cpmac.c 34 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297
  1. /*
  2. * Copyright (C) 2006, 2007 Eugene Konev
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License as published by
  6. * the Free Software Foundation; either version 2 of the License, or
  7. * (at your option) any later version.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write to the Free Software
  16. * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  17. */
  18. #include <linux/module.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/moduleparam.h>
  21. #include <linux/sched.h>
  22. #include <linux/kernel.h>
  23. #include <linux/slab.h>
  24. #include <linux/errno.h>
  25. #include <linux/types.h>
  26. #include <linux/delay.h>
  27. #include <linux/netdevice.h>
  28. #include <linux/if_vlan.h>
  29. #include <linux/etherdevice.h>
  30. #include <linux/ethtool.h>
  31. #include <linux/skbuff.h>
  32. #include <linux/mii.h>
  33. #include <linux/phy.h>
  34. #include <linux/phy_fixed.h>
  35. #include <linux/platform_device.h>
  36. #include <linux/dma-mapping.h>
  37. #include <linux/clk.h>
  38. #include <linux/gpio.h>
  39. #include <linux/atomic.h>
  40. #include <asm/mach-ar7/ar7.h>
  41. MODULE_AUTHOR("Eugene Konev <ejka@imfi.kspu.ru>");
  42. MODULE_DESCRIPTION("TI AR7 ethernet driver (CPMAC)");
  43. MODULE_LICENSE("GPL");
  44. MODULE_ALIAS("platform:cpmac");
  45. static int debug_level = 8;
  46. static int dumb_switch;
  47. /* Next 2 are only used in cpmac_probe, so it's pointless to change them */
  48. module_param(debug_level, int, 0444);
  49. module_param(dumb_switch, int, 0444);
  50. MODULE_PARM_DESC(debug_level, "Number of NETIF_MSG bits to enable");
  51. MODULE_PARM_DESC(dumb_switch, "Assume switch is not connected to MDIO bus");
  52. #define CPMAC_VERSION "0.5.2"
  53. /* frame size + 802.1q tag + FCS size */
  54. #define CPMAC_SKB_SIZE (ETH_FRAME_LEN + ETH_FCS_LEN + VLAN_HLEN)
  55. #define CPMAC_QUEUES 8
  56. /* Ethernet registers */
  57. #define CPMAC_TX_CONTROL 0x0004
  58. #define CPMAC_TX_TEARDOWN 0x0008
  59. #define CPMAC_RX_CONTROL 0x0014
  60. #define CPMAC_RX_TEARDOWN 0x0018
  61. #define CPMAC_MBP 0x0100
  62. #define MBP_RXPASSCRC 0x40000000
  63. #define MBP_RXQOS 0x20000000
  64. #define MBP_RXNOCHAIN 0x10000000
  65. #define MBP_RXCMF 0x01000000
  66. #define MBP_RXSHORT 0x00800000
  67. #define MBP_RXCEF 0x00400000
  68. #define MBP_RXPROMISC 0x00200000
  69. #define MBP_PROMISCCHAN(channel) (((channel) & 0x7) << 16)
  70. #define MBP_RXBCAST 0x00002000
  71. #define MBP_BCASTCHAN(channel) (((channel) & 0x7) << 8)
  72. #define MBP_RXMCAST 0x00000020
  73. #define MBP_MCASTCHAN(channel) ((channel) & 0x7)
  74. #define CPMAC_UNICAST_ENABLE 0x0104
  75. #define CPMAC_UNICAST_CLEAR 0x0108
  76. #define CPMAC_MAX_LENGTH 0x010c
  77. #define CPMAC_BUFFER_OFFSET 0x0110
  78. #define CPMAC_MAC_CONTROL 0x0160
  79. #define MAC_TXPTYPE 0x00000200
  80. #define MAC_TXPACE 0x00000040
  81. #define MAC_MII 0x00000020
  82. #define MAC_TXFLOW 0x00000010
  83. #define MAC_RXFLOW 0x00000008
  84. #define MAC_MTEST 0x00000004
  85. #define MAC_LOOPBACK 0x00000002
  86. #define MAC_FDX 0x00000001
  87. #define CPMAC_MAC_STATUS 0x0164
  88. #define MAC_STATUS_QOS 0x00000004
  89. #define MAC_STATUS_RXFLOW 0x00000002
  90. #define MAC_STATUS_TXFLOW 0x00000001
  91. #define CPMAC_TX_INT_ENABLE 0x0178
  92. #define CPMAC_TX_INT_CLEAR 0x017c
  93. #define CPMAC_MAC_INT_VECTOR 0x0180
  94. #define MAC_INT_STATUS 0x00080000
  95. #define MAC_INT_HOST 0x00040000
  96. #define MAC_INT_RX 0x00020000
  97. #define MAC_INT_TX 0x00010000
  98. #define CPMAC_MAC_EOI_VECTOR 0x0184
  99. #define CPMAC_RX_INT_ENABLE 0x0198
  100. #define CPMAC_RX_INT_CLEAR 0x019c
  101. #define CPMAC_MAC_INT_ENABLE 0x01a8
  102. #define CPMAC_MAC_INT_CLEAR 0x01ac
  103. #define CPMAC_MAC_ADDR_LO(channel) (0x01b0 + (channel) * 4)
  104. #define CPMAC_MAC_ADDR_MID 0x01d0
  105. #define CPMAC_MAC_ADDR_HI 0x01d4
  106. #define CPMAC_MAC_HASH_LO 0x01d8
  107. #define CPMAC_MAC_HASH_HI 0x01dc
  108. #define CPMAC_TX_PTR(channel) (0x0600 + (channel) * 4)
  109. #define CPMAC_RX_PTR(channel) (0x0620 + (channel) * 4)
  110. #define CPMAC_TX_ACK(channel) (0x0640 + (channel) * 4)
  111. #define CPMAC_RX_ACK(channel) (0x0660 + (channel) * 4)
  112. #define CPMAC_REG_END 0x0680
  113. /* Rx/Tx statistics
  114. * TODO: use some of them to fill stats in cpmac_stats()
  115. */
  116. #define CPMAC_STATS_RX_GOOD 0x0200
  117. #define CPMAC_STATS_RX_BCAST 0x0204
  118. #define CPMAC_STATS_RX_MCAST 0x0208
  119. #define CPMAC_STATS_RX_PAUSE 0x020c
  120. #define CPMAC_STATS_RX_CRC 0x0210
  121. #define CPMAC_STATS_RX_ALIGN 0x0214
  122. #define CPMAC_STATS_RX_OVER 0x0218
  123. #define CPMAC_STATS_RX_JABBER 0x021c
  124. #define CPMAC_STATS_RX_UNDER 0x0220
  125. #define CPMAC_STATS_RX_FRAG 0x0224
  126. #define CPMAC_STATS_RX_FILTER 0x0228
  127. #define CPMAC_STATS_RX_QOSFILTER 0x022c
  128. #define CPMAC_STATS_RX_OCTETS 0x0230
  129. #define CPMAC_STATS_TX_GOOD 0x0234
  130. #define CPMAC_STATS_TX_BCAST 0x0238
  131. #define CPMAC_STATS_TX_MCAST 0x023c
  132. #define CPMAC_STATS_TX_PAUSE 0x0240
  133. #define CPMAC_STATS_TX_DEFER 0x0244
  134. #define CPMAC_STATS_TX_COLLISION 0x0248
  135. #define CPMAC_STATS_TX_SINGLECOLL 0x024c
  136. #define CPMAC_STATS_TX_MULTICOLL 0x0250
  137. #define CPMAC_STATS_TX_EXCESSCOLL 0x0254
  138. #define CPMAC_STATS_TX_LATECOLL 0x0258
  139. #define CPMAC_STATS_TX_UNDERRUN 0x025c
  140. #define CPMAC_STATS_TX_CARRIERSENSE 0x0260
  141. #define CPMAC_STATS_TX_OCTETS 0x0264
  142. #define cpmac_read(base, reg) (readl((void __iomem *)(base) + (reg)))
  143. #define cpmac_write(base, reg, val) (writel(val, (void __iomem *)(base) + \
  144. (reg)))
  145. /* MDIO bus */
  146. #define CPMAC_MDIO_VERSION 0x0000
  147. #define CPMAC_MDIO_CONTROL 0x0004
  148. #define MDIOC_IDLE 0x80000000
  149. #define MDIOC_ENABLE 0x40000000
  150. #define MDIOC_PREAMBLE 0x00100000
  151. #define MDIOC_FAULT 0x00080000
  152. #define MDIOC_FAULTDETECT 0x00040000
  153. #define MDIOC_INTTEST 0x00020000
  154. #define MDIOC_CLKDIV(div) ((div) & 0xff)
  155. #define CPMAC_MDIO_ALIVE 0x0008
  156. #define CPMAC_MDIO_LINK 0x000c
  157. #define CPMAC_MDIO_ACCESS(channel) (0x0080 + (channel) * 8)
  158. #define MDIO_BUSY 0x80000000
  159. #define MDIO_WRITE 0x40000000
  160. #define MDIO_REG(reg) (((reg) & 0x1f) << 21)
  161. #define MDIO_PHY(phy) (((phy) & 0x1f) << 16)
  162. #define MDIO_DATA(data) ((data) & 0xffff)
  163. #define CPMAC_MDIO_PHYSEL(channel) (0x0084 + (channel) * 8)
  164. #define PHYSEL_LINKSEL 0x00000040
  165. #define PHYSEL_LINKINT 0x00000020
  166. struct cpmac_desc {
  167. u32 hw_next;
  168. u32 hw_data;
  169. u16 buflen;
  170. u16 bufflags;
  171. u16 datalen;
  172. u16 dataflags;
  173. #define CPMAC_SOP 0x8000
  174. #define CPMAC_EOP 0x4000
  175. #define CPMAC_OWN 0x2000
  176. #define CPMAC_EOQ 0x1000
  177. struct sk_buff *skb;
  178. struct cpmac_desc *next;
  179. struct cpmac_desc *prev;
  180. dma_addr_t mapping;
  181. dma_addr_t data_mapping;
  182. };
  183. struct cpmac_priv {
  184. spinlock_t lock;
  185. spinlock_t rx_lock;
  186. struct cpmac_desc *rx_head;
  187. int ring_size;
  188. struct cpmac_desc *desc_ring;
  189. dma_addr_t dma_ring;
  190. void __iomem *regs;
  191. struct mii_bus *mii_bus;
  192. struct phy_device *phy;
  193. char phy_name[MII_BUS_ID_SIZE + 3];
  194. int oldlink, oldspeed, oldduplex;
  195. u32 msg_enable;
  196. struct net_device *dev;
  197. struct work_struct reset_work;
  198. struct platform_device *pdev;
  199. struct napi_struct napi;
  200. atomic_t reset_pending;
  201. };
  202. static irqreturn_t cpmac_irq(int, void *);
  203. static void cpmac_hw_start(struct net_device *dev);
  204. static void cpmac_hw_stop(struct net_device *dev);
  205. static int cpmac_stop(struct net_device *dev);
  206. static int cpmac_open(struct net_device *dev);
  207. static void cpmac_dump_regs(struct net_device *dev)
  208. {
  209. int i;
  210. struct cpmac_priv *priv = netdev_priv(dev);
  211. for (i = 0; i < CPMAC_REG_END; i += 4) {
  212. if (i % 16 == 0) {
  213. if (i)
  214. printk("\n");
  215. printk("%s: reg[%p]:", dev->name, priv->regs + i);
  216. }
  217. printk(" %08x", cpmac_read(priv->regs, i));
  218. }
  219. printk("\n");
  220. }
  221. static void cpmac_dump_desc(struct net_device *dev, struct cpmac_desc *desc)
  222. {
  223. int i;
  224. printk("%s: desc[%p]:", dev->name, desc);
  225. for (i = 0; i < sizeof(*desc) / 4; i++)
  226. printk(" %08x", ((u32 *)desc)[i]);
  227. printk("\n");
  228. }
  229. static void cpmac_dump_all_desc(struct net_device *dev)
  230. {
  231. struct cpmac_priv *priv = netdev_priv(dev);
  232. struct cpmac_desc *dump = priv->rx_head;
  233. do {
  234. cpmac_dump_desc(dev, dump);
  235. dump = dump->next;
  236. } while (dump != priv->rx_head);
  237. }
  238. static void cpmac_dump_skb(struct net_device *dev, struct sk_buff *skb)
  239. {
  240. int i;
  241. printk("%s: skb 0x%p, len=%d\n", dev->name, skb, skb->len);
  242. for (i = 0; i < skb->len; i++) {
  243. if (i % 16 == 0) {
  244. if (i)
  245. printk("\n");
  246. printk("%s: data[%p]:", dev->name, skb->data + i);
  247. }
  248. printk(" %02x", ((u8 *)skb->data)[i]);
  249. }
  250. printk("\n");
  251. }
  252. static int cpmac_mdio_read(struct mii_bus *bus, int phy_id, int reg)
  253. {
  254. u32 val;
  255. while (cpmac_read(bus->priv, CPMAC_MDIO_ACCESS(0)) & MDIO_BUSY)
  256. cpu_relax();
  257. cpmac_write(bus->priv, CPMAC_MDIO_ACCESS(0), MDIO_BUSY | MDIO_REG(reg) |
  258. MDIO_PHY(phy_id));
  259. while ((val = cpmac_read(bus->priv, CPMAC_MDIO_ACCESS(0))) & MDIO_BUSY)
  260. cpu_relax();
  261. return MDIO_DATA(val);
  262. }
  263. static int cpmac_mdio_write(struct mii_bus *bus, int phy_id,
  264. int reg, u16 val)
  265. {
  266. while (cpmac_read(bus->priv, CPMAC_MDIO_ACCESS(0)) & MDIO_BUSY)
  267. cpu_relax();
  268. cpmac_write(bus->priv, CPMAC_MDIO_ACCESS(0), MDIO_BUSY | MDIO_WRITE |
  269. MDIO_REG(reg) | MDIO_PHY(phy_id) | MDIO_DATA(val));
  270. return 0;
  271. }
  272. static int cpmac_mdio_reset(struct mii_bus *bus)
  273. {
  274. struct clk *cpmac_clk;
  275. cpmac_clk = clk_get(&bus->dev, "cpmac");
  276. if (IS_ERR(cpmac_clk)) {
  277. pr_err("unable to get cpmac clock\n");
  278. return -1;
  279. }
  280. ar7_device_reset(AR7_RESET_BIT_MDIO);
  281. cpmac_write(bus->priv, CPMAC_MDIO_CONTROL, MDIOC_ENABLE |
  282. MDIOC_CLKDIV(clk_get_rate(cpmac_clk) / 2200000 - 1));
  283. return 0;
  284. }
  285. static int mii_irqs[PHY_MAX_ADDR] = { PHY_POLL, };
  286. static struct mii_bus *cpmac_mii;
  287. static void cpmac_set_multicast_list(struct net_device *dev)
  288. {
  289. struct netdev_hw_addr *ha;
  290. u8 tmp;
  291. u32 mbp, bit, hash[2] = { 0, };
  292. struct cpmac_priv *priv = netdev_priv(dev);
  293. mbp = cpmac_read(priv->regs, CPMAC_MBP);
  294. if (dev->flags & IFF_PROMISC) {
  295. cpmac_write(priv->regs, CPMAC_MBP, (mbp & ~MBP_PROMISCCHAN(0)) |
  296. MBP_RXPROMISC);
  297. } else {
  298. cpmac_write(priv->regs, CPMAC_MBP, mbp & ~MBP_RXPROMISC);
  299. if (dev->flags & IFF_ALLMULTI) {
  300. /* enable all multicast mode */
  301. cpmac_write(priv->regs, CPMAC_MAC_HASH_LO, 0xffffffff);
  302. cpmac_write(priv->regs, CPMAC_MAC_HASH_HI, 0xffffffff);
  303. } else {
  304. /* cpmac uses some strange mac address hashing
  305. * (not crc32)
  306. */
  307. netdev_for_each_mc_addr(ha, dev) {
  308. bit = 0;
  309. tmp = ha->addr[0];
  310. bit ^= (tmp >> 2) ^ (tmp << 4);
  311. tmp = ha->addr[1];
  312. bit ^= (tmp >> 4) ^ (tmp << 2);
  313. tmp = ha->addr[2];
  314. bit ^= (tmp >> 6) ^ tmp;
  315. tmp = ha->addr[3];
  316. bit ^= (tmp >> 2) ^ (tmp << 4);
  317. tmp = ha->addr[4];
  318. bit ^= (tmp >> 4) ^ (tmp << 2);
  319. tmp = ha->addr[5];
  320. bit ^= (tmp >> 6) ^ tmp;
  321. bit &= 0x3f;
  322. hash[bit / 32] |= 1 << (bit % 32);
  323. }
  324. cpmac_write(priv->regs, CPMAC_MAC_HASH_LO, hash[0]);
  325. cpmac_write(priv->regs, CPMAC_MAC_HASH_HI, hash[1]);
  326. }
  327. }
  328. }
  329. static struct sk_buff *cpmac_rx_one(struct cpmac_priv *priv,
  330. struct cpmac_desc *desc)
  331. {
  332. struct sk_buff *skb, *result = NULL;
  333. if (unlikely(netif_msg_hw(priv)))
  334. cpmac_dump_desc(priv->dev, desc);
  335. cpmac_write(priv->regs, CPMAC_RX_ACK(0), (u32)desc->mapping);
  336. if (unlikely(!desc->datalen)) {
  337. if (netif_msg_rx_err(priv) && net_ratelimit())
  338. netdev_warn(priv->dev, "rx: spurious interrupt\n");
  339. return NULL;
  340. }
  341. skb = netdev_alloc_skb_ip_align(priv->dev, CPMAC_SKB_SIZE);
  342. if (likely(skb)) {
  343. skb_put(desc->skb, desc->datalen);
  344. desc->skb->protocol = eth_type_trans(desc->skb, priv->dev);
  345. skb_checksum_none_assert(desc->skb);
  346. priv->dev->stats.rx_packets++;
  347. priv->dev->stats.rx_bytes += desc->datalen;
  348. result = desc->skb;
  349. dma_unmap_single(&priv->dev->dev, desc->data_mapping,
  350. CPMAC_SKB_SIZE, DMA_FROM_DEVICE);
  351. desc->skb = skb;
  352. desc->data_mapping = dma_map_single(&priv->dev->dev, skb->data,
  353. CPMAC_SKB_SIZE,
  354. DMA_FROM_DEVICE);
  355. desc->hw_data = (u32)desc->data_mapping;
  356. if (unlikely(netif_msg_pktdata(priv))) {
  357. netdev_dbg(priv->dev, "received packet:\n");
  358. cpmac_dump_skb(priv->dev, result);
  359. }
  360. } else {
  361. if (netif_msg_rx_err(priv) && net_ratelimit())
  362. netdev_warn(priv->dev,
  363. "low on skbs, dropping packet\n");
  364. priv->dev->stats.rx_dropped++;
  365. }
  366. desc->buflen = CPMAC_SKB_SIZE;
  367. desc->dataflags = CPMAC_OWN;
  368. return result;
  369. }
  370. static int cpmac_poll(struct napi_struct *napi, int budget)
  371. {
  372. struct sk_buff *skb;
  373. struct cpmac_desc *desc, *restart;
  374. struct cpmac_priv *priv = container_of(napi, struct cpmac_priv, napi);
  375. int received = 0, processed = 0;
  376. spin_lock(&priv->rx_lock);
  377. if (unlikely(!priv->rx_head)) {
  378. if (netif_msg_rx_err(priv) && net_ratelimit())
  379. netdev_warn(priv->dev, "rx: polling, but no queue\n");
  380. spin_unlock(&priv->rx_lock);
  381. napi_complete(napi);
  382. return 0;
  383. }
  384. desc = priv->rx_head;
  385. restart = NULL;
  386. while (((desc->dataflags & CPMAC_OWN) == 0) && (received < budget)) {
  387. processed++;
  388. if ((desc->dataflags & CPMAC_EOQ) != 0) {
  389. /* The last update to eoq->hw_next didn't happen
  390. * soon enough, and the receiver stopped here.
  391. * Remember this descriptor so we can restart
  392. * the receiver after freeing some space.
  393. */
  394. if (unlikely(restart)) {
  395. if (netif_msg_rx_err(priv))
  396. netdev_err(priv->dev, "poll found a"
  397. " duplicate EOQ: %p and %p\n",
  398. restart, desc);
  399. goto fatal_error;
  400. }
  401. restart = desc->next;
  402. }
  403. skb = cpmac_rx_one(priv, desc);
  404. if (likely(skb)) {
  405. netif_receive_skb(skb);
  406. received++;
  407. }
  408. desc = desc->next;
  409. }
  410. if (desc != priv->rx_head) {
  411. /* We freed some buffers, but not the whole ring,
  412. * add what we did free to the rx list
  413. */
  414. desc->prev->hw_next = (u32)0;
  415. priv->rx_head->prev->hw_next = priv->rx_head->mapping;
  416. }
  417. /* Optimization: If we did not actually process an EOQ (perhaps because
  418. * of quota limits), check to see if the tail of the queue has EOQ set.
  419. * We should immediately restart in that case so that the receiver can
  420. * restart and run in parallel with more packet processing.
  421. * This lets us handle slightly larger bursts before running
  422. * out of ring space (assuming dev->weight < ring_size)
  423. */
  424. if (!restart &&
  425. (priv->rx_head->prev->dataflags & (CPMAC_OWN|CPMAC_EOQ))
  426. == CPMAC_EOQ &&
  427. (priv->rx_head->dataflags & CPMAC_OWN) != 0) {
  428. /* reset EOQ so the poll loop (above) doesn't try to
  429. * restart this when it eventually gets to this descriptor.
  430. */
  431. priv->rx_head->prev->dataflags &= ~CPMAC_EOQ;
  432. restart = priv->rx_head;
  433. }
  434. if (restart) {
  435. priv->dev->stats.rx_errors++;
  436. priv->dev->stats.rx_fifo_errors++;
  437. if (netif_msg_rx_err(priv) && net_ratelimit())
  438. netdev_warn(priv->dev, "rx dma ring overrun\n");
  439. if (unlikely((restart->dataflags & CPMAC_OWN) == 0)) {
  440. if (netif_msg_drv(priv))
  441. netdev_err(priv->dev, "cpmac_poll is trying "
  442. "to restart rx from a descriptor "
  443. "that's not free: %p\n", restart);
  444. goto fatal_error;
  445. }
  446. cpmac_write(priv->regs, CPMAC_RX_PTR(0), restart->mapping);
  447. }
  448. priv->rx_head = desc;
  449. spin_unlock(&priv->rx_lock);
  450. if (unlikely(netif_msg_rx_status(priv)))
  451. netdev_dbg(priv->dev, "poll processed %d packets\n", received);
  452. if (processed == 0) {
  453. /* we ran out of packets to read,
  454. * revert to interrupt-driven mode
  455. */
  456. napi_complete(napi);
  457. cpmac_write(priv->regs, CPMAC_RX_INT_ENABLE, 1);
  458. return 0;
  459. }
  460. return 1;
  461. fatal_error:
  462. /* Something went horribly wrong.
  463. * Reset hardware to try to recover rather than wedging.
  464. */
  465. if (netif_msg_drv(priv)) {
  466. netdev_err(priv->dev, "cpmac_poll is confused. "
  467. "Resetting hardware\n");
  468. cpmac_dump_all_desc(priv->dev);
  469. netdev_dbg(priv->dev, "RX_PTR(0)=0x%08x RX_ACK(0)=0x%08x\n",
  470. cpmac_read(priv->regs, CPMAC_RX_PTR(0)),
  471. cpmac_read(priv->regs, CPMAC_RX_ACK(0)));
  472. }
  473. spin_unlock(&priv->rx_lock);
  474. napi_complete(napi);
  475. netif_tx_stop_all_queues(priv->dev);
  476. napi_disable(&priv->napi);
  477. atomic_inc(&priv->reset_pending);
  478. cpmac_hw_stop(priv->dev);
  479. if (!schedule_work(&priv->reset_work))
  480. atomic_dec(&priv->reset_pending);
  481. return 0;
  482. }
  483. static int cpmac_start_xmit(struct sk_buff *skb, struct net_device *dev)
  484. {
  485. int queue;
  486. unsigned int len;
  487. struct cpmac_desc *desc;
  488. struct cpmac_priv *priv = netdev_priv(dev);
  489. if (unlikely(atomic_read(&priv->reset_pending)))
  490. return NETDEV_TX_BUSY;
  491. if (unlikely(skb_padto(skb, ETH_ZLEN)))
  492. return NETDEV_TX_OK;
  493. len = max_t(unsigned int, skb->len, ETH_ZLEN);
  494. queue = skb_get_queue_mapping(skb);
  495. netif_stop_subqueue(dev, queue);
  496. desc = &priv->desc_ring[queue];
  497. if (unlikely(desc->dataflags & CPMAC_OWN)) {
  498. if (netif_msg_tx_err(priv) && net_ratelimit())
  499. netdev_warn(dev, "tx dma ring full\n");
  500. return NETDEV_TX_BUSY;
  501. }
  502. spin_lock(&priv->lock);
  503. spin_unlock(&priv->lock);
  504. desc->dataflags = CPMAC_SOP | CPMAC_EOP | CPMAC_OWN;
  505. desc->skb = skb;
  506. desc->data_mapping = dma_map_single(&dev->dev, skb->data, len,
  507. DMA_TO_DEVICE);
  508. desc->hw_data = (u32)desc->data_mapping;
  509. desc->datalen = len;
  510. desc->buflen = len;
  511. if (unlikely(netif_msg_tx_queued(priv)))
  512. netdev_dbg(dev, "sending 0x%p, len=%d\n", skb, skb->len);
  513. if (unlikely(netif_msg_hw(priv)))
  514. cpmac_dump_desc(dev, desc);
  515. if (unlikely(netif_msg_pktdata(priv)))
  516. cpmac_dump_skb(dev, skb);
  517. cpmac_write(priv->regs, CPMAC_TX_PTR(queue), (u32)desc->mapping);
  518. return NETDEV_TX_OK;
  519. }
  520. static void cpmac_end_xmit(struct net_device *dev, int queue)
  521. {
  522. struct cpmac_desc *desc;
  523. struct cpmac_priv *priv = netdev_priv(dev);
  524. desc = &priv->desc_ring[queue];
  525. cpmac_write(priv->regs, CPMAC_TX_ACK(queue), (u32)desc->mapping);
  526. if (likely(desc->skb)) {
  527. spin_lock(&priv->lock);
  528. dev->stats.tx_packets++;
  529. dev->stats.tx_bytes += desc->skb->len;
  530. spin_unlock(&priv->lock);
  531. dma_unmap_single(&dev->dev, desc->data_mapping, desc->skb->len,
  532. DMA_TO_DEVICE);
  533. if (unlikely(netif_msg_tx_done(priv)))
  534. netdev_dbg(dev, "sent 0x%p, len=%d\n",
  535. desc->skb, desc->skb->len);
  536. dev_kfree_skb_irq(desc->skb);
  537. desc->skb = NULL;
  538. if (__netif_subqueue_stopped(dev, queue))
  539. netif_wake_subqueue(dev, queue);
  540. } else {
  541. if (netif_msg_tx_err(priv) && net_ratelimit())
  542. netdev_warn(dev, "end_xmit: spurious interrupt\n");
  543. if (__netif_subqueue_stopped(dev, queue))
  544. netif_wake_subqueue(dev, queue);
  545. }
  546. }
  547. static void cpmac_hw_stop(struct net_device *dev)
  548. {
  549. int i;
  550. struct cpmac_priv *priv = netdev_priv(dev);
  551. struct plat_cpmac_data *pdata = dev_get_platdata(&priv->pdev->dev);
  552. ar7_device_reset(pdata->reset_bit);
  553. cpmac_write(priv->regs, CPMAC_RX_CONTROL,
  554. cpmac_read(priv->regs, CPMAC_RX_CONTROL) & ~1);
  555. cpmac_write(priv->regs, CPMAC_TX_CONTROL,
  556. cpmac_read(priv->regs, CPMAC_TX_CONTROL) & ~1);
  557. for (i = 0; i < 8; i++) {
  558. cpmac_write(priv->regs, CPMAC_TX_PTR(i), 0);
  559. cpmac_write(priv->regs, CPMAC_RX_PTR(i), 0);
  560. }
  561. cpmac_write(priv->regs, CPMAC_UNICAST_CLEAR, 0xff);
  562. cpmac_write(priv->regs, CPMAC_RX_INT_CLEAR, 0xff);
  563. cpmac_write(priv->regs, CPMAC_TX_INT_CLEAR, 0xff);
  564. cpmac_write(priv->regs, CPMAC_MAC_INT_CLEAR, 0xff);
  565. cpmac_write(priv->regs, CPMAC_MAC_CONTROL,
  566. cpmac_read(priv->regs, CPMAC_MAC_CONTROL) & ~MAC_MII);
  567. }
  568. static void cpmac_hw_start(struct net_device *dev)
  569. {
  570. int i;
  571. struct cpmac_priv *priv = netdev_priv(dev);
  572. struct plat_cpmac_data *pdata = dev_get_platdata(&priv->pdev->dev);
  573. ar7_device_reset(pdata->reset_bit);
  574. for (i = 0; i < 8; i++) {
  575. cpmac_write(priv->regs, CPMAC_TX_PTR(i), 0);
  576. cpmac_write(priv->regs, CPMAC_RX_PTR(i), 0);
  577. }
  578. cpmac_write(priv->regs, CPMAC_RX_PTR(0), priv->rx_head->mapping);
  579. cpmac_write(priv->regs, CPMAC_MBP, MBP_RXSHORT | MBP_RXBCAST |
  580. MBP_RXMCAST);
  581. cpmac_write(priv->regs, CPMAC_BUFFER_OFFSET, 0);
  582. for (i = 0; i < 8; i++)
  583. cpmac_write(priv->regs, CPMAC_MAC_ADDR_LO(i), dev->dev_addr[5]);
  584. cpmac_write(priv->regs, CPMAC_MAC_ADDR_MID, dev->dev_addr[4]);
  585. cpmac_write(priv->regs, CPMAC_MAC_ADDR_HI, dev->dev_addr[0] |
  586. (dev->dev_addr[1] << 8) | (dev->dev_addr[2] << 16) |
  587. (dev->dev_addr[3] << 24));
  588. cpmac_write(priv->regs, CPMAC_MAX_LENGTH, CPMAC_SKB_SIZE);
  589. cpmac_write(priv->regs, CPMAC_UNICAST_CLEAR, 0xff);
  590. cpmac_write(priv->regs, CPMAC_RX_INT_CLEAR, 0xff);
  591. cpmac_write(priv->regs, CPMAC_TX_INT_CLEAR, 0xff);
  592. cpmac_write(priv->regs, CPMAC_MAC_INT_CLEAR, 0xff);
  593. cpmac_write(priv->regs, CPMAC_UNICAST_ENABLE, 1);
  594. cpmac_write(priv->regs, CPMAC_RX_INT_ENABLE, 1);
  595. cpmac_write(priv->regs, CPMAC_TX_INT_ENABLE, 0xff);
  596. cpmac_write(priv->regs, CPMAC_MAC_INT_ENABLE, 3);
  597. cpmac_write(priv->regs, CPMAC_RX_CONTROL,
  598. cpmac_read(priv->regs, CPMAC_RX_CONTROL) | 1);
  599. cpmac_write(priv->regs, CPMAC_TX_CONTROL,
  600. cpmac_read(priv->regs, CPMAC_TX_CONTROL) | 1);
  601. cpmac_write(priv->regs, CPMAC_MAC_CONTROL,
  602. cpmac_read(priv->regs, CPMAC_MAC_CONTROL) | MAC_MII |
  603. MAC_FDX);
  604. }
  605. static void cpmac_clear_rx(struct net_device *dev)
  606. {
  607. struct cpmac_priv *priv = netdev_priv(dev);
  608. struct cpmac_desc *desc;
  609. int i;
  610. if (unlikely(!priv->rx_head))
  611. return;
  612. desc = priv->rx_head;
  613. for (i = 0; i < priv->ring_size; i++) {
  614. if ((desc->dataflags & CPMAC_OWN) == 0) {
  615. if (netif_msg_rx_err(priv) && net_ratelimit())
  616. netdev_warn(dev, "packet dropped\n");
  617. if (unlikely(netif_msg_hw(priv)))
  618. cpmac_dump_desc(dev, desc);
  619. desc->dataflags = CPMAC_OWN;
  620. dev->stats.rx_dropped++;
  621. }
  622. desc->hw_next = desc->next->mapping;
  623. desc = desc->next;
  624. }
  625. priv->rx_head->prev->hw_next = 0;
  626. }
  627. static void cpmac_clear_tx(struct net_device *dev)
  628. {
  629. struct cpmac_priv *priv = netdev_priv(dev);
  630. int i;
  631. if (unlikely(!priv->desc_ring))
  632. return;
  633. for (i = 0; i < CPMAC_QUEUES; i++) {
  634. priv->desc_ring[i].dataflags = 0;
  635. if (priv->desc_ring[i].skb) {
  636. dev_kfree_skb_any(priv->desc_ring[i].skb);
  637. priv->desc_ring[i].skb = NULL;
  638. }
  639. }
  640. }
  641. static void cpmac_hw_error(struct work_struct *work)
  642. {
  643. struct cpmac_priv *priv =
  644. container_of(work, struct cpmac_priv, reset_work);
  645. spin_lock(&priv->rx_lock);
  646. cpmac_clear_rx(priv->dev);
  647. spin_unlock(&priv->rx_lock);
  648. cpmac_clear_tx(priv->dev);
  649. cpmac_hw_start(priv->dev);
  650. barrier();
  651. atomic_dec(&priv->reset_pending);
  652. netif_tx_wake_all_queues(priv->dev);
  653. cpmac_write(priv->regs, CPMAC_MAC_INT_ENABLE, 3);
  654. }
  655. static void cpmac_check_status(struct net_device *dev)
  656. {
  657. struct cpmac_priv *priv = netdev_priv(dev);
  658. u32 macstatus = cpmac_read(priv->regs, CPMAC_MAC_STATUS);
  659. int rx_channel = (macstatus >> 8) & 7;
  660. int rx_code = (macstatus >> 12) & 15;
  661. int tx_channel = (macstatus >> 16) & 7;
  662. int tx_code = (macstatus >> 20) & 15;
  663. if (rx_code || tx_code) {
  664. if (netif_msg_drv(priv) && net_ratelimit()) {
  665. /* Can't find any documentation on what these
  666. * error codes actually are. So just log them and hope..
  667. */
  668. if (rx_code)
  669. netdev_warn(dev, "host error %d on rx "
  670. "channel %d (macstatus %08x), resetting\n",
  671. rx_code, rx_channel, macstatus);
  672. if (tx_code)
  673. netdev_warn(dev, "host error %d on tx "
  674. "channel %d (macstatus %08x), resetting\n",
  675. tx_code, tx_channel, macstatus);
  676. }
  677. netif_tx_stop_all_queues(dev);
  678. cpmac_hw_stop(dev);
  679. if (schedule_work(&priv->reset_work))
  680. atomic_inc(&priv->reset_pending);
  681. if (unlikely(netif_msg_hw(priv)))
  682. cpmac_dump_regs(dev);
  683. }
  684. cpmac_write(priv->regs, CPMAC_MAC_INT_CLEAR, 0xff);
  685. }
  686. static irqreturn_t cpmac_irq(int irq, void *dev_id)
  687. {
  688. struct net_device *dev = dev_id;
  689. struct cpmac_priv *priv;
  690. int queue;
  691. u32 status;
  692. priv = netdev_priv(dev);
  693. status = cpmac_read(priv->regs, CPMAC_MAC_INT_VECTOR);
  694. if (unlikely(netif_msg_intr(priv)))
  695. netdev_dbg(dev, "interrupt status: 0x%08x\n", status);
  696. if (status & MAC_INT_TX)
  697. cpmac_end_xmit(dev, (status & 7));
  698. if (status & MAC_INT_RX) {
  699. queue = (status >> 8) & 7;
  700. if (napi_schedule_prep(&priv->napi)) {
  701. cpmac_write(priv->regs, CPMAC_RX_INT_CLEAR, 1 << queue);
  702. __napi_schedule(&priv->napi);
  703. }
  704. }
  705. cpmac_write(priv->regs, CPMAC_MAC_EOI_VECTOR, 0);
  706. if (unlikely(status & (MAC_INT_HOST | MAC_INT_STATUS)))
  707. cpmac_check_status(dev);
  708. return IRQ_HANDLED;
  709. }
  710. static void cpmac_tx_timeout(struct net_device *dev)
  711. {
  712. struct cpmac_priv *priv = netdev_priv(dev);
  713. spin_lock(&priv->lock);
  714. dev->stats.tx_errors++;
  715. spin_unlock(&priv->lock);
  716. if (netif_msg_tx_err(priv) && net_ratelimit())
  717. netdev_warn(dev, "transmit timeout\n");
  718. atomic_inc(&priv->reset_pending);
  719. barrier();
  720. cpmac_clear_tx(dev);
  721. barrier();
  722. atomic_dec(&priv->reset_pending);
  723. netif_tx_wake_all_queues(priv->dev);
  724. }
  725. static int cpmac_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  726. {
  727. struct cpmac_priv *priv = netdev_priv(dev);
  728. if (!(netif_running(dev)))
  729. return -EINVAL;
  730. if (!priv->phy)
  731. return -EINVAL;
  732. return phy_mii_ioctl(priv->phy, ifr, cmd);
  733. }
  734. static int cpmac_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  735. {
  736. struct cpmac_priv *priv = netdev_priv(dev);
  737. if (priv->phy)
  738. return phy_ethtool_gset(priv->phy, cmd);
  739. return -EINVAL;
  740. }
  741. static int cpmac_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  742. {
  743. struct cpmac_priv *priv = netdev_priv(dev);
  744. if (!capable(CAP_NET_ADMIN))
  745. return -EPERM;
  746. if (priv->phy)
  747. return phy_ethtool_sset(priv->phy, cmd);
  748. return -EINVAL;
  749. }
  750. static void cpmac_get_ringparam(struct net_device *dev,
  751. struct ethtool_ringparam *ring)
  752. {
  753. struct cpmac_priv *priv = netdev_priv(dev);
  754. ring->rx_max_pending = 1024;
  755. ring->rx_mini_max_pending = 1;
  756. ring->rx_jumbo_max_pending = 1;
  757. ring->tx_max_pending = 1;
  758. ring->rx_pending = priv->ring_size;
  759. ring->rx_mini_pending = 1;
  760. ring->rx_jumbo_pending = 1;
  761. ring->tx_pending = 1;
  762. }
  763. static int cpmac_set_ringparam(struct net_device *dev,
  764. struct ethtool_ringparam *ring)
  765. {
  766. struct cpmac_priv *priv = netdev_priv(dev);
  767. if (netif_running(dev))
  768. return -EBUSY;
  769. priv->ring_size = ring->rx_pending;
  770. return 0;
  771. }
  772. static void cpmac_get_drvinfo(struct net_device *dev,
  773. struct ethtool_drvinfo *info)
  774. {
  775. strlcpy(info->driver, "cpmac", sizeof(info->driver));
  776. strlcpy(info->version, CPMAC_VERSION, sizeof(info->version));
  777. snprintf(info->bus_info, sizeof(info->bus_info), "%s", "cpmac");
  778. }
  779. static const struct ethtool_ops cpmac_ethtool_ops = {
  780. .get_settings = cpmac_get_settings,
  781. .set_settings = cpmac_set_settings,
  782. .get_drvinfo = cpmac_get_drvinfo,
  783. .get_link = ethtool_op_get_link,
  784. .get_ringparam = cpmac_get_ringparam,
  785. .set_ringparam = cpmac_set_ringparam,
  786. };
  787. static void cpmac_adjust_link(struct net_device *dev)
  788. {
  789. struct cpmac_priv *priv = netdev_priv(dev);
  790. int new_state = 0;
  791. spin_lock(&priv->lock);
  792. if (priv->phy->link) {
  793. netif_tx_start_all_queues(dev);
  794. if (priv->phy->duplex != priv->oldduplex) {
  795. new_state = 1;
  796. priv->oldduplex = priv->phy->duplex;
  797. }
  798. if (priv->phy->speed != priv->oldspeed) {
  799. new_state = 1;
  800. priv->oldspeed = priv->phy->speed;
  801. }
  802. if (!priv->oldlink) {
  803. new_state = 1;
  804. priv->oldlink = 1;
  805. }
  806. } else if (priv->oldlink) {
  807. new_state = 1;
  808. priv->oldlink = 0;
  809. priv->oldspeed = 0;
  810. priv->oldduplex = -1;
  811. }
  812. if (new_state && netif_msg_link(priv) && net_ratelimit())
  813. phy_print_status(priv->phy);
  814. spin_unlock(&priv->lock);
  815. }
  816. static int cpmac_open(struct net_device *dev)
  817. {
  818. int i, size, res;
  819. struct cpmac_priv *priv = netdev_priv(dev);
  820. struct resource *mem;
  821. struct cpmac_desc *desc;
  822. struct sk_buff *skb;
  823. mem = platform_get_resource_byname(priv->pdev, IORESOURCE_MEM, "regs");
  824. if (!request_mem_region(mem->start, resource_size(mem), dev->name)) {
  825. if (netif_msg_drv(priv))
  826. netdev_err(dev, "failed to request registers\n");
  827. res = -ENXIO;
  828. goto fail_reserve;
  829. }
  830. priv->regs = ioremap(mem->start, resource_size(mem));
  831. if (!priv->regs) {
  832. if (netif_msg_drv(priv))
  833. netdev_err(dev, "failed to remap registers\n");
  834. res = -ENXIO;
  835. goto fail_remap;
  836. }
  837. size = priv->ring_size + CPMAC_QUEUES;
  838. priv->desc_ring = dma_alloc_coherent(&dev->dev,
  839. sizeof(struct cpmac_desc) * size,
  840. &priv->dma_ring,
  841. GFP_KERNEL);
  842. if (!priv->desc_ring) {
  843. res = -ENOMEM;
  844. goto fail_alloc;
  845. }
  846. for (i = 0; i < size; i++)
  847. priv->desc_ring[i].mapping = priv->dma_ring + sizeof(*desc) * i;
  848. priv->rx_head = &priv->desc_ring[CPMAC_QUEUES];
  849. for (i = 0, desc = priv->rx_head; i < priv->ring_size; i++, desc++) {
  850. skb = netdev_alloc_skb_ip_align(dev, CPMAC_SKB_SIZE);
  851. if (unlikely(!skb)) {
  852. res = -ENOMEM;
  853. goto fail_desc;
  854. }
  855. desc->skb = skb;
  856. desc->data_mapping = dma_map_single(&dev->dev, skb->data,
  857. CPMAC_SKB_SIZE,
  858. DMA_FROM_DEVICE);
  859. desc->hw_data = (u32)desc->data_mapping;
  860. desc->buflen = CPMAC_SKB_SIZE;
  861. desc->dataflags = CPMAC_OWN;
  862. desc->next = &priv->rx_head[(i + 1) % priv->ring_size];
  863. desc->next->prev = desc;
  864. desc->hw_next = (u32)desc->next->mapping;
  865. }
  866. priv->rx_head->prev->hw_next = (u32)0;
  867. res = request_irq(dev->irq, cpmac_irq, IRQF_SHARED, dev->name, dev);
  868. if (res) {
  869. if (netif_msg_drv(priv))
  870. netdev_err(dev, "failed to obtain irq\n");
  871. goto fail_irq;
  872. }
  873. atomic_set(&priv->reset_pending, 0);
  874. INIT_WORK(&priv->reset_work, cpmac_hw_error);
  875. cpmac_hw_start(dev);
  876. napi_enable(&priv->napi);
  877. priv->phy->state = PHY_CHANGELINK;
  878. phy_start(priv->phy);
  879. return 0;
  880. fail_irq:
  881. fail_desc:
  882. for (i = 0; i < priv->ring_size; i++) {
  883. if (priv->rx_head[i].skb) {
  884. dma_unmap_single(&dev->dev,
  885. priv->rx_head[i].data_mapping,
  886. CPMAC_SKB_SIZE,
  887. DMA_FROM_DEVICE);
  888. kfree_skb(priv->rx_head[i].skb);
  889. }
  890. }
  891. fail_alloc:
  892. kfree(priv->desc_ring);
  893. iounmap(priv->regs);
  894. fail_remap:
  895. release_mem_region(mem->start, resource_size(mem));
  896. fail_reserve:
  897. return res;
  898. }
  899. static int cpmac_stop(struct net_device *dev)
  900. {
  901. int i;
  902. struct cpmac_priv *priv = netdev_priv(dev);
  903. struct resource *mem;
  904. netif_tx_stop_all_queues(dev);
  905. cancel_work_sync(&priv->reset_work);
  906. napi_disable(&priv->napi);
  907. phy_stop(priv->phy);
  908. cpmac_hw_stop(dev);
  909. for (i = 0; i < 8; i++)
  910. cpmac_write(priv->regs, CPMAC_TX_PTR(i), 0);
  911. cpmac_write(priv->regs, CPMAC_RX_PTR(0), 0);
  912. cpmac_write(priv->regs, CPMAC_MBP, 0);
  913. free_irq(dev->irq, dev);
  914. iounmap(priv->regs);
  915. mem = platform_get_resource_byname(priv->pdev, IORESOURCE_MEM, "regs");
  916. release_mem_region(mem->start, resource_size(mem));
  917. priv->rx_head = &priv->desc_ring[CPMAC_QUEUES];
  918. for (i = 0; i < priv->ring_size; i++) {
  919. if (priv->rx_head[i].skb) {
  920. dma_unmap_single(&dev->dev,
  921. priv->rx_head[i].data_mapping,
  922. CPMAC_SKB_SIZE,
  923. DMA_FROM_DEVICE);
  924. kfree_skb(priv->rx_head[i].skb);
  925. }
  926. }
  927. dma_free_coherent(&dev->dev, sizeof(struct cpmac_desc) *
  928. (CPMAC_QUEUES + priv->ring_size),
  929. priv->desc_ring, priv->dma_ring);
  930. return 0;
  931. }
  932. static const struct net_device_ops cpmac_netdev_ops = {
  933. .ndo_open = cpmac_open,
  934. .ndo_stop = cpmac_stop,
  935. .ndo_start_xmit = cpmac_start_xmit,
  936. .ndo_tx_timeout = cpmac_tx_timeout,
  937. .ndo_set_rx_mode = cpmac_set_multicast_list,
  938. .ndo_do_ioctl = cpmac_ioctl,
  939. .ndo_change_mtu = eth_change_mtu,
  940. .ndo_validate_addr = eth_validate_addr,
  941. .ndo_set_mac_address = eth_mac_addr,
  942. };
  943. static int external_switch;
  944. static int cpmac_probe(struct platform_device *pdev)
  945. {
  946. int rc, phy_id;
  947. char mdio_bus_id[MII_BUS_ID_SIZE];
  948. struct resource *mem;
  949. struct cpmac_priv *priv;
  950. struct net_device *dev;
  951. struct plat_cpmac_data *pdata;
  952. pdata = dev_get_platdata(&pdev->dev);
  953. if (external_switch || dumb_switch) {
  954. strncpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE); /* fixed phys bus */
  955. phy_id = pdev->id;
  956. } else {
  957. for (phy_id = 0; phy_id < PHY_MAX_ADDR; phy_id++) {
  958. if (!(pdata->phy_mask & (1 << phy_id)))
  959. continue;
  960. if (!cpmac_mii->phy_map[phy_id])
  961. continue;
  962. strncpy(mdio_bus_id, cpmac_mii->id, MII_BUS_ID_SIZE);
  963. break;
  964. }
  965. }
  966. if (phy_id == PHY_MAX_ADDR) {
  967. dev_err(&pdev->dev, "no PHY present, falling back "
  968. "to switch on MDIO bus 0\n");
  969. strncpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE); /* fixed phys bus */
  970. phy_id = pdev->id;
  971. }
  972. mdio_bus_id[sizeof(mdio_bus_id) - 1] = '\0';
  973. dev = alloc_etherdev_mq(sizeof(*priv), CPMAC_QUEUES);
  974. if (!dev)
  975. return -ENOMEM;
  976. platform_set_drvdata(pdev, dev);
  977. priv = netdev_priv(dev);
  978. priv->pdev = pdev;
  979. mem = platform_get_resource_byname(pdev, IORESOURCE_MEM, "regs");
  980. if (!mem) {
  981. rc = -ENODEV;
  982. goto out;
  983. }
  984. dev->irq = platform_get_irq_byname(pdev, "irq");
  985. dev->netdev_ops = &cpmac_netdev_ops;
  986. dev->ethtool_ops = &cpmac_ethtool_ops;
  987. netif_napi_add(dev, &priv->napi, cpmac_poll, 64);
  988. spin_lock_init(&priv->lock);
  989. spin_lock_init(&priv->rx_lock);
  990. priv->dev = dev;
  991. priv->ring_size = 64;
  992. priv->msg_enable = netif_msg_init(debug_level, 0xff);
  993. memcpy(dev->dev_addr, pdata->dev_addr, sizeof(pdata->dev_addr));
  994. snprintf(priv->phy_name, MII_BUS_ID_SIZE, PHY_ID_FMT,
  995. mdio_bus_id, phy_id);
  996. priv->phy = phy_connect(dev, priv->phy_name, cpmac_adjust_link,
  997. PHY_INTERFACE_MODE_MII);
  998. if (IS_ERR(priv->phy)) {
  999. if (netif_msg_drv(priv))
  1000. dev_err(&pdev->dev, "Could not attach to PHY\n");
  1001. rc = PTR_ERR(priv->phy);
  1002. goto out;
  1003. }
  1004. rc = register_netdev(dev);
  1005. if (rc) {
  1006. dev_err(&pdev->dev, "Could not register net device\n");
  1007. goto fail;
  1008. }
  1009. if (netif_msg_probe(priv)) {
  1010. dev_info(&pdev->dev, "regs: %p, irq: %d, phy: %s, "
  1011. "mac: %pM\n", (void *)mem->start, dev->irq,
  1012. priv->phy_name, dev->dev_addr);
  1013. }
  1014. return 0;
  1015. fail:
  1016. free_netdev(dev);
  1017. out:
  1018. return rc;
  1019. }
  1020. static int cpmac_remove(struct platform_device *pdev)
  1021. {
  1022. struct net_device *dev = platform_get_drvdata(pdev);
  1023. unregister_netdev(dev);
  1024. free_netdev(dev);
  1025. return 0;
  1026. }
  1027. static struct platform_driver cpmac_driver = {
  1028. .driver = {
  1029. .name = "cpmac",
  1030. },
  1031. .probe = cpmac_probe,
  1032. .remove = cpmac_remove,
  1033. };
  1034. int cpmac_init(void)
  1035. {
  1036. u32 mask;
  1037. int i, res;
  1038. cpmac_mii = mdiobus_alloc();
  1039. if (cpmac_mii == NULL)
  1040. return -ENOMEM;
  1041. cpmac_mii->name = "cpmac-mii";
  1042. cpmac_mii->read = cpmac_mdio_read;
  1043. cpmac_mii->write = cpmac_mdio_write;
  1044. cpmac_mii->reset = cpmac_mdio_reset;
  1045. cpmac_mii->irq = mii_irqs;
  1046. cpmac_mii->priv = ioremap(AR7_REGS_MDIO, 256);
  1047. if (!cpmac_mii->priv) {
  1048. pr_err("Can't ioremap mdio registers\n");
  1049. res = -ENXIO;
  1050. goto fail_alloc;
  1051. }
  1052. /* FIXME: unhardcode gpio&reset bits */
  1053. ar7_gpio_disable(26);
  1054. ar7_gpio_disable(27);
  1055. ar7_device_reset(AR7_RESET_BIT_CPMAC_LO);
  1056. ar7_device_reset(AR7_RESET_BIT_CPMAC_HI);
  1057. ar7_device_reset(AR7_RESET_BIT_EPHY);
  1058. cpmac_mii->reset(cpmac_mii);
  1059. for (i = 0; i < 300; i++) {
  1060. mask = cpmac_read(cpmac_mii->priv, CPMAC_MDIO_ALIVE);
  1061. if (mask)
  1062. break;
  1063. else
  1064. msleep(10);
  1065. }
  1066. mask &= 0x7fffffff;
  1067. if (mask & (mask - 1)) {
  1068. external_switch = 1;
  1069. mask = 0;
  1070. }
  1071. cpmac_mii->phy_mask = ~(mask | 0x80000000);
  1072. snprintf(cpmac_mii->id, MII_BUS_ID_SIZE, "cpmac-1");
  1073. res = mdiobus_register(cpmac_mii);
  1074. if (res)
  1075. goto fail_mii;
  1076. res = platform_driver_register(&cpmac_driver);
  1077. if (res)
  1078. goto fail_cpmac;
  1079. return 0;
  1080. fail_cpmac:
  1081. mdiobus_unregister(cpmac_mii);
  1082. fail_mii:
  1083. iounmap(cpmac_mii->priv);
  1084. fail_alloc:
  1085. mdiobus_free(cpmac_mii);
  1086. return res;
  1087. }
  1088. void cpmac_exit(void)
  1089. {
  1090. platform_driver_unregister(&cpmac_driver);
  1091. mdiobus_unregister(cpmac_mii);
  1092. iounmap(cpmac_mii->priv);
  1093. mdiobus_free(cpmac_mii);
  1094. }
  1095. module_init(cpmac_init);
  1096. module_exit(cpmac_exit);