtd_is_eccerr(read_err))
  674. return UBI_IO_BAD_HDR_EBADMSG;
  675. /*
  676. * The magic field is wrong. Let's check if we have read all
  677. * 0xFF. If yes, this physical eraseblock is assumed to be
  678. * empty.
  679. */
  680. if (ubi_check_pattern(ec_hdr, 0xFF, UBI_EC_HDR_SIZE)) {
  681. /* The physical eraseblock is supposedly empty */
  682. if (verbose)
  683. ubi_warn(ubi, "no EC header found at PEB %d, only 0xFF bytes",
  684. pnum);
  685. dbg_bld("no EC header found at PEB %d, only 0xFF bytes",
  686. pnum);
  687. if (!read_err)
  688. return UBI_IO_FF;
  689. else
  690. return UBI_IO_FF_BITFLIPS;
  691. }
  692. /*
  693. * This is not a valid erase counter header, and these are not
  694. * 0xFF bytes. Report that the header is corrupted.
  695. */
  696. if (verbose) {
  697. ubi_warn(ubi, "bad magic number at PEB %d: %08x instead of %08x",
  698. pnum, magic, UBI_EC_HDR_MAGIC);
  699. ubi_dump_ec_hdr(ec_hdr);
  700. }
  701. dbg_bld("bad magic number at PEB %d: %08x instead of %08x",
  702. pnum, magic, UBI_EC_HDR_MAGIC);
  703. return UBI_IO_BAD_HDR;
  704. }
  705. crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
  706. hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
  707. if (hdr_crc != crc) {
  708. if (verbose) {
  709. ubi_warn(ubi, "bad EC header CRC at PEB %d, calculated %#08x, read %#08x",
  710. pnum, crc, hdr_crc);
  711. ubi_dump_ec_hdr(ec_hdr);
  712. }
  713. dbg_bld("bad EC header CRC at PEB %d, calculated %#08x, read %#08x",
  714. pnum, crc, hdr_crc);
  715. if (!read_err)
  716. return UBI_IO_BAD_HDR;
  717. else
  718. return UBI_IO_BAD_HDR_EBADMSG;
  719. }
  720. /* And of course validate what has just been read from the media */
  721. err = validate_ec_hdr(ubi, ec_hdr);
  722. if (err) {
  723. ubi_err(ubi, "validation failed for PEB %d", pnum);
  724. return -EINVAL;
  725. }
  726. /*
  727. * If there was %-EBADMSG, but the header CRC is still OK, report about
  728. * a bit-flip to force scrubbing on this PEB.
  729. */
  730. return read_err ? UBI_IO_BITFLIPS : 0;
  731. }
  732. /**
  733. * ubi_io_write_ec_hdr - write an erase counter header.
  734. * @ubi: UBI device description object
  735. * @pnum: physical eraseblock to write to
  736. * @ec_hdr: the erase counter header to write
  737. *
  738. * This function writes erase counter header described by @ec_hdr to physical
  739. * eraseblock @pnum. It also fills most fields of @ec_hdr before writing, so
  740. * the caller do not have to fill them. Callers must only fill the @ec_hdr->ec
  741. * field.
  742. *
  743. * This function returns zero in case of success and a negative error code in
  744. * case of failure. If %-EIO is returned, the physical eraseblock most probably
  745. * went bad.
  746. */
  747. int ubi_io_write_ec_hdr(struct ubi_device *ubi, int pnum,
  748. struct ubi_ec_hdr *ec_hdr)
  749. {
  750. int err;
  751. uint32_t crc;
  752. dbg_io("write EC header to PEB %d", pnum);
  753. ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
  754. ec_hdr->magic = cpu_to_be32(UBI_EC_HDR_MAGIC);
  755. ec_hdr->version = UBI_VERSION;
  756. ec_hdr->vid_hdr_offset = cpu_to_be32(ubi->vid_hdr_offset);
  757. ec_hdr->data_offset = cpu_to_be32(ubi->leb_start);
  758. ec_hdr->image_seq = cpu_to_be32(ubi->image_seq);
  759. crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
  760. ec_hdr->hdr_crc = cpu_to_be32(crc);
  761. err = self_check_ec_hdr(ubi, pnum, ec_hdr);
  762. if (err)
  763. return err;
  764. if (ubi_dbg_power_cut(ubi, POWER_CUT_EC_WRITE))
  765. return -EROFS;
  766. err = ubi_io_write(ubi, ec_hdr, pnum, 0, ubi->ec_hdr_alsize);
  767. return err;
  768. }
  769. /**
  770. * validate_vid_hdr - validate a volume identifier header.
  771. * @ubi: UBI device description object
  772. * @vid_hdr: the volume identifier header to check
  773. *
  774. * This function checks that data stored in the volume identifier header
  775. * @vid_hdr. Returns zero if the VID header is OK and %1 if not.
  776. */
  777. static int validate_vid_hdr(const struct ubi_device *ubi,
  778. const struct ubi_vid_hdr *vid_hdr)
  779. {
  780. int vol_type = vid_hdr->vol_type;
  781. int copy_flag = vid_hdr->copy_flag;
  782. int vol_id = be32_to_cpu(vid_hdr->vol_id);
  783. int lnum = be32_to_cpu(vid_hdr->lnum);
  784. int compat = vid_hdr->compat;
  785. int data_size = be32_to_cpu(vid_hdr->data_size);
  786. int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
  787. int data_pad = be32_to_cpu(vid_hdr->data_pad);
  788. int data_crc = be32_to_cpu(vid_hdr->data_crc);
  789. int usable_leb_size = ubi->leb_size - data_pad;
  790. if (copy_flag != 0 && copy_flag != 1) {
  791. ubi_err(ubi, "bad copy_flag");
  792. goto bad;
  793. }
  794. if (vol_id < 0 || lnum < 0 || data_size < 0 || used_ebs < 0 ||
  795. data_pad < 0) {
  796. ubi_err(ubi, "negative values");
  797. goto bad;
  798. }
  799. if (vol_id >= UBI_MAX_VOLUMES && vol_id < UBI_INTERNAL_VOL_START) {
  800. ubi_err(ubi, "bad vol_id");
  801. goto bad;
  802. }
  803. if (vol_id < UBI_INTERNAL_VOL_START && compat != 0) {
  804. ubi_err(ubi, "bad compat");
  805. goto bad;
  806. }
  807. if (vol_id >= UBI_INTERNAL_VOL_START && compat != UBI_COMPAT_DELETE &&
  808. compat != UBI_COMPAT_RO && compat != UBI_COMPAT_PRESERVE &&
  809. compat != UBI_COMPAT_REJECT) {
  810. ubi_err(ubi, "bad compat");
  811. goto bad;
  812. }
  813. if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) {
  814. ubi_err(ubi, "bad vol_type");
  815. goto bad;
  816. }
  817. if (data_pad >= ubi->leb_size / 2) {
  818. ubi_err(ubi, "bad data_pad");
  819. goto bad;
  820. }
  821. if (data_size > ubi->leb_size) {
  822. ubi_err(ubi, "bad data_size");
  823. goto bad;
  824. }
  825. if (vol_type == UBI_VID_STATIC) {
  826. /*
  827. * Although from high-level point of view static volumes may
  828. * contain zero bytes of data, but no VID headers can contain
  829. * zero at these fields, because they empty volumes do not have
  830. * mapped logical eraseblocks.
  831. */
  832. if (used_ebs == 0) {
  833. ubi_err(ubi, "zero used_ebs");
  834. goto bad;
  835. }
  836. if (data_size == 0) {
  837. ubi_err(ubi, "zero data_size");
  838. goto bad;
  839. }
  840. if (lnum < used_ebs - 1) {
  841. if (data_size != usable_leb_size) {
  842. ubi_err(ubi, "bad data_size");
  843. goto bad;
  844. }
  845. } else if (lnum == used_ebs - 1) {
  846. if (data_size == 0) {
  847. ubi_err(ubi, "bad data_size at last LEB");
  848. goto bad;
  849. }
  850. } else {
  851. ubi_err(ubi, "too high lnum");
  852. goto bad;
  853. }
  854. } else {
  855. if (copy_flag == 0) {
  856. if (data_crc != 0) {
  857. ubi_err(ubi, "non-zero data CRC");
  858. goto bad;
  859. }
  860. if (data_size != 0) {
  861. ubi_err(ubi, "non-zero data_size");
  862. goto bad;
  863. }
  864. } else {
  865. if (data_size == 0) {
  866. ubi_err(ubi, "zero data_size of copy");
  867. goto bad;
  868. }
  869. }
  870. if (used_ebs != 0) {
  871. ubi_err(ubi, "bad used_ebs");
  872. goto bad;
  873. }
  874. }
  875. return 0;
  876. bad:
  877. ubi_err(ubi, "bad VID header");
  878. ubi_dump_vid_hdr(vid_hdr);
  879. dump_stack();
  880. return 1;
  881. }
  882. /**
  883. * ubi_io_read_vid_hdr - read and check a volume identifier header.
  884. * @ubi: UBI device description object
  885. * @pnum: physical eraseblock number to read from
  886. * @vid_hdr: &struct ubi_vid_hdr object where to store the read volume
  887. * identifier header
  888. * @verbose: be verbose if the header is corrupted or wasn't found
  889. *
  890. * This function reads the volume identifier header from physical eraseblock
  891. * @pnum and stores it in @vid_hdr. It also checks CRC checksum of the read
  892. * volume identifier header. The error codes are the same as in
  893. * 'ubi_io_read_ec_hdr()'.
  894. *
  895. * Note, the implementation of this function is also very similar to
  896. * 'ubi_io_read_ec_hdr()', so refer commentaries in 'ubi_io_read_ec_hdr()'.
  897. */
  898. int ubi_io_read_vid_hdr(struct ubi_device *ubi, int pnum,
  899. struct ubi_vid_hdr *vid_hdr, int verbose)
  900. {
  901. int err, read_err;
  902. uint32_t crc, magic, hdr_crc;
  903. void *p;
  904. dbg_io("read VID header from PEB %d", pnum);
  905. ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
  906. p = (char *)vid_hdr - ubi->vid_hdr_shift;
  907. read_err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
  908. ubi->vid_hdr_alsize);
  909. if (read_err && read_err != UBI_IO_BITFLIPS && !mtd_is_eccerr(read_err))
  910. return read_err;
  911. magic = be32_to_cpu(vid_hdr->magic);
  912. if (magic != UBI_VID_HDR_MAGIC) {
  913. if (mtd_is_eccerr(read_err))
  914. return UBI_IO_BAD_HDR_EBADMSG;
  915. if (ubi_check_pattern(vid_hdr, 0xFF, UBI_VID_HDR_SIZE)) {
  916. if (verbose)
  917. ubi_warn(ubi, "no VID header found at PEB %d, only 0xFF bytes",
  918. pnum);
  919. dbg_bld("no VID header found at PEB %d, only 0xFF bytes",
  920. pnum);
  921. if (!read_err)
  922. return UBI_IO_FF;
  923. else
  924. return UBI_IO_FF_BITFLIPS;
  925. }
  926. if (verbose) {
  927. ubi_warn(ubi, "bad magic number at PEB %d: %08x instead of %08x",
  928. pnum, magic, UBI_VID_HDR_MAGIC);
  929. ubi_dump_vid_hdr(vid_hdr);
  930. }
  931. dbg_bld("bad magic number at PEB %d: %08x instead of %08x",
  932. pnum, magic, UBI_VID_HDR_MAGIC);
  933. return UBI_IO_BAD_HDR;
  934. }
  935. crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
  936. hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
  937. if (hdr_crc != crc) {
  938. if (verbose) {
  939. ubi_warn(ubi, "bad CRC at PEB %d, calculated %#08x, read %#08x",
  940. pnum, crc, hdr_crc);
  941. ubi_dump_vid_hdr(vid_hdr);
  942. }
  943. dbg_bld("bad CRC at PEB %d, calculated %#08x, read %#08x",
  944. pnum, crc, hdr_crc);
  945. if (!read_err)
  946. return UBI_IO_BAD_HDR;
  947. else
  948. return UBI_IO_BAD_HDR_EBADMSG;
  949. }
  950. err = validate_vid_hdr(ubi, vid_hdr);
  951. if (err) {
  952. ubi_err(ubi, "validation failed for PEB %d", pnum);
  953. return -EINVAL;
  954. }
  955. return read_err ? UBI_IO_BITFLIPS : 0;
  956. }
  957. /**
  958. * ubi_io_write_vid_hdr - write a volume identifier header.
  959. * @ubi: UBI device description object
  960. * @pnum: the physical eraseblock number to write to
  961. * @vid_hdr: the volume identifier header to write
  962. *
  963. * This function writes the volume identifier header described by @vid_hdr to
  964. * physical eraseblock @pnum. This function automatically fills the
  965. * @vid_hdr->magic and the @vid_hdr->version fields, as well as calculates
  966. * header CRC checksum and stores it at vid_hdr->hdr_crc.
  967. *
  968. * This function returns zero in case of success and a negative error code in
  969. * case of failure. If %-EIO is returned, the physical eraseblock probably went
  970. * bad.
  971. */
  972. int ubi_io_write_vid_hdr(struct ubi_device *ubi, int pnum,
  973. struct ubi_vid_hdr *vid_hdr)
  974. {
  975. int err;
  976. uint32_t crc;
  977. void *p;
  978. dbg_io("write VID header to PEB %d", pnum);
  979. ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
  980. err = self_check_peb_ec_hdr(ubi, pnum);
  981. if (err)
  982. return err;
  983. vid_hdr->magic = cpu_to_be32(UBI_VID_HDR_MAGIC);
  984. vid_hdr->version = UBI_VERSION;
  985. crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
  986. vid_hdr->hdr_crc = cpu_to_be32(crc);
  987. err = self_check_vid_hdr(ubi, pnum, vid_hdr);
  988. if (err)
  989. return err;
  990. if (ubi_dbg_power_cut(ubi, POWER_CUT_VID_WRITE))
  991. return -EROFS;
  992. p = (char *)vid_hdr - ubi->vid_hdr_shift;
  993. err = ubi_io_write(ubi, p, pnum, ubi->vid_hdr_aloffset,
  994. ubi->vid_hdr_alsize);
  995. return err;
  996. }
  997. /**
  998. * self_check_not_bad - ensure that a physical eraseblock is not bad.
  999. * @ubi: UBI device description object
  1000. * @pnum: physical eraseblock number to check
  1001. *
  1002. * This function returns zero if the physical eraseblock is good, %-EINVAL if
  1003. * it is bad and a negative error code if an error occurred.
  1004. */
  1005. static int self_check_not_bad(const struct ubi_device *ubi, int pnum)
  1006. {
  1007. int err;
  1008. if (!ubi_dbg_chk_io(ubi))
  1009. return 0;
  1010. err = ubi_io_is_bad(ubi, pnum);
  1011. if (!err)
  1012. return err;
  1013. ubi_err(ubi, "self-check failed for PEB %d", pnum);
  1014. dump_stack();
  1015. return err > 0 ? -EINVAL : err;
  1016. }
  1017. /**
  1018. * self_check_ec_hdr - check if an erase counter header is all right.
  1019. * @ubi: UBI device description object
  1020. * @pnum: physical eraseblock number the erase counter header belongs to
  1021. * @ec_hdr: the erase counter header to check
  1022. *
  1023. * This function returns zero if the erase counter header contains valid
  1024. * values, and %-EINVAL if not.
  1025. */
  1026. static int self_check_ec_hdr(const struct ubi_device *ubi, int pnum,
  1027. const struct ubi_ec_hdr *ec_hdr)
  1028. {
  1029. int err;
  1030. uint32_t magic;
  1031. if (!ubi_dbg_chk_io(ubi))
  1032. return 0;
  1033. magic = be32_to_cpu(ec_hdr->magic);
  1034. if (magic != UBI_EC_HDR_MAGIC) {
  1035. ubi_err(ubi, "bad magic %#08x, must be %#08x",
  1036. magic, UBI_EC_HDR_MAGIC);
  1037. goto fail;
  1038. }
  1039. err = validate_ec_hdr(ubi, ec_hdr);
  1040. if (err) {
  1041. ubi_err(ubi, "self-check failed for PEB %d", pnum);
  1042. goto fail;
  1043. }
  1044. return 0;
  1045. fail:
  1046. ubi_dump_ec_hdr(ec_hdr);
  1047. dump_stack();
  1048. return -EINVAL;
  1049. }
  1050. /**
  1051. * self_check_peb_ec_hdr - check erase counter header.
  1052. * @ubi: UBI device description object
  1053. * @pnum: the physical eraseblock number to check
  1054. *
  1055. * This function returns zero if the erase counter header is all right and and
  1056. * a negative error code if not or if an error occurred.
  1057. */
  1058. static int self_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum)
  1059. {
  1060. int err;
  1061. uint32_t crc, hdr_crc;
  1062. struct ubi_ec_hdr *ec_hdr;
  1063. if (!ubi_dbg_chk_io(ubi))
  1064. return 0;
  1065. ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
  1066. if (!ec_hdr)
  1067. return -ENOMEM;
  1068. err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
  1069. if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err))
  1070. goto exit;
  1071. crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
  1072. hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
  1073. if (hdr_crc != crc) {
  1074. ubi_err(ubi, "bad CRC, calculated %#08x, read %#08x",
  1075. crc, hdr_crc);
  1076. ubi_err(ubi, "self-check failed for PEB %d", pnum);
  1077. ubi_dump_ec_hdr(ec_hdr);
  1078. dump_stack();
  1079. err = -EINVAL;
  1080. goto exit;
  1081. }
  1082. err = self_check_ec_hdr(ubi, pnum, ec_hdr);
  1083. exit:
  1084. kfree(ec_hdr);
  1085. return err;
  1086. }
  1087. /**
  1088. * self_check_vid_hdr - check that a volume identifier header is all right.
  1089. * @ubi: UBI device description object
  1090. * @pnum: physical eraseblock number the volume identifier header belongs to
  1091. * @vid_hdr: the volume identifier header to check
  1092. *
  1093. * This function returns zero if the volume identifier header is all right, and
  1094. * %-EINVAL if not.
  1095. */
  1096. static int self_check_vid_hdr(const struct ubi_device *ubi, int pnum,
  1097. const struct ubi_vid_hdr *vid_hdr)
  1098. {
  1099. int err;
  1100. uint32_t magic;
  1101. if (!ubi_dbg_chk_io(ubi))
  1102. return 0;
  1103. magic = be32_to_cpu(vid_hdr->magic);
  1104. if (magic != UBI_VID_HDR_MAGIC) {
  1105. ubi_err(ubi, "bad VID header magic %#08x at PEB %d, must be %#08x",
  1106. magic, pnum, UBI_VID_HDR_MAGIC);
  1107. goto fail;
  1108. }
  1109. err = validate_vid_hdr(ubi, vid_hdr);
  1110. if (err) {
  1111. ubi_err(ubi, "self-check failed for PEB %d", pnum);
  1112. goto fail;
  1113. }
  1114. return err;
  1115. fail:
  1116. ubi_err(ubi, "self-check failed for PEB %d", pnum);
  1117. ubi_dump_vid_hdr(vid_hdr);
  1118. dump_stack();
  1119. return -EINVAL;
  1120. }
  1121. /**
  1122. * self_check_peb_vid_hdr - check volume identifier header.
  1123. * @ubi: UBI device description object
  1124. * @pnum: the physical eraseblock number to check
  1125. *
  1126. * This function returns zero if the volume identifier header is all right,
  1127. * and a negative error code if not or if an error occurred.
  1128. */
  1129. static int self_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum)
  1130. {
  1131. int err;
  1132. uint32_t crc, hdr_crc;
  1133. struct ubi_vid_hdr *vid_hdr;
  1134. void *p;
  1135. if (!ubi_dbg_chk_io(ubi))
  1136. return 0;
  1137. vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
  1138. if (!vid_hdr)
  1139. return -ENOMEM;
  1140. p = (char *)vid_hdr - ubi->vid_hdr_shift;
  1141. err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
  1142. ubi->vid_hdr_alsize);
  1143. if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err))
  1144. goto exit;
  1145. crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
  1146. hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
  1147. if (hdr_crc != crc) {
  1148. ubi_err(ubi, "bad VID header CRC at PEB %d, calculated %#08x, read %#08x",
  1149. pnum, crc, hdr_crc);
  1150. ubi_err(ubi, "self-check failed for PEB %d", pnum);
  1151. ubi_dump_vid_hdr(vid_hdr);
  1152. dump_stack();
  1153. err = -EINVAL;
  1154. goto exit;
  1155. }
  1156. err = self_check_vid_hdr(ubi, pnum, vid_hdr);
  1157. exit:
  1158. ubi_free_vid_hdr(ubi, vid_hdr);
  1159. return err;
  1160. }
  1161. /**
  1162. * self_check_write - make sure write succeeded.
  1163. * @ubi: UBI device description object
  1164. * @buf: buffer with data which were written
  1165. * @pnum: physical eraseblock number the data were written to
  1166. * @offset: offset within the physical eraseblock the data were written to
  1167. * @len: how many bytes were written
  1168. *
  1169. * This functions reads data which were recently written and compares it with
  1170. * the original data buffer - the data have to match. Returns zero if the data
  1171. * match and a negative error code if not or in case of failure.
  1172. */
  1173. static int self_check_write(struct ubi_device *ubi, const void *buf, int pnum,
  1174. int offset, int len)
  1175. {
  1176. int err, i;
  1177. size_t read;
  1178. void *buf1;
  1179. loff_t addr = (loff_t)pnum * ubi->peb_size + offset;
  1180. if (!ubi_dbg_chk_io(ubi))
  1181. return 0;
  1182. buf1 = __vmalloc(len, GFP_NOFS, PAGE_KERNEL);
  1183. if (!buf1) {
  1184. ubi_err(ubi, "cannot allocate memory to check writes");
  1185. return 0;
  1186. }
  1187. err = mtd_read(ubi->mtd, addr, len, &read, buf1);
  1188. if (err && !mtd_is_bitflip(err))
  1189. goto out_free;
  1190. for (i = 0; i < len; i++) {
  1191. uint8_t c = ((uint8_t *)buf)[i];
  1192. uint8_t c1 = ((uint8_t *)buf1)[i];
  1193. int dump_len;
  1194. if (c == c1)
  1195. continue;
  1196. ubi_err(ubi, "self-check failed for PEB %d:%d, len %d",
  1197. pnum, offset, len);
  1198. ubi_msg(ubi, "data differ at position %d", i);
  1199. dump_len = max_t(int, 128, len - i);
  1200. ubi_msg(ubi, "hex dump of the original buffer from %d to %d",
  1201. i, i + dump_len);
  1202. print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
  1203. buf + i, dump_len, 1);
  1204. ubi_msg(ubi, "hex dump of the read buffer from %d to %d",
  1205. i, i + dump_len);
  1206. print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
  1207. buf1 + i, dump_len, 1);
  1208. dump_stack();
  1209. err = -EINVAL;
  1210. goto out_free;
  1211. }
  1212. vfree(buf1);
  1213. return 0;
  1214. out_free:
  1215. vfree(buf1);
  1216. return err;
  1217. }
  1218. /**
  1219. * ubi_self_check_all_ff - check that a region of flash is empty.
  1220. * @ubi: UBI device description object
  1221. * @pnum: the physical eraseblock number to check
  1222. * @offset: the starting offset within the physical eraseblock to check
  1223. * @len: the length of the region to check
  1224. *
  1225. * This function returns zero if only 0xFF bytes are present at offset
  1226. * @offset of the physical eraseblock @pnum, and a negative error code if not
  1227. * or if an error occurred.
  1228. */
  1229. int ubi_self_check_all_ff(struct ubi_device *ubi, int pnum, int offset, int len)
  1230. {
  1231. size_t read;
  1232. int err;
  1233. void *buf;
  1234. loff_t addr = (loff_t)pnum * ubi->peb_size + offset;
  1235. if (!ubi_dbg_chk_io(ubi))
  1236. return 0;
  1237. buf = __vmalloc(len, GFP_NOFS, PAGE_KERNEL);
  1238. if (!buf) {
  1239. ubi_err(ubi, "cannot allocate memory to check for 0xFFs");
  1240. return 0;
  1241. }
  1242. err = mtd_read(ubi->mtd, addr, len, &read, buf);
  1243. if (err && !mtd_is_bitflip(err)) {
  1244. ubi_err(ubi, "err %d while reading %d bytes from PEB %d:%d, read %zd bytes",
  1245. err, len, pnum, offset, read);
  1246. goto error;
  1247. }
  1248. err = ubi_check_pattern(buf, 0xFF, len);
  1249. if (err == 0) {
  1250. ubi_err(ubi, "flash region at PEB %d:%d, length %d does not contain all 0xFF bytes",
  1251. pnum, offset, len);
  1252. goto fail;
  1253. }
  1254. vfree(buf);
  1255. return 0;
  1256. fail:
  1257. ubi_err(ubi, "self-check failed for PEB %d", pnum);
  1258. ubi_msg(ubi, "hex dump of the %d-%d region", offset, offset + len);
  1259. print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, buf, len, 1);
  1260. err = -EINVAL;
  1261. error:
  1262. dump_stack();
  1263. vfree(buf);
  1264. return err;
  1265. }