ce.c 32 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123
  1. /*
  2. * Copyright (c) 2005-2011 Atheros Communications Inc.
  3. * Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
  4. *
  5. * Permission to use, copy, modify, and/or distribute this software for any
  6. * purpose with or without fee is hereby granted, provided that the above
  7. * copyright notice and this permission notice appear in all copies.
  8. *
  9. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  10. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  11. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  12. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  13. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  14. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  15. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  16. */
  17. #include "hif.h"
  18. #include "pci.h"
  19. #include "ce.h"
  20. #include "debug.h"
  21. /*
  22. * Support for Copy Engine hardware, which is mainly used for
  23. * communication between Host and Target over a PCIe interconnect.
  24. */
  25. /*
  26. * A single CopyEngine (CE) comprises two "rings":
  27. * a source ring
  28. * a destination ring
  29. *
  30. * Each ring consists of a number of descriptors which specify
  31. * an address, length, and meta-data.
  32. *
  33. * Typically, one side of the PCIe interconnect (Host or Target)
  34. * controls one ring and the other side controls the other ring.
  35. * The source side chooses when to initiate a transfer and it
  36. * chooses what to send (buffer address, length). The destination
  37. * side keeps a supply of "anonymous receive buffers" available and
  38. * it handles incoming data as it arrives (when the destination
  39. * recieves an interrupt).
  40. *
  41. * The sender may send a simple buffer (address/length) or it may
  42. * send a small list of buffers. When a small list is sent, hardware
  43. * "gathers" these and they end up in a single destination buffer
  44. * with a single interrupt.
  45. *
  46. * There are several "contexts" managed by this layer -- more, it
  47. * may seem -- than should be needed. These are provided mainly for
  48. * maximum flexibility and especially to facilitate a simpler HIF
  49. * implementation. There are per-CopyEngine recv, send, and watermark
  50. * contexts. These are supplied by the caller when a recv, send,
  51. * or watermark handler is established and they are echoed back to
  52. * the caller when the respective callbacks are invoked. There is
  53. * also a per-transfer context supplied by the caller when a buffer
  54. * (or sendlist) is sent and when a buffer is enqueued for recv.
  55. * These per-transfer contexts are echoed back to the caller when
  56. * the buffer is sent/received.
  57. */
  58. static inline void ath10k_ce_dest_ring_write_index_set(struct ath10k *ar,
  59. u32 ce_ctrl_addr,
  60. unsigned int n)
  61. {
  62. ath10k_pci_write32(ar, ce_ctrl_addr + DST_WR_INDEX_ADDRESS, n);
  63. }
  64. static inline u32 ath10k_ce_dest_ring_write_index_get(struct ath10k *ar,
  65. u32 ce_ctrl_addr)
  66. {
  67. return ath10k_pci_read32(ar, ce_ctrl_addr + DST_WR_INDEX_ADDRESS);
  68. }
  69. static inline void ath10k_ce_src_ring_write_index_set(struct ath10k *ar,
  70. u32 ce_ctrl_addr,
  71. unsigned int n)
  72. {
  73. ath10k_pci_write32(ar, ce_ctrl_addr + SR_WR_INDEX_ADDRESS, n);
  74. }
  75. static inline u32 ath10k_ce_src_ring_write_index_get(struct ath10k *ar,
  76. u32 ce_ctrl_addr)
  77. {
  78. return ath10k_pci_read32(ar, ce_ctrl_addr + SR_WR_INDEX_ADDRESS);
  79. }
  80. static inline u32 ath10k_ce_src_ring_read_index_get(struct ath10k *ar,
  81. u32 ce_ctrl_addr)
  82. {
  83. return ath10k_pci_read32(ar, ce_ctrl_addr + CURRENT_SRRI_ADDRESS);
  84. }
  85. static inline void ath10k_ce_src_ring_base_addr_set(struct ath10k *ar,
  86. u32 ce_ctrl_addr,
  87. unsigned int addr)
  88. {
  89. ath10k_pci_write32(ar, ce_ctrl_addr + SR_BA_ADDRESS, addr);
  90. }
  91. static inline void ath10k_ce_src_ring_size_set(struct ath10k *ar,
  92. u32 ce_ctrl_addr,
  93. unsigned int n)
  94. {
  95. ath10k_pci_write32(ar, ce_ctrl_addr + SR_SIZE_ADDRESS, n);
  96. }
  97. static inline void ath10k_ce_src_ring_dmax_set(struct ath10k *ar,
  98. u32 ce_ctrl_addr,
  99. unsigned int n)
  100. {
  101. u32 ctrl1_addr = ath10k_pci_read32((ar),
  102. (ce_ctrl_addr) + CE_CTRL1_ADDRESS);
  103. ath10k_pci_write32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS,
  104. (ctrl1_addr & ~CE_CTRL1_DMAX_LENGTH_MASK) |
  105. CE_CTRL1_DMAX_LENGTH_SET(n));
  106. }
  107. static inline void ath10k_ce_src_ring_byte_swap_set(struct ath10k *ar,
  108. u32 ce_ctrl_addr,
  109. unsigned int n)
  110. {
  111. u32 ctrl1_addr = ath10k_pci_read32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS);
  112. ath10k_pci_write32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS,
  113. (ctrl1_addr & ~CE_CTRL1_SRC_RING_BYTE_SWAP_EN_MASK) |
  114. CE_CTRL1_SRC_RING_BYTE_SWAP_EN_SET(n));
  115. }
  116. static inline void ath10k_ce_dest_ring_byte_swap_set(struct ath10k *ar,
  117. u32 ce_ctrl_addr,
  118. unsigned int n)
  119. {
  120. u32 ctrl1_addr = ath10k_pci_read32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS);
  121. ath10k_pci_write32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS,
  122. (ctrl1_addr & ~CE_CTRL1_DST_RING_BYTE_SWAP_EN_MASK) |
  123. CE_CTRL1_DST_RING_BYTE_SWAP_EN_SET(n));
  124. }
  125. static inline u32 ath10k_ce_dest_ring_read_index_get(struct ath10k *ar,
  126. u32 ce_ctrl_addr)
  127. {
  128. return ath10k_pci_read32(ar, ce_ctrl_addr + CURRENT_DRRI_ADDRESS);
  129. }
  130. static inline void ath10k_ce_dest_ring_base_addr_set(struct ath10k *ar,
  131. u32 ce_ctrl_addr,
  132. u32 addr)
  133. {
  134. ath10k_pci_write32(ar, ce_ctrl_addr + DR_BA_ADDRESS, addr);
  135. }
  136. static inline void ath10k_ce_dest_ring_size_set(struct ath10k *ar,
  137. u32 ce_ctrl_addr,
  138. unsigned int n)
  139. {
  140. ath10k_pci_write32(ar, ce_ctrl_addr + DR_SIZE_ADDRESS, n);
  141. }
  142. static inline void ath10k_ce_src_ring_highmark_set(struct ath10k *ar,
  143. u32 ce_ctrl_addr,
  144. unsigned int n)
  145. {
  146. u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS);
  147. ath10k_pci_write32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS,
  148. (addr & ~SRC_WATERMARK_HIGH_MASK) |
  149. SRC_WATERMARK_HIGH_SET(n));
  150. }
  151. static inline void ath10k_ce_src_ring_lowmark_set(struct ath10k *ar,
  152. u32 ce_ctrl_addr,
  153. unsigned int n)
  154. {
  155. u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS);
  156. ath10k_pci_write32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS,
  157. (addr & ~SRC_WATERMARK_LOW_MASK) |
  158. SRC_WATERMARK_LOW_SET(n));
  159. }
  160. static inline void ath10k_ce_dest_ring_highmark_set(struct ath10k *ar,
  161. u32 ce_ctrl_addr,
  162. unsigned int n)
  163. {
  164. u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS);
  165. ath10k_pci_write32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS,
  166. (addr & ~DST_WATERMARK_HIGH_MASK) |
  167. DST_WATERMARK_HIGH_SET(n));
  168. }
  169. static inline void ath10k_ce_dest_ring_lowmark_set(struct ath10k *ar,
  170. u32 ce_ctrl_addr,
  171. unsigned int n)
  172. {
  173. u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS);
  174. ath10k_pci_write32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS,
  175. (addr & ~DST_WATERMARK_LOW_MASK) |
  176. DST_WATERMARK_LOW_SET(n));
  177. }
  178. static inline void ath10k_ce_copy_complete_inter_enable(struct ath10k *ar,
  179. u32 ce_ctrl_addr)
  180. {
  181. u32 host_ie_addr = ath10k_pci_read32(ar,
  182. ce_ctrl_addr + HOST_IE_ADDRESS);
  183. ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IE_ADDRESS,
  184. host_ie_addr | HOST_IE_COPY_COMPLETE_MASK);
  185. }
  186. static inline void ath10k_ce_copy_complete_intr_disable(struct ath10k *ar,
  187. u32 ce_ctrl_addr)
  188. {
  189. u32 host_ie_addr = ath10k_pci_read32(ar,
  190. ce_ctrl_addr + HOST_IE_ADDRESS);
  191. ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IE_ADDRESS,
  192. host_ie_addr & ~HOST_IE_COPY_COMPLETE_MASK);
  193. }
  194. static inline void ath10k_ce_watermark_intr_disable(struct ath10k *ar,
  195. u32 ce_ctrl_addr)
  196. {
  197. u32 host_ie_addr = ath10k_pci_read32(ar,
  198. ce_ctrl_addr + HOST_IE_ADDRESS);
  199. ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IE_ADDRESS,
  200. host_ie_addr & ~CE_WATERMARK_MASK);
  201. }
  202. static inline void ath10k_ce_error_intr_enable(struct ath10k *ar,
  203. u32 ce_ctrl_addr)
  204. {
  205. u32 misc_ie_addr = ath10k_pci_read32(ar,
  206. ce_ctrl_addr + MISC_IE_ADDRESS);
  207. ath10k_pci_write32(ar, ce_ctrl_addr + MISC_IE_ADDRESS,
  208. misc_ie_addr | CE_ERROR_MASK);
  209. }
  210. static inline void ath10k_ce_error_intr_disable(struct ath10k *ar,
  211. u32 ce_ctrl_addr)
  212. {
  213. u32 misc_ie_addr = ath10k_pci_read32(ar,
  214. ce_ctrl_addr + MISC_IE_ADDRESS);
  215. ath10k_pci_write32(ar, ce_ctrl_addr + MISC_IE_ADDRESS,
  216. misc_ie_addr & ~CE_ERROR_MASK);
  217. }
  218. static inline void ath10k_ce_engine_int_status_clear(struct ath10k *ar,
  219. u32 ce_ctrl_addr,
  220. unsigned int mask)
  221. {
  222. ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IS_ADDRESS, mask);
  223. }
  224. /*
  225. * Guts of ath10k_ce_send, used by both ath10k_ce_send and
  226. * ath10k_ce_sendlist_send.
  227. * The caller takes responsibility for any needed locking.
  228. */
  229. int ath10k_ce_send_nolock(struct ath10k_ce_pipe *ce_state,
  230. void *per_transfer_context,
  231. u32 buffer,
  232. unsigned int nbytes,
  233. unsigned int transfer_id,
  234. unsigned int flags)
  235. {
  236. struct ath10k *ar = ce_state->ar;
  237. struct ath10k_ce_ring *src_ring = ce_state->src_ring;
  238. struct ce_desc *desc, sdesc;
  239. unsigned int nentries_mask = src_ring->nentries_mask;
  240. unsigned int sw_index = src_ring->sw_index;
  241. unsigned int write_index = src_ring->write_index;
  242. u32 ctrl_addr = ce_state->ctrl_addr;
  243. u32 desc_flags = 0;
  244. int ret = 0;
  245. if (nbytes > ce_state->src_sz_max)
  246. ath10k_warn(ar, "%s: send more we can (nbytes: %d, max: %d)\n",
  247. __func__, nbytes, ce_state->src_sz_max);
  248. if (unlikely(CE_RING_DELTA(nentries_mask,
  249. write_index, sw_index - 1) <= 0)) {
  250. ret = -ENOSR;
  251. goto exit;
  252. }
  253. desc = CE_SRC_RING_TO_DESC(src_ring->base_addr_owner_space,
  254. write_index);
  255. desc_flags |= SM(transfer_id, CE_DESC_FLAGS_META_DATA);
  256. if (flags & CE_SEND_FLAG_GATHER)
  257. desc_flags |= CE_DESC_FLAGS_GATHER;
  258. if (flags & CE_SEND_FLAG_BYTE_SWAP)
  259. desc_flags |= CE_DESC_FLAGS_BYTE_SWAP;
  260. sdesc.addr = __cpu_to_le32(buffer);
  261. sdesc.nbytes = __cpu_to_le16(nbytes);
  262. sdesc.flags = __cpu_to_le16(desc_flags);
  263. *desc = sdesc;
  264. src_ring->per_transfer_context[write_index] = per_transfer_context;
  265. /* Update Source Ring Write Index */
  266. write_index = CE_RING_IDX_INCR(nentries_mask, write_index);
  267. /* WORKAROUND */
  268. if (!(flags & CE_SEND_FLAG_GATHER))
  269. ath10k_ce_src_ring_write_index_set(ar, ctrl_addr, write_index);
  270. src_ring->write_index = write_index;
  271. exit:
  272. return ret;
  273. }
  274. void __ath10k_ce_send_revert(struct ath10k_ce_pipe *pipe)
  275. {
  276. struct ath10k *ar = pipe->ar;
  277. struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
  278. struct ath10k_ce_ring *src_ring = pipe->src_ring;
  279. u32 ctrl_addr = pipe->ctrl_addr;
  280. lockdep_assert_held(&ar_pci->ce_lock);
  281. /*
  282. * This function must be called only if there is an incomplete
  283. * scatter-gather transfer (before index register is updated)
  284. * that needs to be cleaned up.
  285. */
  286. if (WARN_ON_ONCE(src_ring->write_index == src_ring->sw_index))
  287. return;
  288. if (WARN_ON_ONCE(src_ring->write_index ==
  289. ath10k_ce_src_ring_write_index_get(ar, ctrl_addr)))
  290. return;
  291. src_ring->write_index--;
  292. src_ring->write_index &= src_ring->nentries_mask;
  293. src_ring->per_transfer_context[src_ring->write_index] = NULL;
  294. }
  295. int ath10k_ce_send(struct ath10k_ce_pipe *ce_state,
  296. void *per_transfer_context,
  297. u32 buffer,
  298. unsigned int nbytes,
  299. unsigned int transfer_id,
  300. unsigned int flags)
  301. {
  302. struct ath10k *ar = ce_state->ar;
  303. struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
  304. int ret;
  305. spin_lock_bh(&ar_pci->ce_lock);
  306. ret = ath10k_ce_send_nolock(ce_state, per_transfer_context,
  307. buffer, nbytes, transfer_id, flags);
  308. spin_unlock_bh(&ar_pci->ce_lock);
  309. return ret;
  310. }
  311. int ath10k_ce_num_free_src_entries(struct ath10k_ce_pipe *pipe)
  312. {
  313. struct ath10k *ar = pipe->ar;
  314. struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
  315. int delta;
  316. spin_lock_bh(&ar_pci->ce_lock);
  317. delta = CE_RING_DELTA(pipe->src_ring->nentries_mask,
  318. pipe->src_ring->write_index,
  319. pipe->src_ring->sw_index - 1);
  320. spin_unlock_bh(&ar_pci->ce_lock);
  321. return delta;
  322. }
  323. int __ath10k_ce_rx_num_free_bufs(struct ath10k_ce_pipe *pipe)
  324. {
  325. struct ath10k *ar = pipe->ar;
  326. struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
  327. struct ath10k_ce_ring *dest_ring = pipe->dest_ring;
  328. unsigned int nentries_mask = dest_ring->nentries_mask;
  329. unsigned int write_index = dest_ring->write_index;
  330. unsigned int sw_index = dest_ring->sw_index;
  331. lockdep_assert_held(&ar_pci->ce_lock);
  332. return CE_RING_DELTA(nentries_mask, write_index, sw_index - 1);
  333. }
  334. int __ath10k_ce_rx_post_buf(struct ath10k_ce_pipe *pipe, void *ctx, u32 paddr)
  335. {
  336. struct ath10k *ar = pipe->ar;
  337. struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
  338. struct ath10k_ce_ring *dest_ring = pipe->dest_ring;
  339. unsigned int nentries_mask = dest_ring->nentries_mask;
  340. unsigned int write_index = dest_ring->write_index;
  341. unsigned int sw_index = dest_ring->sw_index;
  342. struct ce_desc *base = dest_ring->base_addr_owner_space;
  343. struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, write_index);
  344. u32 ctrl_addr = pipe->ctrl_addr;
  345. lockdep_assert_held(&ar_pci->ce_lock);
  346. if (CE_RING_DELTA(nentries_mask, write_index, sw_index - 1) == 0)
  347. return -ENOSPC;
  348. desc->addr = __cpu_to_le32(paddr);
  349. desc->nbytes = 0;
  350. dest_ring->per_transfer_context[write_index] = ctx;
  351. write_index = CE_RING_IDX_INCR(nentries_mask, write_index);
  352. ath10k_ce_dest_ring_write_index_set(ar, ctrl_addr, write_index);
  353. dest_ring->write_index = write_index;
  354. return 0;
  355. }
  356. int ath10k_ce_rx_post_buf(struct ath10k_ce_pipe *pipe, void *ctx, u32 paddr)
  357. {
  358. struct ath10k *ar = pipe->ar;
  359. struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
  360. int ret;
  361. spin_lock_bh(&ar_pci->ce_lock);
  362. ret = __ath10k_ce_rx_post_buf(pipe, ctx, paddr);
  363. spin_unlock_bh(&ar_pci->ce_lock);
  364. return ret;
  365. }
  366. /*
  367. * Guts of ath10k_ce_completed_recv_next.
  368. * The caller takes responsibility for any necessary locking.
  369. */
  370. int ath10k_ce_completed_recv_next_nolock(struct ath10k_ce_pipe *ce_state,
  371. void **per_transfer_contextp,
  372. u32 *bufferp,
  373. unsigned int *nbytesp,
  374. unsigned int *transfer_idp,
  375. unsigned int *flagsp)
  376. {
  377. struct ath10k_ce_ring *dest_ring = ce_state->dest_ring;
  378. unsigned int nentries_mask = dest_ring->nentries_mask;
  379. struct ath10k *ar = ce_state->ar;
  380. unsigned int sw_index = dest_ring->sw_index;
  381. struct ce_desc *base = dest_ring->base_addr_owner_space;
  382. struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, sw_index);
  383. struct ce_desc sdesc;
  384. u16 nbytes;
  385. /* Copy in one go for performance reasons */
  386. sdesc = *desc;
  387. nbytes = __le16_to_cpu(sdesc.nbytes);
  388. if (nbytes == 0) {
  389. /*
  390. * This closes a relatively unusual race where the Host
  391. * sees the updated DRRI before the update to the
  392. * corresponding descriptor has completed. We treat this
  393. * as a descriptor that is not yet done.
  394. */
  395. return -EIO;
  396. }
  397. desc->nbytes = 0;
  398. /* Return data from completed destination descriptor */
  399. *bufferp = __le32_to_cpu(sdesc.addr);
  400. *nbytesp = nbytes;
  401. *transfer_idp = MS(__le16_to_cpu(sdesc.flags), CE_DESC_FLAGS_META_DATA);
  402. if (__le16_to_cpu(sdesc.flags) & CE_DESC_FLAGS_BYTE_SWAP)
  403. *flagsp = CE_RECV_FLAG_SWAPPED;
  404. else
  405. *flagsp = 0;
  406. if (per_transfer_contextp)
  407. *per_transfer_contextp =
  408. dest_ring->per_transfer_context[sw_index];
  409. /* sanity */
  410. dest_ring->per_transfer_context[sw_index] = NULL;
  411. /* Update sw_index */
  412. sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
  413. dest_ring->sw_index = sw_index;
  414. return 0;
  415. }
  416. int ath10k_ce_completed_recv_next(struct ath10k_ce_pipe *ce_state,
  417. void **per_transfer_contextp,
  418. u32 *bufferp,
  419. unsigned int *nbytesp,
  420. unsigned int *transfer_idp,
  421. unsigned int *flagsp)
  422. {
  423. struct ath10k *ar = ce_state->ar;
  424. struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
  425. int ret;
  426. spin_lock_bh(&ar_pci->ce_lock);
  427. ret = ath10k_ce_completed_recv_next_nolock(ce_state,
  428. per_transfer_contextp,
  429. bufferp, nbytesp,
  430. transfer_idp, flagsp);
  431. spin_unlock_bh(&ar_pci->ce_lock);
  432. return ret;
  433. }
  434. int ath10k_ce_revoke_recv_next(struct ath10k_ce_pipe *ce_state,
  435. void **per_transfer_contextp,
  436. u32 *bufferp)
  437. {
  438. struct ath10k_ce_ring *dest_ring;
  439. unsigned int nentries_mask;
  440. unsigned int sw_index;
  441. unsigned int write_index;
  442. int ret;
  443. struct ath10k *ar;
  444. struct ath10k_pci *ar_pci;
  445. dest_ring = ce_state->dest_ring;
  446. if (!dest_ring)
  447. return -EIO;
  448. ar = ce_state->ar;
  449. ar_pci = ath10k_pci_priv(ar);
  450. spin_lock_bh(&ar_pci->ce_lock);
  451. nentries_mask = dest_ring->nentries_mask;
  452. sw_index = dest_ring->sw_index;
  453. write_index = dest_ring->write_index;
  454. if (write_index != sw_index) {
  455. struct ce_desc *base = dest_ring->base_addr_owner_space;
  456. struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, sw_index);
  457. /* Return data from completed destination descriptor */
  458. *bufferp = __le32_to_cpu(desc->addr);
  459. if (per_transfer_contextp)
  460. *per_transfer_contextp =
  461. dest_ring->per_transfer_context[sw_index];
  462. /* sanity */
  463. dest_ring->per_transfer_context[sw_index] = NULL;
  464. desc->nbytes = 0;
  465. /* Update sw_index */
  466. sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
  467. dest_ring->sw_index = sw_index;
  468. ret = 0;
  469. } else {
  470. ret = -EIO;
  471. }
  472. spin_unlock_bh(&ar_pci->ce_lock);
  473. return ret;
  474. }
  475. /*
  476. * Guts of ath10k_ce_completed_send_next.
  477. * The caller takes responsibility for any necessary locking.
  478. */
  479. int ath10k_ce_completed_send_next_nolock(struct ath10k_ce_pipe *ce_state,
  480. void **per_transfer_contextp)
  481. {
  482. struct ath10k_ce_ring *src_ring = ce_state->src_ring;
  483. u32 ctrl_addr = ce_state->ctrl_addr;
  484. struct ath10k *ar = ce_state->ar;
  485. unsigned int nentries_mask = src_ring->nentries_mask;
  486. unsigned int sw_index = src_ring->sw_index;
  487. unsigned int read_index;
  488. if (src_ring->hw_index == sw_index) {
  489. /*
  490. * The SW completion index has caught up with the cached
  491. * version of the HW completion index.
  492. * Update the cached HW completion index to see whether
  493. * the SW has really caught up to the HW, or if the cached
  494. * value of the HW index has become stale.
  495. */
  496. read_index = ath10k_ce_src_ring_read_index_get(ar, ctrl_addr);
  497. if (read_index == 0xffffffff)
  498. return -ENODEV;
  499. read_index &= nentries_mask;
  500. src_ring->hw_index = read_index;
  501. }
  502. read_index = src_ring->hw_index;
  503. if (read_index == sw_index)
  504. return -EIO;
  505. if (per_transfer_contextp)
  506. *per_transfer_contextp =
  507. src_ring->per_transfer_context[sw_index];
  508. /* sanity */
  509. src_ring->per_transfer_context[sw_index] = NULL;
  510. /* Update sw_index */
  511. sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
  512. src_ring->sw_index = sw_index;
  513. return 0;
  514. }
  515. /* NB: Modeled after ath10k_ce_completed_send_next */
  516. int ath10k_ce_cancel_send_next(struct ath10k_ce_pipe *ce_state,
  517. void **per_transfer_contextp,
  518. u32 *bufferp,
  519. unsigned int *nbytesp,
  520. unsigned int *transfer_idp)
  521. {
  522. struct ath10k_ce_ring *src_ring;
  523. unsigned int nentries_mask;
  524. unsigned int sw_index;
  525. unsigned int write_index;
  526. int ret;
  527. struct ath10k *ar;
  528. struct ath10k_pci *ar_pci;
  529. src_ring = ce_state->src_ring;
  530. if (!src_ring)
  531. return -EIO;
  532. ar = ce_state->ar;
  533. ar_pci = ath10k_pci_priv(ar);
  534. spin_lock_bh(&ar_pci->ce_lock);
  535. nentries_mask = src_ring->nentries_mask;
  536. sw_index = src_ring->sw_index;
  537. write_index = src_ring->write_index;
  538. if (write_index != sw_index) {
  539. struct ce_desc *base = src_ring->base_addr_owner_space;
  540. struct ce_desc *desc = CE_SRC_RING_TO_DESC(base, sw_index);
  541. /* Return data from completed source descriptor */
  542. *bufferp = __le32_to_cpu(desc->addr);
  543. *nbytesp = __le16_to_cpu(desc->nbytes);
  544. *transfer_idp = MS(__le16_to_cpu(desc->flags),
  545. CE_DESC_FLAGS_META_DATA);
  546. if (per_transfer_contextp)
  547. *per_transfer_contextp =
  548. src_ring->per_transfer_context[sw_index];
  549. /* sanity */
  550. src_ring->per_transfer_context[sw_index] = NULL;
  551. /* Update sw_index */
  552. sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
  553. src_ring->sw_index = sw_index;
  554. ret = 0;
  555. } else {
  556. ret = -EIO;
  557. }
  558. spin_unlock_bh(&ar_pci->ce_lock);
  559. return ret;
  560. }
  561. int ath10k_ce_completed_send_next(struct ath10k_ce_pipe *ce_state,
  562. void **per_transfer_contextp)
  563. {
  564. struct ath10k *ar = ce_state->ar;
  565. struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
  566. int ret;
  567. spin_lock_bh(&ar_pci->ce_lock);
  568. ret = ath10k_ce_completed_send_next_nolock(ce_state,
  569. per_transfer_contextp);
  570. spin_unlock_bh(&ar_pci->ce_lock);
  571. return ret;
  572. }
  573. /*
  574. * Guts of interrupt handler for per-engine interrupts on a particular CE.
  575. *
  576. * Invokes registered callbacks for recv_complete,
  577. * send_complete, and watermarks.
  578. */
  579. void ath10k_ce_per_engine_service(struct ath10k *ar, unsigned int ce_id)
  580. {
  581. struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
  582. struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
  583. u32 ctrl_addr = ce_state->ctrl_addr;
  584. spin_lock_bh(&ar_pci->ce_lock);
  585. /* Clear the copy-complete interrupts that will be handled here. */
  586. ath10k_ce_engine_int_status_clear(ar, ctrl_addr,
  587. HOST_IS_COPY_COMPLETE_MASK);
  588. spin_unlock_bh(&ar_pci->ce_lock);
  589. if (ce_state->recv_cb)
  590. ce_state->recv_cb(ce_state);
  591. if (ce_state->send_cb)
  592. ce_state->send_cb(ce_state);
  593. spin_lock_bh(&ar_pci->ce_lock);
  594. /*
  595. * Misc CE interrupts are not being handled, but still need
  596. * to be cleared.
  597. */
  598. ath10k_ce_engine_int_status_clear(ar, ctrl_addr, CE_WATERMARK_MASK);
  599. spin_unlock_bh(&ar_pci->ce_lock);
  600. }
  601. /*
  602. * Handler for per-engine interrupts on ALL active CEs.
  603. * This is used in cases where the system is sharing a
  604. * single interrput for all CEs
  605. */
  606. void ath10k_ce_per_engine_service_any(struct ath10k *ar)
  607. {
  608. int ce_id;
  609. u32 intr_summary;
  610. intr_summary = CE_INTERRUPT_SUMMARY(ar);
  611. for (ce_id = 0; intr_summary && (ce_id < CE_COUNT); ce_id++) {
  612. if (intr_summary & (1 << ce_id))
  613. intr_summary &= ~(1 << ce_id);
  614. else
  615. /* no intr pending on this CE */
  616. continue;
  617. ath10k_ce_per_engine_service(ar, ce_id);
  618. }
  619. }
  620. /*
  621. * Adjust interrupts for the copy complete handler.
  622. * If it's needed for either send or recv, then unmask
  623. * this interrupt; otherwise, mask it.
  624. *
  625. * Called with ce_lock held.
  626. */
  627. static void ath10k_ce_per_engine_handler_adjust(struct ath10k_ce_pipe *ce_state)
  628. {
  629. u32 ctrl_addr = ce_state->ctrl_addr;
  630. struct ath10k *ar = ce_state->ar;
  631. bool disable_copy_compl_intr = ce_state->attr_flags & CE_ATTR_DIS_INTR;
  632. if ((!disable_copy_compl_intr) &&
  633. (ce_state->send_cb || ce_state->recv_cb))
  634. ath10k_ce_copy_complete_inter_enable(ar, ctrl_addr);
  635. else
  636. ath10k_ce_copy_complete_intr_disable(ar, ctrl_addr);
  637. ath10k_ce_watermark_intr_disable(ar, ctrl_addr);
  638. }
  639. int ath10k_ce_disable_interrupts(struct ath10k *ar)
  640. {
  641. int ce_id;
  642. for (ce_id = 0; ce_id < CE_COUNT; ce_id++) {
  643. u32 ctrl_addr = ath10k_ce_base_address(ar, ce_id);
  644. ath10k_ce_copy_complete_intr_disable(ar, ctrl_addr);
  645. ath10k_ce_error_intr_disable(ar, ctrl_addr);
  646. ath10k_ce_watermark_intr_disable(ar, ctrl_addr);
  647. }
  648. return 0;
  649. }
  650. void ath10k_ce_enable_interrupts(struct ath10k *ar)
  651. {
  652. struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
  653. int ce_id;
  654. /* Skip the last copy engine, CE7 the diagnostic window, as that
  655. * uses polling and isn't initialized for interrupts.
  656. */
  657. for (ce_id = 0; ce_id < CE_COUNT - 1; ce_id++)
  658. ath10k_ce_per_engine_handler_adjust(&ar_pci->ce_states[ce_id]);
  659. }
  660. static int ath10k_ce_init_src_ring(struct ath10k *ar,
  661. unsigned int ce_id,
  662. const struct ce_attr *attr)
  663. {
  664. struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
  665. struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
  666. struct ath10k_ce_ring *src_ring = ce_state->src_ring;
  667. u32 nentries, ctrl_addr = ath10k_ce_base_address(ar, ce_id);
  668. nentries = roundup_pow_of_two(attr->src_nentries);
  669. memset(src_ring->base_addr_owner_space, 0,
  670. nentries * sizeof(struct ce_desc));
  671. src_ring->sw_index = ath10k_ce_src_ring_read_index_get(ar, ctrl_addr);
  672. src_ring->sw_index &= src_ring->nentries_mask;
  673. src_ring->hw_index = src_ring->sw_index;
  674. src_ring->write_index =
  675. ath10k_ce_src_ring_write_index_get(ar, ctrl_addr);
  676. src_ring->write_index &= src_ring->nentries_mask;
  677. ath10k_ce_src_ring_base_addr_set(ar, ctrl_addr,
  678. src_ring->base_addr_ce_space);
  679. ath10k_ce_src_ring_size_set(ar, ctrl_addr, nentries);
  680. ath10k_ce_src_ring_dmax_set(ar, ctrl_addr, attr->src_sz_max);
  681. ath10k_ce_src_ring_byte_swap_set(ar, ctrl_addr, 0);
  682. ath10k_ce_src_ring_lowmark_set(ar, ctrl_addr, 0);
  683. ath10k_ce_src_ring_highmark_set(ar, ctrl_addr, nentries);
  684. ath10k_dbg(ar, ATH10K_DBG_BOOT,
  685. "boot init ce src ring id %d entries %d base_addr %p\n",
  686. ce_id, nentries, src_ring->base_addr_owner_space);
  687. return 0;
  688. }
  689. static int ath10k_ce_init_dest_ring(struct ath10k *ar,
  690. unsigned int ce_id,
  691. const struct ce_attr *attr)
  692. {
  693. struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
  694. struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
  695. struct ath10k_ce_ring *dest_ring = ce_state->dest_ring;
  696. u32 nentries, ctrl_addr = ath10k_ce_base_address(ar, ce_id);
  697. nentries = roundup_pow_of_two(attr->dest_nentries);
  698. memset(dest_ring->base_addr_owner_space, 0,
  699. nentries * sizeof(struct ce_desc));
  700. dest_ring->sw_index = ath10k_ce_dest_ring_read_index_get(ar, ctrl_addr);
  701. dest_ring->sw_index &= dest_ring->nentries_mask;
  702. dest_ring->write_index =
  703. ath10k_ce_dest_ring_write_index_get(ar, ctrl_addr);
  704. dest_ring->write_index &= dest_ring->nentries_mask;
  705. ath10k_ce_dest_ring_base_addr_set(ar, ctrl_addr,
  706. dest_ring->base_addr_ce_space);
  707. ath10k_ce_dest_ring_size_set(ar, ctrl_addr, nentries);
  708. ath10k_ce_dest_ring_byte_swap_set(ar, ctrl_addr, 0);
  709. ath10k_ce_dest_ring_lowmark_set(ar, ctrl_addr, 0);
  710. ath10k_ce_dest_ring_highmark_set(ar, ctrl_addr, nentries);
  711. ath10k_dbg(ar, ATH10K_DBG_BOOT,
  712. "boot ce dest ring id %d entries %d base_addr %p\n",
  713. ce_id, nentries, dest_ring->base_addr_owner_space);
  714. return 0;
  715. }
  716. static struct ath10k_ce_ring *
  717. ath10k_ce_alloc_src_ring(struct ath10k *ar, unsigned int ce_id,
  718. const struct ce_attr *attr)
  719. {
  720. struct ath10k_ce_ring *src_ring;
  721. u32 nentries = attr->src_nentries;
  722. dma_addr_t base_addr;
  723. nentries = roundup_pow_of_two(nentries);
  724. src_ring = kzalloc(sizeof(*src_ring) +
  725. (nentries *
  726. sizeof(*src_ring->per_transfer_context)),
  727. GFP_KERNEL);
  728. if (src_ring == NULL)
  729. return ERR_PTR(-ENOMEM);
  730. src_ring->nentries = nentries;
  731. src_ring->nentries_mask = nentries - 1;
  732. /*
  733. * Legacy platforms that do not support cache
  734. * coherent DMA are unsupported
  735. */
  736. src_ring->base_addr_owner_space_unaligned =
  737. dma_alloc_coherent(ar->dev,
  738. (nentries * sizeof(struct ce_desc) +
  739. CE_DESC_RING_ALIGN),
  740. &base_addr, GFP_KERNEL);
  741. if (!src_ring->base_addr_owner_space_unaligned) {
  742. kfree(src_ring);
  743. return ERR_PTR(-ENOMEM);
  744. }
  745. src_ring->base_addr_ce_space_unaligned = base_addr;
  746. src_ring->base_addr_owner_space = PTR_ALIGN(
  747. src_ring->base_addr_owner_space_unaligned,
  748. CE_DESC_RING_ALIGN);
  749. src_ring->base_addr_ce_space = ALIGN(
  750. src_ring->base_addr_ce_space_unaligned,
  751. CE_DESC_RING_ALIGN);
  752. return src_ring;
  753. }
  754. static struct ath10k_ce_ring *
  755. ath10k_ce_alloc_dest_ring(struct ath10k *ar, unsigned int ce_id,
  756. const struct ce_attr *attr)
  757. {
  758. struct ath10k_ce_ring *dest_ring;
  759. u32 nentries;
  760. dma_addr_t base_addr;
  761. nentries = roundup_pow_of_two(attr->dest_nentries);
  762. dest_ring = kzalloc(sizeof(*dest_ring) +
  763. (nentries *
  764. sizeof(*dest_ring->per_transfer_context)),
  765. GFP_KERNEL);
  766. if (dest_ring == NULL)
  767. return ERR_PTR(-ENOMEM);
  768. dest_ring->nentries = nentries;
  769. dest_ring->nentries_mask = nentries - 1;
  770. /*
  771. * Legacy platforms that do not support cache
  772. * coherent DMA are unsupported
  773. */
  774. dest_ring->base_addr_owner_space_unaligned =
  775. dma_alloc_coherent(ar->dev,
  776. (nentries * sizeof(struct ce_desc) +
  777. CE_DESC_RING_ALIGN),
  778. &base_addr, GFP_KERNEL);
  779. if (!dest_ring->base_addr_owner_space_unaligned) {
  780. kfree(dest_ring);
  781. return ERR_PTR(-ENOMEM);
  782. }
  783. dest_ring->base_addr_ce_space_unaligned = base_addr;
  784. /*
  785. * Correctly initialize memory to 0 to prevent garbage
  786. * data crashing system when download firmware
  787. */
  788. memset(dest_ring->base_addr_owner_space_unaligned, 0,
  789. nentries * sizeof(struct ce_desc) + CE_DESC_RING_ALIGN);
  790. dest_ring->base_addr_owner_space = PTR_ALIGN(
  791. dest_ring->base_addr_owner_space_unaligned,
  792. CE_DESC_RING_ALIGN);
  793. dest_ring->base_addr_ce_space = ALIGN(
  794. dest_ring->base_addr_ce_space_unaligned,
  795. CE_DESC_RING_ALIGN);
  796. return dest_ring;
  797. }
  798. /*
  799. * Initialize a Copy Engine based on caller-supplied attributes.
  800. * This may be called once to initialize both source and destination
  801. * rings or it may be called twice for separate source and destination
  802. * initialization. It may be that only one side or the other is
  803. * initialized by software/firmware.
  804. */
  805. int ath10k_ce_init_pipe(struct ath10k *ar, unsigned int ce_id,
  806. const struct ce_attr *attr)
  807. {
  808. int ret;
  809. if (attr->src_nentries) {
  810. ret = ath10k_ce_init_src_ring(ar, ce_id, attr);
  811. if (ret) {
  812. ath10k_err(ar, "Failed to initialize CE src ring for ID: %d (%d)\n",
  813. ce_id, ret);
  814. return ret;
  815. }
  816. }
  817. if (attr->dest_nentries) {
  818. ret = ath10k_ce_init_dest_ring(ar, ce_id, attr);
  819. if (ret) {
  820. ath10k_err(ar, "Failed to initialize CE dest ring for ID: %d (%d)\n",
  821. ce_id, ret);
  822. return ret;
  823. }
  824. }
  825. return 0;
  826. }
  827. static void ath10k_ce_deinit_src_ring(struct ath10k *ar, unsigned int ce_id)
  828. {
  829. u32 ctrl_addr = ath10k_ce_base_address(ar, ce_id);
  830. ath10k_ce_src_ring_base_addr_set(ar, ctrl_addr, 0);
  831. ath10k_ce_src_ring_size_set(ar, ctrl_addr, 0);
  832. ath10k_ce_src_ring_dmax_set(ar, ctrl_addr, 0);
  833. ath10k_ce_src_ring_highmark_set(ar, ctrl_addr, 0);
  834. }
  835. static void ath10k_ce_deinit_dest_ring(struct ath10k *ar, unsigned int ce_id)
  836. {
  837. u32 ctrl_addr = ath10k_ce_base_address(ar, ce_id);
  838. ath10k_ce_dest_ring_base_addr_set(ar, ctrl_addr, 0);
  839. ath10k_ce_dest_ring_size_set(ar, ctrl_addr, 0);
  840. ath10k_ce_dest_ring_highmark_set(ar, ctrl_addr, 0);
  841. }
  842. void ath10k_ce_deinit_pipe(struct ath10k *ar, unsigned int ce_id)
  843. {
  844. ath10k_ce_deinit_src_ring(ar, ce_id);
  845. ath10k_ce_deinit_dest_ring(ar, ce_id);
  846. }
  847. int ath10k_ce_alloc_pipe(struct ath10k *ar, int ce_id,
  848. const struct ce_attr *attr)
  849. {
  850. struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
  851. struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
  852. int ret;
  853. /*
  854. * Make sure there's enough CE ringbuffer entries for HTT TX to avoid
  855. * additional TX locking checks.
  856. *
  857. * For the lack of a better place do the check here.
  858. */
  859. BUILD_BUG_ON(2*TARGET_NUM_MSDU_DESC >
  860. (CE_HTT_H2T_MSG_SRC_NENTRIES - 1));
  861. BUILD_BUG_ON(2*TARGET_10X_NUM_MSDU_DESC >
  862. (CE_HTT_H2T_MSG_SRC_NENTRIES - 1));
  863. BUILD_BUG_ON(2*TARGET_TLV_NUM_MSDU_DESC >
  864. (CE_HTT_H2T_MSG_SRC_NENTRIES - 1));
  865. ce_state->ar = ar;
  866. ce_state->id = ce_id;
  867. ce_state->ctrl_addr = ath10k_ce_base_address(ar, ce_id);
  868. ce_state->attr_flags = attr->flags;
  869. ce_state->src_sz_max = attr->src_sz_max;
  870. if (attr->src_nentries)
  871. ce_state->send_cb = attr->send_cb;
  872. if (attr->dest_nentries)
  873. ce_state->recv_cb = attr->recv_cb;
  874. if (attr->src_nentries) {
  875. ce_state->src_ring = ath10k_ce_alloc_src_ring(ar, ce_id, attr);
  876. if (IS_ERR(ce_state->src_ring)) {
  877. ret = PTR_ERR(ce_state->src_ring);
  878. ath10k_err(ar, "failed to allocate copy engine source ring %d: %d\n",
  879. ce_id, ret);
  880. ce_state->src_ring = NULL;
  881. return ret;
  882. }
  883. }
  884. if (attr->dest_nentries) {
  885. ce_state->dest_ring = ath10k_ce_alloc_dest_ring(ar, ce_id,
  886. attr);
  887. if (IS_ERR(ce_state->dest_ring)) {
  888. ret = PTR_ERR(ce_state->dest_ring);
  889. ath10k_err(ar, "failed to allocate copy engine destination ring %d: %d\n",
  890. ce_id, ret);
  891. ce_state->dest_ring = NULL;
  892. return ret;
  893. }
  894. }
  895. return 0;
  896. }
  897. void ath10k_ce_free_pipe(struct ath10k *ar, int ce_id)
  898. {
  899. struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
  900. struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
  901. if (ce_state->src_ring) {
  902. dma_free_coherent(ar->dev,
  903. (ce_state->src_ring->nentries *
  904. sizeof(struct ce_desc) +
  905. CE_DESC_RING_ALIGN),
  906. ce_state->src_ring->base_addr_owner_space,
  907. ce_state->src_ring->base_addr_ce_space);
  908. kfree(ce_state->src_ring);
  909. }
  910. if (ce_state->dest_ring) {
  911. dma_free_coherent(ar->dev,
  912. (ce_state->dest_ring->nentries *
  913. sizeof(struct ce_desc) +
  914. CE_DESC_RING_ALIGN),
  915. ce_state->dest_ring->base_addr_owner_space,
  916. ce_state->dest_ring->base_addr_ce_space);
  917. kfree(ce_state->dest_ring);
  918. }
  919. ce_state->src_ring = NULL;
  920. ce_state->dest_ring = NULL;
  921. }