rt2500pci.c 65 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148
  1. /*
  2. Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
  3. <http://rt2x00.serialmonkey.com>
  4. This program is free software; you can redistribute it and/or modify
  5. it under the terms of the GNU General Public License as published by
  6. the Free Software Foundation; either version 2 of the License, or
  7. (at your option) any later version.
  8. This program is distributed in the hope that it will be useful,
  9. but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. GNU General Public License for more details.
  12. You should have received a copy of the GNU General Public License
  13. along with this program; if not, see <http://www.gnu.org/licenses/>.
  14. */
  15. /*
  16. Module: rt2500pci
  17. Abstract: rt2500pci device specific routines.
  18. Supported chipsets: RT2560.
  19. */
  20. #include <linux/delay.h>
  21. #include <linux/etherdevice.h>
  22. #include <linux/kernel.h>
  23. #include <linux/module.h>
  24. #include <linux/pci.h>
  25. #include <linux/eeprom_93cx6.h>
  26. #include <linux/slab.h>
  27. #include "rt2x00.h"
  28. #include "rt2x00mmio.h"
  29. #include "rt2x00pci.h"
  30. #include "rt2500pci.h"
  31. /*
  32. * Register access.
  33. * All access to the CSR registers will go through the methods
  34. * rt2x00mmio_register_read and rt2x00mmio_register_write.
  35. * BBP and RF register require indirect register access,
  36. * and use the CSR registers BBPCSR and RFCSR to achieve this.
  37. * These indirect registers work with busy bits,
  38. * and we will try maximal REGISTER_BUSY_COUNT times to access
  39. * the register while taking a REGISTER_BUSY_DELAY us delay
  40. * between each attampt. When the busy bit is still set at that time,
  41. * the access attempt is considered to have failed,
  42. * and we will print an error.
  43. */
  44. #define WAIT_FOR_BBP(__dev, __reg) \
  45. rt2x00mmio_regbusy_read((__dev), BBPCSR, BBPCSR_BUSY, (__reg))
  46. #define WAIT_FOR_RF(__dev, __reg) \
  47. rt2x00mmio_regbusy_read((__dev), RFCSR, RFCSR_BUSY, (__reg))
  48. static void rt2500pci_bbp_write(struct rt2x00_dev *rt2x00dev,
  49. const unsigned int word, const u8 value)
  50. {
  51. u32 reg;
  52. mutex_lock(&rt2x00dev->csr_mutex);
  53. /*
  54. * Wait until the BBP becomes available, afterwards we
  55. * can safely write the new data into the register.
  56. */
  57. if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
  58. reg = 0;
  59. rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
  60. rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
  61. rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
  62. rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
  63. rt2x00mmio_register_write(rt2x00dev, BBPCSR, reg);
  64. }
  65. mutex_unlock(&rt2x00dev->csr_mutex);
  66. }
  67. static void rt2500pci_bbp_read(struct rt2x00_dev *rt2x00dev,
  68. const unsigned int word, u8 *value)
  69. {
  70. u32 reg;
  71. mutex_lock(&rt2x00dev->csr_mutex);
  72. /*
  73. * Wait until the BBP becomes available, afterwards we
  74. * can safely write the read request into the register.
  75. * After the data has been written, we wait until hardware
  76. * returns the correct value, if at any time the register
  77. * doesn't become available in time, reg will be 0xffffffff
  78. * which means we return 0xff to the caller.
  79. */
  80. if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
  81. reg = 0;
  82. rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
  83. rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
  84. rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
  85. rt2x00mmio_register_write(rt2x00dev, BBPCSR, reg);
  86. WAIT_FOR_BBP(rt2x00dev, &reg);
  87. }
  88. *value = rt2x00_get_field32(reg, BBPCSR_VALUE);
  89. mutex_unlock(&rt2x00dev->csr_mutex);
  90. }
  91. static void rt2500pci_rf_write(struct rt2x00_dev *rt2x00dev,
  92. const unsigned int word, const u32 value)
  93. {
  94. u32 reg;
  95. mutex_lock(&rt2x00dev->csr_mutex);
  96. /*
  97. * Wait until the RF becomes available, afterwards we
  98. * can safely write the new data into the register.
  99. */
  100. if (WAIT_FOR_RF(rt2x00dev, &reg)) {
  101. reg = 0;
  102. rt2x00_set_field32(&reg, RFCSR_VALUE, value);
  103. rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
  104. rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
  105. rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
  106. rt2x00mmio_register_write(rt2x00dev, RFCSR, reg);
  107. rt2x00_rf_write(rt2x00dev, word, value);
  108. }
  109. mutex_unlock(&rt2x00dev->csr_mutex);
  110. }
  111. static void rt2500pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
  112. {
  113. struct rt2x00_dev *rt2x00dev = eeprom->data;
  114. u32 reg;
  115. rt2x00mmio_register_read(rt2x00dev, CSR21, &reg);
  116. eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
  117. eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
  118. eeprom->reg_data_clock =
  119. !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
  120. eeprom->reg_chip_select =
  121. !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
  122. }
  123. static void rt2500pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
  124. {
  125. struct rt2x00_dev *rt2x00dev = eeprom->data;
  126. u32 reg = 0;
  127. rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
  128. rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
  129. rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
  130. !!eeprom->reg_data_clock);
  131. rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
  132. !!eeprom->reg_chip_select);
  133. rt2x00mmio_register_write(rt2x00dev, CSR21, reg);
  134. }
  135. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  136. static const struct rt2x00debug rt2500pci_rt2x00debug = {
  137. .owner = THIS_MODULE,
  138. .csr = {
  139. .read = rt2x00mmio_register_read,
  140. .write = rt2x00mmio_register_write,
  141. .flags = RT2X00DEBUGFS_OFFSET,
  142. .word_base = CSR_REG_BASE,
  143. .word_size = sizeof(u32),
  144. .word_count = CSR_REG_SIZE / sizeof(u32),
  145. },
  146. .eeprom = {
  147. .read = rt2x00_eeprom_read,
  148. .write = rt2x00_eeprom_write,
  149. .word_base = EEPROM_BASE,
  150. .word_size = sizeof(u16),
  151. .word_count = EEPROM_SIZE / sizeof(u16),
  152. },
  153. .bbp = {
  154. .read = rt2500pci_bbp_read,
  155. .write = rt2500pci_bbp_write,
  156. .word_base = BBP_BASE,
  157. .word_size = sizeof(u8),
  158. .word_count = BBP_SIZE / sizeof(u8),
  159. },
  160. .rf = {
  161. .read = rt2x00_rf_read,
  162. .write = rt2500pci_rf_write,
  163. .word_base = RF_BASE,
  164. .word_size = sizeof(u32),
  165. .word_count = RF_SIZE / sizeof(u32),
  166. },
  167. };
  168. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  169. static int rt2500pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
  170. {
  171. u32 reg;
  172. rt2x00mmio_register_read(rt2x00dev, GPIOCSR, &reg);
  173. return rt2x00_get_field32(reg, GPIOCSR_VAL0);
  174. }
  175. #ifdef CONFIG_RT2X00_LIB_LEDS
  176. static void rt2500pci_brightness_set(struct led_classdev *led_cdev,
  177. enum led_brightness brightness)
  178. {
  179. struct rt2x00_led *led =
  180. container_of(led_cdev, struct rt2x00_led, led_dev);
  181. unsigned int enabled = brightness != LED_OFF;
  182. u32 reg;
  183. rt2x00mmio_register_read(led->rt2x00dev, LEDCSR, &reg);
  184. if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
  185. rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
  186. else if (led->type == LED_TYPE_ACTIVITY)
  187. rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled);
  188. rt2x00mmio_register_write(led->rt2x00dev, LEDCSR, reg);
  189. }
  190. static int rt2500pci_blink_set(struct led_classdev *led_cdev,
  191. unsigned long *delay_on,
  192. unsigned long *delay_off)
  193. {
  194. struct rt2x00_led *led =
  195. container_of(led_cdev, struct rt2x00_led, led_dev);
  196. u32 reg;
  197. rt2x00mmio_register_read(led->rt2x00dev, LEDCSR, &reg);
  198. rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, *delay_on);
  199. rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, *delay_off);
  200. rt2x00mmio_register_write(led->rt2x00dev, LEDCSR, reg);
  201. return 0;
  202. }
  203. static void rt2500pci_init_led(struct rt2x00_dev *rt2x00dev,
  204. struct rt2x00_led *led,
  205. enum led_type type)
  206. {
  207. led->rt2x00dev = rt2x00dev;
  208. led->type = type;
  209. led->led_dev.brightness_set = rt2500pci_brightness_set;
  210. led->led_dev.blink_set = rt2500pci_blink_set;
  211. led->flags = LED_INITIALIZED;
  212. }
  213. #endif /* CONFIG_RT2X00_LIB_LEDS */
  214. /*
  215. * Configuration handlers.
  216. */
  217. static void rt2500pci_config_filter(struct rt2x00_dev *rt2x00dev,
  218. const unsigned int filter_flags)
  219. {
  220. u32 reg;
  221. /*
  222. * Start configuration steps.
  223. * Note that the version error will always be dropped
  224. * and broadcast frames will always be accepted since
  225. * there is no filter for it at this time.
  226. */
  227. rt2x00mmio_register_read(rt2x00dev, RXCSR0, &reg);
  228. rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
  229. !(filter_flags & FIF_FCSFAIL));
  230. rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
  231. !(filter_flags & FIF_PLCPFAIL));
  232. rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
  233. !(filter_flags & FIF_CONTROL));
  234. rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME, 1);
  235. rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
  236. !rt2x00dev->intf_ap_count);
  237. rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
  238. rt2x00_set_field32(&reg, RXCSR0_DROP_MCAST,
  239. !(filter_flags & FIF_ALLMULTI));
  240. rt2x00_set_field32(&reg, RXCSR0_DROP_BCAST, 0);
  241. rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
  242. }
  243. static void rt2500pci_config_intf(struct rt2x00_dev *rt2x00dev,
  244. struct rt2x00_intf *intf,
  245. struct rt2x00intf_conf *conf,
  246. const unsigned int flags)
  247. {
  248. struct data_queue *queue = rt2x00dev->bcn;
  249. unsigned int bcn_preload;
  250. u32 reg;
  251. if (flags & CONFIG_UPDATE_TYPE) {
  252. /*
  253. * Enable beacon config
  254. */
  255. bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
  256. rt2x00mmio_register_read(rt2x00dev, BCNCSR1, &reg);
  257. rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
  258. rt2x00_set_field32(&reg, BCNCSR1_BEACON_CWMIN, queue->cw_min);
  259. rt2x00mmio_register_write(rt2x00dev, BCNCSR1, reg);
  260. /*
  261. * Enable synchronisation.
  262. */
  263. rt2x00mmio_register_read(rt2x00dev, CSR14, &reg);
  264. rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
  265. rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
  266. }
  267. if (flags & CONFIG_UPDATE_MAC)
  268. rt2x00mmio_register_multiwrite(rt2x00dev, CSR3,
  269. conf->mac, sizeof(conf->mac));
  270. if (flags & CONFIG_UPDATE_BSSID)
  271. rt2x00mmio_register_multiwrite(rt2x00dev, CSR5,
  272. conf->bssid, sizeof(conf->bssid));
  273. }
  274. static void rt2500pci_config_erp(struct rt2x00_dev *rt2x00dev,
  275. struct rt2x00lib_erp *erp,
  276. u32 changed)
  277. {
  278. int preamble_mask;
  279. u32 reg;
  280. /*
  281. * When short preamble is enabled, we should set bit 0x08
  282. */
  283. if (changed & BSS_CHANGED_ERP_PREAMBLE) {
  284. preamble_mask = erp->short_preamble << 3;
  285. rt2x00mmio_register_read(rt2x00dev, TXCSR1, &reg);
  286. rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT, 0x162);
  287. rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME, 0xa2);
  288. rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
  289. rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
  290. rt2x00mmio_register_write(rt2x00dev, TXCSR1, reg);
  291. rt2x00mmio_register_read(rt2x00dev, ARCSR2, &reg);
  292. rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00);
  293. rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
  294. rt2x00_set_field32(&reg, ARCSR2_LENGTH,
  295. GET_DURATION(ACK_SIZE, 10));
  296. rt2x00mmio_register_write(rt2x00dev, ARCSR2, reg);
  297. rt2x00mmio_register_read(rt2x00dev, ARCSR3, &reg);
  298. rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
  299. rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
  300. rt2x00_set_field32(&reg, ARCSR2_LENGTH,
  301. GET_DURATION(ACK_SIZE, 20));
  302. rt2x00mmio_register_write(rt2x00dev, ARCSR3, reg);
  303. rt2x00mmio_register_read(rt2x00dev, ARCSR4, &reg);
  304. rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
  305. rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
  306. rt2x00_set_field32(&reg, ARCSR2_LENGTH,
  307. GET_DURATION(ACK_SIZE, 55));
  308. rt2x00mmio_register_write(rt2x00dev, ARCSR4, reg);
  309. rt2x00mmio_register_read(rt2x00dev, ARCSR5, &reg);
  310. rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
  311. rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
  312. rt2x00_set_field32(&reg, ARCSR2_LENGTH,
  313. GET_DURATION(ACK_SIZE, 110));
  314. rt2x00mmio_register_write(rt2x00dev, ARCSR5, reg);
  315. }
  316. if (changed & BSS_CHANGED_BASIC_RATES)
  317. rt2x00mmio_register_write(rt2x00dev, ARCSR1, erp->basic_rates);
  318. if (changed & BSS_CHANGED_ERP_SLOT) {
  319. rt2x00mmio_register_read(rt2x00dev, CSR11, &reg);
  320. rt2x00_set_field32(&reg, CSR11_SLOT_TIME, erp->slot_time);
  321. rt2x00mmio_register_write(rt2x00dev, CSR11, reg);
  322. rt2x00mmio_register_read(rt2x00dev, CSR18, &reg);
  323. rt2x00_set_field32(&reg, CSR18_SIFS, erp->sifs);
  324. rt2x00_set_field32(&reg, CSR18_PIFS, erp->pifs);
  325. rt2x00mmio_register_write(rt2x00dev, CSR18, reg);
  326. rt2x00mmio_register_read(rt2x00dev, CSR19, &reg);
  327. rt2x00_set_field32(&reg, CSR19_DIFS, erp->difs);
  328. rt2x00_set_field32(&reg, CSR19_EIFS, erp->eifs);
  329. rt2x00mmio_register_write(rt2x00dev, CSR19, reg);
  330. }
  331. if (changed & BSS_CHANGED_BEACON_INT) {
  332. rt2x00mmio_register_read(rt2x00dev, CSR12, &reg);
  333. rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL,
  334. erp->beacon_int * 16);
  335. rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION,
  336. erp->beacon_int * 16);
  337. rt2x00mmio_register_write(rt2x00dev, CSR12, reg);
  338. }
  339. }
  340. static void rt2500pci_config_ant(struct rt2x00_dev *rt2x00dev,
  341. struct antenna_setup *ant)
  342. {
  343. u32 reg;
  344. u8 r14;
  345. u8 r2;
  346. /*
  347. * We should never come here because rt2x00lib is supposed
  348. * to catch this and send us the correct antenna explicitely.
  349. */
  350. BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
  351. ant->tx == ANTENNA_SW_DIVERSITY);
  352. rt2x00mmio_register_read(rt2x00dev, BBPCSR1, &reg);
  353. rt2500pci_bbp_read(rt2x00dev, 14, &r14);
  354. rt2500pci_bbp_read(rt2x00dev, 2, &r2);
  355. /*
  356. * Configure the TX antenna.
  357. */
  358. switch (ant->tx) {
  359. case ANTENNA_A:
  360. rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
  361. rt2x00_set_field32(&reg, BBPCSR1_CCK, 0);
  362. rt2x00_set_field32(&reg, BBPCSR1_OFDM, 0);
  363. break;
  364. case ANTENNA_B:
  365. default:
  366. rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
  367. rt2x00_set_field32(&reg, BBPCSR1_CCK, 2);
  368. rt2x00_set_field32(&reg, BBPCSR1_OFDM, 2);
  369. break;
  370. }
  371. /*
  372. * Configure the RX antenna.
  373. */
  374. switch (ant->rx) {
  375. case ANTENNA_A:
  376. rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
  377. break;
  378. case ANTENNA_B:
  379. default:
  380. rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
  381. break;
  382. }
  383. /*
  384. * RT2525E and RT5222 need to flip TX I/Q
  385. */
  386. if (rt2x00_rf(rt2x00dev, RF2525E) || rt2x00_rf(rt2x00dev, RF5222)) {
  387. rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
  388. rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 1);
  389. rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 1);
  390. /*
  391. * RT2525E does not need RX I/Q Flip.
  392. */
  393. if (rt2x00_rf(rt2x00dev, RF2525E))
  394. rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
  395. } else {
  396. rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 0);
  397. rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 0);
  398. }
  399. rt2x00mmio_register_write(rt2x00dev, BBPCSR1, reg);
  400. rt2500pci_bbp_write(rt2x00dev, 14, r14);
  401. rt2500pci_bbp_write(rt2x00dev, 2, r2);
  402. }
  403. static void rt2500pci_config_channel(struct rt2x00_dev *rt2x00dev,
  404. struct rf_channel *rf, const int txpower)
  405. {
  406. u8 r70;
  407. /*
  408. * Set TXpower.
  409. */
  410. rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
  411. /*
  412. * Switch on tuning bits.
  413. * For RT2523 devices we do not need to update the R1 register.
  414. */
  415. if (!rt2x00_rf(rt2x00dev, RF2523))
  416. rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
  417. rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
  418. /*
  419. * For RT2525 we should first set the channel to half band higher.
  420. */
  421. if (rt2x00_rf(rt2x00dev, RF2525)) {
  422. static const u32 vals[] = {
  423. 0x00080cbe, 0x00080d02, 0x00080d06, 0x00080d0a,
  424. 0x00080d0e, 0x00080d12, 0x00080d16, 0x00080d1a,
  425. 0x00080d1e, 0x00080d22, 0x00080d26, 0x00080d2a,
  426. 0x00080d2e, 0x00080d3a
  427. };
  428. rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
  429. rt2500pci_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
  430. rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
  431. if (rf->rf4)
  432. rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
  433. }
  434. rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
  435. rt2500pci_rf_write(rt2x00dev, 2, rf->rf2);
  436. rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
  437. if (rf->rf4)
  438. rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
  439. /*
  440. * Channel 14 requires the Japan filter bit to be set.
  441. */
  442. r70 = 0x46;
  443. rt2x00_set_field8(&r70, BBP_R70_JAPAN_FILTER, rf->channel == 14);
  444. rt2500pci_bbp_write(rt2x00dev, 70, r70);
  445. msleep(1);
  446. /*
  447. * Switch off tuning bits.
  448. * For RT2523 devices we do not need to update the R1 register.
  449. */
  450. if (!rt2x00_rf(rt2x00dev, RF2523)) {
  451. rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
  452. rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
  453. }
  454. rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
  455. rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
  456. /*
  457. * Clear false CRC during channel switch.
  458. */
  459. rt2x00mmio_register_read(rt2x00dev, CNT0, &rf->rf1);
  460. }
  461. static void rt2500pci_config_txpower(struct rt2x00_dev *rt2x00dev,
  462. const int txpower)
  463. {
  464. u32 rf3;
  465. rt2x00_rf_read(rt2x00dev, 3, &rf3);
  466. rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
  467. rt2500pci_rf_write(rt2x00dev, 3, rf3);
  468. }
  469. static void rt2500pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
  470. struct rt2x00lib_conf *libconf)
  471. {
  472. u32 reg;
  473. rt2x00mmio_register_read(rt2x00dev, CSR11, &reg);
  474. rt2x00_set_field32(&reg, CSR11_LONG_RETRY,
  475. libconf->conf->long_frame_max_tx_count);
  476. rt2x00_set_field32(&reg, CSR11_SHORT_RETRY,
  477. libconf->conf->short_frame_max_tx_count);
  478. rt2x00mmio_register_write(rt2x00dev, CSR11, reg);
  479. }
  480. static void rt2500pci_config_ps(struct rt2x00_dev *rt2x00dev,
  481. struct rt2x00lib_conf *libconf)
  482. {
  483. enum dev_state state =
  484. (libconf->conf->flags & IEEE80211_CONF_PS) ?
  485. STATE_SLEEP : STATE_AWAKE;
  486. u32 reg;
  487. if (state == STATE_SLEEP) {
  488. rt2x00mmio_register_read(rt2x00dev, CSR20, &reg);
  489. rt2x00_set_field32(&reg, CSR20_DELAY_AFTER_TBCN,
  490. (rt2x00dev->beacon_int - 20) * 16);
  491. rt2x00_set_field32(&reg, CSR20_TBCN_BEFORE_WAKEUP,
  492. libconf->conf->listen_interval - 1);
  493. /* We must first disable autowake before it can be enabled */
  494. rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
  495. rt2x00mmio_register_write(rt2x00dev, CSR20, reg);
  496. rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 1);
  497. rt2x00mmio_register_write(rt2x00dev, CSR20, reg);
  498. } else {
  499. rt2x00mmio_register_read(rt2x00dev, CSR20, &reg);
  500. rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
  501. rt2x00mmio_register_write(rt2x00dev, CSR20, reg);
  502. }
  503. rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
  504. }
  505. static void rt2500pci_config(struct rt2x00_dev *rt2x00dev,
  506. struct rt2x00lib_conf *libconf,
  507. const unsigned int flags)
  508. {
  509. if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
  510. rt2500pci_config_channel(rt2x00dev, &libconf->rf,
  511. libconf->conf->power_level);
  512. if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
  513. !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
  514. rt2500pci_config_txpower(rt2x00dev,
  515. libconf->conf->power_level);
  516. if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
  517. rt2500pci_config_retry_limit(rt2x00dev, libconf);
  518. if (flags & IEEE80211_CONF_CHANGE_PS)
  519. rt2500pci_config_ps(rt2x00dev, libconf);
  520. }
  521. /*
  522. * Link tuning
  523. */
  524. static void rt2500pci_link_stats(struct rt2x00_dev *rt2x00dev,
  525. struct link_qual *qual)
  526. {
  527. u32 reg;
  528. /*
  529. * Update FCS error count from register.
  530. */
  531. rt2x00mmio_register_read(rt2x00dev, CNT0, &reg);
  532. qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
  533. /*
  534. * Update False CCA count from register.
  535. */
  536. rt2x00mmio_register_read(rt2x00dev, CNT3, &reg);
  537. qual->false_cca = rt2x00_get_field32(reg, CNT3_FALSE_CCA);
  538. }
  539. static inline void rt2500pci_set_vgc(struct rt2x00_dev *rt2x00dev,
  540. struct link_qual *qual, u8 vgc_level)
  541. {
  542. if (qual->vgc_level_reg != vgc_level) {
  543. rt2500pci_bbp_write(rt2x00dev, 17, vgc_level);
  544. qual->vgc_level = vgc_level;
  545. qual->vgc_level_reg = vgc_level;
  546. }
  547. }
  548. static void rt2500pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
  549. struct link_qual *qual)
  550. {
  551. rt2500pci_set_vgc(rt2x00dev, qual, 0x48);
  552. }
  553. static void rt2500pci_link_tuner(struct rt2x00_dev *rt2x00dev,
  554. struct link_qual *qual, const u32 count)
  555. {
  556. /*
  557. * To prevent collisions with MAC ASIC on chipsets
  558. * up to version C the link tuning should halt after 20
  559. * seconds while being associated.
  560. */
  561. if (rt2x00_rev(rt2x00dev) < RT2560_VERSION_D &&
  562. rt2x00dev->intf_associated && count > 20)
  563. return;
  564. /*
  565. * Chipset versions C and lower should directly continue
  566. * to the dynamic CCA tuning. Chipset version D and higher
  567. * should go straight to dynamic CCA tuning when they
  568. * are not associated.
  569. */
  570. if (rt2x00_rev(rt2x00dev) < RT2560_VERSION_D ||
  571. !rt2x00dev->intf_associated)
  572. goto dynamic_cca_tune;
  573. /*
  574. * A too low RSSI will cause too much false CCA which will
  575. * then corrupt the R17 tuning. To remidy this the tuning should
  576. * be stopped (While making sure the R17 value will not exceed limits)
  577. */
  578. if (qual->rssi < -80 && count > 20) {
  579. if (qual->vgc_level_reg >= 0x41)
  580. rt2500pci_set_vgc(rt2x00dev, qual, qual->vgc_level);
  581. return;
  582. }
  583. /*
  584. * Special big-R17 for short distance
  585. */
  586. if (qual->rssi >= -58) {
  587. rt2500pci_set_vgc(rt2x00dev, qual, 0x50);
  588. return;
  589. }
  590. /*
  591. * Special mid-R17 for middle distance
  592. */
  593. if (qual->rssi >= -74) {
  594. rt2500pci_set_vgc(rt2x00dev, qual, 0x41);
  595. return;
  596. }
  597. /*
  598. * Leave short or middle distance condition, restore r17
  599. * to the dynamic tuning range.
  600. */
  601. if (qual->vgc_level_reg >= 0x41) {
  602. rt2500pci_set_vgc(rt2x00dev, qual, qual->vgc_level);
  603. return;
  604. }
  605. dynamic_cca_tune:
  606. /*
  607. * R17 is inside the dynamic tuning range,
  608. * start tuning the link based on the false cca counter.
  609. */
  610. if (qual->false_cca > 512 && qual->vgc_level_reg < 0x40)
  611. rt2500pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level_reg);
  612. else if (qual->false_cca < 100 && qual->vgc_level_reg > 0x32)
  613. rt2500pci_set_vgc(rt2x00dev, qual, --qual->vgc_level_reg);
  614. }
  615. /*
  616. * Queue handlers.
  617. */
  618. static void rt2500pci_start_queue(struct data_queue *queue)
  619. {
  620. struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
  621. u32 reg;
  622. switch (queue->qid) {
  623. case QID_RX:
  624. rt2x00mmio_register_read(rt2x00dev, RXCSR0, &reg);
  625. rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX, 0);
  626. rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
  627. break;
  628. case QID_BEACON:
  629. rt2x00mmio_register_read(rt2x00dev, CSR14, &reg);
  630. rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
  631. rt2x00_set_field32(&reg, CSR14_TBCN, 1);
  632. rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
  633. rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
  634. break;
  635. default:
  636. break;
  637. }
  638. }
  639. static void rt2500pci_kick_queue(struct data_queue *queue)
  640. {
  641. struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
  642. u32 reg;
  643. switch (queue->qid) {
  644. case QID_AC_VO:
  645. rt2x00mmio_register_read(rt2x00dev, TXCSR0, &reg);
  646. rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, 1);
  647. rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
  648. break;
  649. case QID_AC_VI:
  650. rt2x00mmio_register_read(rt2x00dev, TXCSR0, &reg);
  651. rt2x00_set_field32(&reg, TXCSR0_KICK_TX, 1);
  652. rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
  653. break;
  654. case QID_ATIM:
  655. rt2x00mmio_register_read(rt2x00dev, TXCSR0, &reg);
  656. rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, 1);
  657. rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
  658. break;
  659. default:
  660. break;
  661. }
  662. }
  663. static void rt2500pci_stop_queue(struct data_queue *queue)
  664. {
  665. struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
  666. u32 reg;
  667. switch (queue->qid) {
  668. case QID_AC_VO:
  669. case QID_AC_VI:
  670. case QID_ATIM:
  671. rt2x00mmio_register_read(rt2x00dev, TXCSR0, &reg);
  672. rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
  673. rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
  674. break;
  675. case QID_RX:
  676. rt2x00mmio_register_read(rt2x00dev, RXCSR0, &reg);
  677. rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX, 1);
  678. rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
  679. break;
  680. case QID_BEACON:
  681. rt2x00mmio_register_read(rt2x00dev, CSR14, &reg);
  682. rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
  683. rt2x00_set_field32(&reg, CSR14_TBCN, 0);
  684. rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
  685. rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
  686. /*
  687. * Wait for possibly running tbtt tasklets.
  688. */
  689. tasklet_kill(&rt2x00dev->tbtt_tasklet);
  690. break;
  691. default:
  692. break;
  693. }
  694. }
  695. /*
  696. * Initialization functions.
  697. */
  698. static bool rt2500pci_get_entry_state(struct queue_entry *entry)
  699. {
  700. struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
  701. u32 word;
  702. if (entry->queue->qid == QID_RX) {
  703. rt2x00_desc_read(entry_priv->desc, 0, &word);
  704. return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
  705. } else {
  706. rt2x00_desc_read(entry_priv->desc, 0, &word);
  707. return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
  708. rt2x00_get_field32(word, TXD_W0_VALID));
  709. }
  710. }
  711. static void rt2500pci_clear_entry(struct queue_entry *entry)
  712. {
  713. struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
  714. struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  715. u32 word;
  716. if (entry->queue->qid == QID_RX) {
  717. rt2x00_desc_read(entry_priv->desc, 1, &word);
  718. rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
  719. rt2x00_desc_write(entry_priv->desc, 1, word);
  720. rt2x00_desc_read(entry_priv->desc, 0, &word);
  721. rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
  722. rt2x00_desc_write(entry_priv->desc, 0, word);
  723. } else {
  724. rt2x00_desc_read(entry_priv->desc, 0, &word);
  725. rt2x00_set_field32(&word, TXD_W0_VALID, 0);
  726. rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
  727. rt2x00_desc_write(entry_priv->desc, 0, word);
  728. }
  729. }
  730. static int rt2500pci_init_queues(struct rt2x00_dev *rt2x00dev)
  731. {
  732. struct queue_entry_priv_mmio *entry_priv;
  733. u32 reg;
  734. /*
  735. * Initialize registers.
  736. */
  737. rt2x00mmio_register_read(rt2x00dev, TXCSR2, &reg);
  738. rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
  739. rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
  740. rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->atim->limit);
  741. rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
  742. rt2x00mmio_register_write(rt2x00dev, TXCSR2, reg);
  743. entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
  744. rt2x00mmio_register_read(rt2x00dev, TXCSR3, &reg);
  745. rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
  746. entry_priv->desc_dma);
  747. rt2x00mmio_register_write(rt2x00dev, TXCSR3, reg);
  748. entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
  749. rt2x00mmio_register_read(rt2x00dev, TXCSR5, &reg);
  750. rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
  751. entry_priv->desc_dma);
  752. rt2x00mmio_register_write(rt2x00dev, TXCSR5, reg);
  753. entry_priv = rt2x00dev->atim->entries[0].priv_data;
  754. rt2x00mmio_register_read(rt2x00dev, TXCSR4, &reg);
  755. rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
  756. entry_priv->desc_dma);
  757. rt2x00mmio_register_write(rt2x00dev, TXCSR4, reg);
  758. entry_priv = rt2x00dev->bcn->entries[0].priv_data;
  759. rt2x00mmio_register_read(rt2x00dev, TXCSR6, &reg);
  760. rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
  761. entry_priv->desc_dma);
  762. rt2x00mmio_register_write(rt2x00dev, TXCSR6, reg);
  763. rt2x00mmio_register_read(rt2x00dev, RXCSR1, &reg);
  764. rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
  765. rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
  766. rt2x00mmio_register_write(rt2x00dev, RXCSR1, reg);
  767. entry_priv = rt2x00dev->rx->entries[0].priv_data;
  768. rt2x00mmio_register_read(rt2x00dev, RXCSR2, &reg);
  769. rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
  770. entry_priv->desc_dma);
  771. rt2x00mmio_register_write(rt2x00dev, RXCSR2, reg);
  772. return 0;
  773. }
  774. static int rt2500pci_init_registers(struct rt2x00_dev *rt2x00dev)
  775. {
  776. u32 reg;
  777. rt2x00mmio_register_write(rt2x00dev, PSCSR0, 0x00020002);
  778. rt2x00mmio_register_write(rt2x00dev, PSCSR1, 0x00000002);
  779. rt2x00mmio_register_write(rt2x00dev, PSCSR2, 0x00020002);
  780. rt2x00mmio_register_write(rt2x00dev, PSCSR3, 0x00000002);
  781. rt2x00mmio_register_read(rt2x00dev, TIMECSR, &reg);
  782. rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
  783. rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
  784. rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
  785. rt2x00mmio_register_write(rt2x00dev, TIMECSR, reg);
  786. rt2x00mmio_register_read(rt2x00dev, CSR9, &reg);
  787. rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
  788. rt2x00dev->rx->data_size / 128);
  789. rt2x00mmio_register_write(rt2x00dev, CSR9, reg);
  790. /*
  791. * Always use CWmin and CWmax set in descriptor.
  792. */
  793. rt2x00mmio_register_read(rt2x00dev, CSR11, &reg);
  794. rt2x00_set_field32(&reg, CSR11_CW_SELECT, 0);
  795. rt2x00mmio_register_write(rt2x00dev, CSR11, reg);
  796. rt2x00mmio_register_read(rt2x00dev, CSR14, &reg);
  797. rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
  798. rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 0);
  799. rt2x00_set_field32(&reg, CSR14_TBCN, 0);
  800. rt2x00_set_field32(&reg, CSR14_TCFP, 0);
  801. rt2x00_set_field32(&reg, CSR14_TATIMW, 0);
  802. rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
  803. rt2x00_set_field32(&reg, CSR14_CFP_COUNT_PRELOAD, 0);
  804. rt2x00_set_field32(&reg, CSR14_TBCM_PRELOAD, 0);
  805. rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
  806. rt2x00mmio_register_write(rt2x00dev, CNT3, 0);
  807. rt2x00mmio_register_read(rt2x00dev, TXCSR8, &reg);
  808. rt2x00_set_field32(&reg, TXCSR8_BBP_ID0, 10);
  809. rt2x00_set_field32(&reg, TXCSR8_BBP_ID0_VALID, 1);
  810. rt2x00_set_field32(&reg, TXCSR8_BBP_ID1, 11);
  811. rt2x00_set_field32(&reg, TXCSR8_BBP_ID1_VALID, 1);
  812. rt2x00_set_field32(&reg, TXCSR8_BBP_ID2, 13);
  813. rt2x00_set_field32(&reg, TXCSR8_BBP_ID2_VALID, 1);
  814. rt2x00_set_field32(&reg, TXCSR8_BBP_ID3, 12);
  815. rt2x00_set_field32(&reg, TXCSR8_BBP_ID3_VALID, 1);
  816. rt2x00mmio_register_write(rt2x00dev, TXCSR8, reg);
  817. rt2x00mmio_register_read(rt2x00dev, ARTCSR0, &reg);
  818. rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_1MBS, 112);
  819. rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_2MBS, 56);
  820. rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_5_5MBS, 20);
  821. rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_11MBS, 10);
  822. rt2x00mmio_register_write(rt2x00dev, ARTCSR0, reg);
  823. rt2x00mmio_register_read(rt2x00dev, ARTCSR1, &reg);
  824. rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_6MBS, 45);
  825. rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_9MBS, 37);
  826. rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_12MBS, 33);
  827. rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_18MBS, 29);
  828. rt2x00mmio_register_write(rt2x00dev, ARTCSR1, reg);
  829. rt2x00mmio_register_read(rt2x00dev, ARTCSR2, &reg);
  830. rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_24MBS, 29);
  831. rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_36MBS, 25);
  832. rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_48MBS, 25);
  833. rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_54MBS, 25);
  834. rt2x00mmio_register_write(rt2x00dev, ARTCSR2, reg);
  835. rt2x00mmio_register_read(rt2x00dev, RXCSR3, &reg);
  836. rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 47); /* CCK Signal */
  837. rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
  838. rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 51); /* Rssi */
  839. rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
  840. rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 42); /* OFDM Rate */
  841. rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
  842. rt2x00_set_field32(&reg, RXCSR3_BBP_ID3, 51); /* RSSI */
  843. rt2x00_set_field32(&reg, RXCSR3_BBP_ID3_VALID, 1);
  844. rt2x00mmio_register_write(rt2x00dev, RXCSR3, reg);
  845. rt2x00mmio_register_read(rt2x00dev, PCICSR, &reg);
  846. rt2x00_set_field32(&reg, PCICSR_BIG_ENDIAN, 0);
  847. rt2x00_set_field32(&reg, PCICSR_RX_TRESHOLD, 0);
  848. rt2x00_set_field32(&reg, PCICSR_TX_TRESHOLD, 3);
  849. rt2x00_set_field32(&reg, PCICSR_BURST_LENTH, 1);
  850. rt2x00_set_field32(&reg, PCICSR_ENABLE_CLK, 1);
  851. rt2x00_set_field32(&reg, PCICSR_READ_MULTIPLE, 1);
  852. rt2x00_set_field32(&reg, PCICSR_WRITE_INVALID, 1);
  853. rt2x00mmio_register_write(rt2x00dev, PCICSR, reg);
  854. rt2x00mmio_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
  855. rt2x00mmio_register_write(rt2x00dev, GPIOCSR, 0x0000ff00);
  856. rt2x00mmio_register_write(rt2x00dev, TESTCSR, 0x000000f0);
  857. if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
  858. return -EBUSY;
  859. rt2x00mmio_register_write(rt2x00dev, MACCSR0, 0x00213223);
  860. rt2x00mmio_register_write(rt2x00dev, MACCSR1, 0x00235518);
  861. rt2x00mmio_register_read(rt2x00dev, MACCSR2, &reg);
  862. rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
  863. rt2x00mmio_register_write(rt2x00dev, MACCSR2, reg);
  864. rt2x00mmio_register_read(rt2x00dev, RALINKCSR, &reg);
  865. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
  866. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 26);
  867. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID0, 1);
  868. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
  869. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 26);
  870. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID1, 1);
  871. rt2x00mmio_register_write(rt2x00dev, RALINKCSR, reg);
  872. rt2x00mmio_register_write(rt2x00dev, BBPCSR1, 0x82188200);
  873. rt2x00mmio_register_write(rt2x00dev, TXACKCSR0, 0x00000020);
  874. rt2x00mmio_register_read(rt2x00dev, CSR1, &reg);
  875. rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
  876. rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
  877. rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
  878. rt2x00mmio_register_write(rt2x00dev, CSR1, reg);
  879. rt2x00mmio_register_read(rt2x00dev, CSR1, &reg);
  880. rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
  881. rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
  882. rt2x00mmio_register_write(rt2x00dev, CSR1, reg);
  883. /*
  884. * We must clear the FCS and FIFO error count.
  885. * These registers are cleared on read,
  886. * so we may pass a useless variable to store the value.
  887. */
  888. rt2x00mmio_register_read(rt2x00dev, CNT0, &reg);
  889. rt2x00mmio_register_read(rt2x00dev, CNT4, &reg);
  890. return 0;
  891. }
  892. static int rt2500pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
  893. {
  894. unsigned int i;
  895. u8 value;
  896. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  897. rt2500pci_bbp_read(rt2x00dev, 0, &value);
  898. if ((value != 0xff) && (value != 0x00))
  899. return 0;
  900. udelay(REGISTER_BUSY_DELAY);
  901. }
  902. rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n");
  903. return -EACCES;
  904. }
  905. static int rt2500pci_init_bbp(struct rt2x00_dev *rt2x00dev)
  906. {
  907. unsigned int i;
  908. u16 eeprom;
  909. u8 reg_id;
  910. u8 value;
  911. if (unlikely(rt2500pci_wait_bbp_ready(rt2x00dev)))
  912. return -EACCES;
  913. rt2500pci_bbp_write(rt2x00dev, 3, 0x02);
  914. rt2500pci_bbp_write(rt2x00dev, 4, 0x19);
  915. rt2500pci_bbp_write(rt2x00dev, 14, 0x1c);
  916. rt2500pci_bbp_write(rt2x00dev, 15, 0x30);
  917. rt2500pci_bbp_write(rt2x00dev, 16, 0xac);
  918. rt2500pci_bbp_write(rt2x00dev, 18, 0x18);
  919. rt2500pci_bbp_write(rt2x00dev, 19, 0xff);
  920. rt2500pci_bbp_write(rt2x00dev, 20, 0x1e);
  921. rt2500pci_bbp_write(rt2x00dev, 21, 0x08);
  922. rt2500pci_bbp_write(rt2x00dev, 22, 0x08);
  923. rt2500pci_bbp_write(rt2x00dev, 23, 0x08);
  924. rt2500pci_bbp_write(rt2x00dev, 24, 0x70);
  925. rt2500pci_bbp_write(rt2x00dev, 25, 0x40);
  926. rt2500pci_bbp_write(rt2x00dev, 26, 0x08);
  927. rt2500pci_bbp_write(rt2x00dev, 27, 0x23);
  928. rt2500pci_bbp_write(rt2x00dev, 30, 0x10);
  929. rt2500pci_bbp_write(rt2x00dev, 31, 0x2b);
  930. rt2500pci_bbp_write(rt2x00dev, 32, 0xb9);
  931. rt2500pci_bbp_write(rt2x00dev, 34, 0x12);
  932. rt2500pci_bbp_write(rt2x00dev, 35, 0x50);
  933. rt2500pci_bbp_write(rt2x00dev, 39, 0xc4);
  934. rt2500pci_bbp_write(rt2x00dev, 40, 0x02);
  935. rt2500pci_bbp_write(rt2x00dev, 41, 0x60);
  936. rt2500pci_bbp_write(rt2x00dev, 53, 0x10);
  937. rt2500pci_bbp_write(rt2x00dev, 54, 0x18);
  938. rt2500pci_bbp_write(rt2x00dev, 56, 0x08);
  939. rt2500pci_bbp_write(rt2x00dev, 57, 0x10);
  940. rt2500pci_bbp_write(rt2x00dev, 58, 0x08);
  941. rt2500pci_bbp_write(rt2x00dev, 61, 0x6d);
  942. rt2500pci_bbp_write(rt2x00dev, 62, 0x10);
  943. for (i = 0; i < EEPROM_BBP_SIZE; i++) {
  944. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
  945. if (eeprom != 0xffff && eeprom != 0x0000) {
  946. reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
  947. value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
  948. rt2500pci_bbp_write(rt2x00dev, reg_id, value);
  949. }
  950. }
  951. return 0;
  952. }
  953. /*
  954. * Device state switch handlers.
  955. */
  956. static void rt2500pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
  957. enum dev_state state)
  958. {
  959. int mask = (state == STATE_RADIO_IRQ_OFF);
  960. u32 reg;
  961. unsigned long flags;
  962. /*
  963. * When interrupts are being enabled, the interrupt registers
  964. * should clear the register to assure a clean state.
  965. */
  966. if (state == STATE_RADIO_IRQ_ON) {
  967. rt2x00mmio_register_read(rt2x00dev, CSR7, &reg);
  968. rt2x00mmio_register_write(rt2x00dev, CSR7, reg);
  969. }
  970. /*
  971. * Only toggle the interrupts bits we are going to use.
  972. * Non-checked interrupt bits are disabled by default.
  973. */
  974. spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
  975. rt2x00mmio_register_read(rt2x00dev, CSR8, &reg);
  976. rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
  977. rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
  978. rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
  979. rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
  980. rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
  981. rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
  982. spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
  983. if (state == STATE_RADIO_IRQ_OFF) {
  984. /*
  985. * Ensure that all tasklets are finished.
  986. */
  987. tasklet_kill(&rt2x00dev->txstatus_tasklet);
  988. tasklet_kill(&rt2x00dev->rxdone_tasklet);
  989. tasklet_kill(&rt2x00dev->tbtt_tasklet);
  990. }
  991. }
  992. static int rt2500pci_enable_radio(struct rt2x00_dev *rt2x00dev)
  993. {
  994. /*
  995. * Initialize all registers.
  996. */
  997. if (unlikely(rt2500pci_init_queues(rt2x00dev) ||
  998. rt2500pci_init_registers(rt2x00dev) ||
  999. rt2500pci_init_bbp(rt2x00dev)))
  1000. return -EIO;
  1001. return 0;
  1002. }
  1003. static void rt2500pci_disable_radio(struct rt2x00_dev *rt2x00dev)
  1004. {
  1005. /*
  1006. * Disable power
  1007. */
  1008. rt2x00mmio_register_write(rt2x00dev, PWRCSR0, 0);
  1009. }
  1010. static int rt2500pci_set_state(struct rt2x00_dev *rt2x00dev,
  1011. enum dev_state state)
  1012. {
  1013. u32 reg, reg2;
  1014. unsigned int i;
  1015. char put_to_sleep;
  1016. char bbp_state;
  1017. char rf_state;
  1018. put_to_sleep = (state != STATE_AWAKE);
  1019. rt2x00mmio_register_read(rt2x00dev, PWRCSR1, &reg);
  1020. rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
  1021. rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
  1022. rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
  1023. rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
  1024. rt2x00mmio_register_write(rt2x00dev, PWRCSR1, reg);
  1025. /*
  1026. * Device is not guaranteed to be in the requested state yet.
  1027. * We must wait until the register indicates that the
  1028. * device has entered the correct state.
  1029. */
  1030. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  1031. rt2x00mmio_register_read(rt2x00dev, PWRCSR1, &reg2);
  1032. bbp_state = rt2x00_get_field32(reg2, PWRCSR1_BBP_CURR_STATE);
  1033. rf_state = rt2x00_get_field32(reg2, PWRCSR1_RF_CURR_STATE);
  1034. if (bbp_state == state && rf_state == state)
  1035. return 0;
  1036. rt2x00mmio_register_write(rt2x00dev, PWRCSR1, reg);
  1037. msleep(10);
  1038. }
  1039. return -EBUSY;
  1040. }
  1041. static int rt2500pci_set_device_state(struct rt2x00_dev *rt2x00dev,
  1042. enum dev_state state)
  1043. {
  1044. int retval = 0;
  1045. switch (state) {
  1046. case STATE_RADIO_ON:
  1047. retval = rt2500pci_enable_radio(rt2x00dev);
  1048. break;
  1049. case STATE_RADIO_OFF:
  1050. rt2500pci_disable_radio(rt2x00dev);
  1051. break;
  1052. case STATE_RADIO_IRQ_ON:
  1053. case STATE_RADIO_IRQ_OFF:
  1054. rt2500pci_toggle_irq(rt2x00dev, state);
  1055. break;
  1056. case STATE_DEEP_SLEEP:
  1057. case STATE_SLEEP:
  1058. case STATE_STANDBY:
  1059. case STATE_AWAKE:
  1060. retval = rt2500pci_set_state(rt2x00dev, state);
  1061. break;
  1062. default:
  1063. retval = -ENOTSUPP;
  1064. break;
  1065. }
  1066. if (unlikely(retval))
  1067. rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n",
  1068. state, retval);
  1069. return retval;
  1070. }
  1071. /*
  1072. * TX descriptor initialization
  1073. */
  1074. static void rt2500pci_write_tx_desc(struct queue_entry *entry,
  1075. struct txentry_desc *txdesc)
  1076. {
  1077. struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  1078. struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
  1079. __le32 *txd = entry_priv->desc;
  1080. u32 word;
  1081. /*
  1082. * Start writing the descriptor words.
  1083. */
  1084. rt2x00_desc_read(txd, 1, &word);
  1085. rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
  1086. rt2x00_desc_write(txd, 1, word);
  1087. rt2x00_desc_read(txd, 2, &word);
  1088. rt2x00_set_field32(&word, TXD_W2_IV_OFFSET, IEEE80211_HEADER);
  1089. rt2x00_set_field32(&word, TXD_W2_AIFS, entry->queue->aifs);
  1090. rt2x00_set_field32(&word, TXD_W2_CWMIN, entry->queue->cw_min);
  1091. rt2x00_set_field32(&word, TXD_W2_CWMAX, entry->queue->cw_max);
  1092. rt2x00_desc_write(txd, 2, word);
  1093. rt2x00_desc_read(txd, 3, &word);
  1094. rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->u.plcp.signal);
  1095. rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->u.plcp.service);
  1096. rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW,
  1097. txdesc->u.plcp.length_low);
  1098. rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH,
  1099. txdesc->u.plcp.length_high);
  1100. rt2x00_desc_write(txd, 3, word);
  1101. rt2x00_desc_read(txd, 10, &word);
  1102. rt2x00_set_field32(&word, TXD_W10_RTS,
  1103. test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
  1104. rt2x00_desc_write(txd, 10, word);
  1105. /*
  1106. * Writing TXD word 0 must the last to prevent a race condition with
  1107. * the device, whereby the device may take hold of the TXD before we
  1108. * finished updating it.
  1109. */
  1110. rt2x00_desc_read(txd, 0, &word);
  1111. rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
  1112. rt2x00_set_field32(&word, TXD_W0_VALID, 1);
  1113. rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
  1114. test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
  1115. rt2x00_set_field32(&word, TXD_W0_ACK,
  1116. test_bit(ENTRY_TXD_ACK, &txdesc->flags));
  1117. rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
  1118. test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
  1119. rt2x00_set_field32(&word, TXD_W0_OFDM,
  1120. (txdesc->rate_mode == RATE_MODE_OFDM));
  1121. rt2x00_set_field32(&word, TXD_W0_CIPHER_OWNER, 1);
  1122. rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
  1123. rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
  1124. test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
  1125. rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
  1126. rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE);
  1127. rt2x00_desc_write(txd, 0, word);
  1128. /*
  1129. * Register descriptor details in skb frame descriptor.
  1130. */
  1131. skbdesc->desc = txd;
  1132. skbdesc->desc_len = TXD_DESC_SIZE;
  1133. }
  1134. /*
  1135. * TX data initialization
  1136. */
  1137. static void rt2500pci_write_beacon(struct queue_entry *entry,
  1138. struct txentry_desc *txdesc)
  1139. {
  1140. struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
  1141. u32 reg;
  1142. /*
  1143. * Disable beaconing while we are reloading the beacon data,
  1144. * otherwise we might be sending out invalid data.
  1145. */
  1146. rt2x00mmio_register_read(rt2x00dev, CSR14, &reg);
  1147. rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
  1148. rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
  1149. if (rt2x00queue_map_txskb(entry)) {
  1150. rt2x00_err(rt2x00dev, "Fail to map beacon, aborting\n");
  1151. goto out;
  1152. }
  1153. /*
  1154. * Write the TX descriptor for the beacon.
  1155. */
  1156. rt2500pci_write_tx_desc(entry, txdesc);
  1157. /*
  1158. * Dump beacon to userspace through debugfs.
  1159. */
  1160. rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
  1161. out:
  1162. /*
  1163. * Enable beaconing again.
  1164. */
  1165. rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
  1166. rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
  1167. }
  1168. /*
  1169. * RX control handlers
  1170. */
  1171. static void rt2500pci_fill_rxdone(struct queue_entry *entry,
  1172. struct rxdone_entry_desc *rxdesc)
  1173. {
  1174. struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
  1175. u32 word0;
  1176. u32 word2;
  1177. rt2x00_desc_read(entry_priv->desc, 0, &word0);
  1178. rt2x00_desc_read(entry_priv->desc, 2, &word2);
  1179. if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
  1180. rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
  1181. if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
  1182. rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
  1183. /*
  1184. * Obtain the status about this packet.
  1185. * When frame was received with an OFDM bitrate,
  1186. * the signal is the PLCP value. If it was received with
  1187. * a CCK bitrate the signal is the rate in 100kbit/s.
  1188. */
  1189. rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL);
  1190. rxdesc->rssi = rt2x00_get_field32(word2, RXD_W2_RSSI) -
  1191. entry->queue->rt2x00dev->rssi_offset;
  1192. rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
  1193. if (rt2x00_get_field32(word0, RXD_W0_OFDM))
  1194. rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
  1195. else
  1196. rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
  1197. if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
  1198. rxdesc->dev_flags |= RXDONE_MY_BSS;
  1199. }
  1200. /*
  1201. * Interrupt functions.
  1202. */
  1203. static void rt2500pci_txdone(struct rt2x00_dev *rt2x00dev,
  1204. const enum data_queue_qid queue_idx)
  1205. {
  1206. struct data_queue *queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx);
  1207. struct queue_entry_priv_mmio *entry_priv;
  1208. struct queue_entry *entry;
  1209. struct txdone_entry_desc txdesc;
  1210. u32 word;
  1211. while (!rt2x00queue_empty(queue)) {
  1212. entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
  1213. entry_priv = entry->priv_data;
  1214. rt2x00_desc_read(entry_priv->desc, 0, &word);
  1215. if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
  1216. !rt2x00_get_field32(word, TXD_W0_VALID))
  1217. break;
  1218. /*
  1219. * Obtain the status about this packet.
  1220. */
  1221. txdesc.flags = 0;
  1222. switch (rt2x00_get_field32(word, TXD_W0_RESULT)) {
  1223. case 0: /* Success */
  1224. case 1: /* Success with retry */
  1225. __set_bit(TXDONE_SUCCESS, &txdesc.flags);
  1226. break;
  1227. case 2: /* Failure, excessive retries */
  1228. __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
  1229. /* Don't break, this is a failed frame! */
  1230. default: /* Failure */
  1231. __set_bit(TXDONE_FAILURE, &txdesc.flags);
  1232. }
  1233. txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
  1234. rt2x00lib_txdone(entry, &txdesc);
  1235. }
  1236. }
  1237. static inline void rt2500pci_enable_interrupt(struct rt2x00_dev *rt2x00dev,
  1238. struct rt2x00_field32 irq_field)
  1239. {
  1240. u32 reg;
  1241. /*
  1242. * Enable a single interrupt. The interrupt mask register
  1243. * access needs locking.
  1244. */
  1245. spin_lock_irq(&rt2x00dev->irqmask_lock);
  1246. rt2x00mmio_register_read(rt2x00dev, CSR8, &reg);
  1247. rt2x00_set_field32(&reg, irq_field, 0);
  1248. rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
  1249. spin_unlock_irq(&rt2x00dev->irqmask_lock);
  1250. }
  1251. static void rt2500pci_txstatus_tasklet(unsigned long data)
  1252. {
  1253. struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
  1254. u32 reg;
  1255. /*
  1256. * Handle all tx queues.
  1257. */
  1258. rt2500pci_txdone(rt2x00dev, QID_ATIM);
  1259. rt2500pci_txdone(rt2x00dev, QID_AC_VO);
  1260. rt2500pci_txdone(rt2x00dev, QID_AC_VI);
  1261. /*
  1262. * Enable all TXDONE interrupts again.
  1263. */
  1264. if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) {
  1265. spin_lock_irq(&rt2x00dev->irqmask_lock);
  1266. rt2x00mmio_register_read(rt2x00dev, CSR8, &reg);
  1267. rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, 0);
  1268. rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, 0);
  1269. rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, 0);
  1270. rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
  1271. spin_unlock_irq(&rt2x00dev->irqmask_lock);
  1272. }
  1273. }
  1274. static void rt2500pci_tbtt_tasklet(unsigned long data)
  1275. {
  1276. struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
  1277. rt2x00lib_beacondone(rt2x00dev);
  1278. if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
  1279. rt2500pci_enable_interrupt(rt2x00dev, CSR8_TBCN_EXPIRE);
  1280. }
  1281. static void rt2500pci_rxdone_tasklet(unsigned long data)
  1282. {
  1283. struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
  1284. if (rt2x00mmio_rxdone(rt2x00dev))
  1285. tasklet_schedule(&rt2x00dev->rxdone_tasklet);
  1286. else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
  1287. rt2500pci_enable_interrupt(rt2x00dev, CSR8_RXDONE);
  1288. }
  1289. static irqreturn_t rt2500pci_interrupt(int irq, void *dev_instance)
  1290. {
  1291. struct rt2x00_dev *rt2x00dev = dev_instance;
  1292. u32 reg, mask;
  1293. /*
  1294. * Get the interrupt sources & saved to local variable.
  1295. * Write register value back to clear pending interrupts.
  1296. */
  1297. rt2x00mmio_register_read(rt2x00dev, CSR7, &reg);
  1298. rt2x00mmio_register_write(rt2x00dev, CSR7, reg);
  1299. if (!reg)
  1300. return IRQ_NONE;
  1301. if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
  1302. return IRQ_HANDLED;
  1303. mask = reg;
  1304. /*
  1305. * Schedule tasklets for interrupt handling.
  1306. */
  1307. if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
  1308. tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
  1309. if (rt2x00_get_field32(reg, CSR7_RXDONE))
  1310. tasklet_schedule(&rt2x00dev->rxdone_tasklet);
  1311. if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING) ||
  1312. rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING) ||
  1313. rt2x00_get_field32(reg, CSR7_TXDONE_TXRING)) {
  1314. tasklet_schedule(&rt2x00dev->txstatus_tasklet);
  1315. /*
  1316. * Mask out all txdone interrupts.
  1317. */
  1318. rt2x00_set_field32(&mask, CSR8_TXDONE_TXRING, 1);
  1319. rt2x00_set_field32(&mask, CSR8_TXDONE_ATIMRING, 1);
  1320. rt2x00_set_field32(&mask, CSR8_TXDONE_PRIORING, 1);
  1321. }
  1322. /*
  1323. * Disable all interrupts for which a tasklet was scheduled right now,
  1324. * the tasklet will reenable the appropriate interrupts.
  1325. */
  1326. spin_lock(&rt2x00dev->irqmask_lock);
  1327. rt2x00mmio_register_read(rt2x00dev, CSR8, &reg);
  1328. reg |= mask;
  1329. rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
  1330. spin_unlock(&rt2x00dev->irqmask_lock);
  1331. return IRQ_HANDLED;
  1332. }
  1333. /*
  1334. * Device probe functions.
  1335. */
  1336. static int rt2500pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
  1337. {
  1338. struct eeprom_93cx6 eeprom;
  1339. u32 reg;
  1340. u16 word;
  1341. u8 *mac;
  1342. rt2x00mmio_register_read(rt2x00dev, CSR21, &reg);
  1343. eeprom.data = rt2x00dev;
  1344. eeprom.register_read = rt2500pci_eepromregister_read;
  1345. eeprom.register_write = rt2500pci_eepromregister_write;
  1346. eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
  1347. PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
  1348. eeprom.reg_data_in = 0;
  1349. eeprom.reg_data_out = 0;
  1350. eeprom.reg_data_clock = 0;
  1351. eeprom.reg_chip_select = 0;
  1352. eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
  1353. EEPROM_SIZE / sizeof(u16));
  1354. /*
  1355. * Start validation of the data that has been read.
  1356. */
  1357. mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
  1358. if (!is_valid_ether_addr(mac)) {
  1359. eth_random_addr(mac);
  1360. rt2x00_eeprom_dbg(rt2x00dev, "MAC: %pM\n", mac);
  1361. }
  1362. rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
  1363. if (word == 0xffff) {
  1364. rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
  1365. rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
  1366. ANTENNA_SW_DIVERSITY);
  1367. rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
  1368. ANTENNA_SW_DIVERSITY);
  1369. rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
  1370. LED_MODE_DEFAULT);
  1371. rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
  1372. rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
  1373. rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
  1374. rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
  1375. rt2x00_eeprom_dbg(rt2x00dev, "Antenna: 0x%04x\n", word);
  1376. }
  1377. rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
  1378. if (word == 0xffff) {
  1379. rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
  1380. rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
  1381. rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
  1382. rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
  1383. rt2x00_eeprom_dbg(rt2x00dev, "NIC: 0x%04x\n", word);
  1384. }
  1385. rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
  1386. if (word == 0xffff) {
  1387. rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
  1388. DEFAULT_RSSI_OFFSET);
  1389. rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
  1390. rt2x00_eeprom_dbg(rt2x00dev, "Calibrate offset: 0x%04x\n",
  1391. word);
  1392. }
  1393. return 0;
  1394. }
  1395. static int rt2500pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
  1396. {
  1397. u32 reg;
  1398. u16 value;
  1399. u16 eeprom;
  1400. /*
  1401. * Read EEPROM word for configuration.
  1402. */
  1403. rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
  1404. /*
  1405. * Identify RF chipset.
  1406. */
  1407. value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
  1408. rt2x00mmio_register_read(rt2x00dev, CSR0, &reg);
  1409. rt2x00_set_chip(rt2x00dev, RT2560, value,
  1410. rt2x00_get_field32(reg, CSR0_REVISION));
  1411. if (!rt2x00_rf(rt2x00dev, RF2522) &&
  1412. !rt2x00_rf(rt2x00dev, RF2523) &&
  1413. !rt2x00_rf(rt2x00dev, RF2524) &&
  1414. !rt2x00_rf(rt2x00dev, RF2525) &&
  1415. !rt2x00_rf(rt2x00dev, RF2525E) &&
  1416. !rt2x00_rf(rt2x00dev, RF5222)) {
  1417. rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n");
  1418. return -ENODEV;
  1419. }
  1420. /*
  1421. * Identify default antenna configuration.
  1422. */
  1423. rt2x00dev->default_ant.tx =
  1424. rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
  1425. rt2x00dev->default_ant.rx =
  1426. rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
  1427. /*
  1428. * Store led mode, for correct led behaviour.
  1429. */
  1430. #ifdef CONFIG_RT2X00_LIB_LEDS
  1431. value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
  1432. rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
  1433. if (value == LED_MODE_TXRX_ACTIVITY ||
  1434. value == LED_MODE_DEFAULT ||
  1435. value == LED_MODE_ASUS)
  1436. rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
  1437. LED_TYPE_ACTIVITY);
  1438. #endif /* CONFIG_RT2X00_LIB_LEDS */
  1439. /*
  1440. * Detect if this device has an hardware controlled radio.
  1441. */
  1442. if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO)) {
  1443. __set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
  1444. /*
  1445. * On this device RFKILL initialized during probe does not work.
  1446. */
  1447. __set_bit(REQUIRE_DELAYED_RFKILL, &rt2x00dev->cap_flags);
  1448. }
  1449. /*
  1450. * Check if the BBP tuning should be enabled.
  1451. */
  1452. rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
  1453. if (!rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
  1454. __set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags);
  1455. /*
  1456. * Read the RSSI <-> dBm offset information.
  1457. */
  1458. rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
  1459. rt2x00dev->rssi_offset =
  1460. rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
  1461. return 0;
  1462. }
  1463. /*
  1464. * RF value list for RF2522
  1465. * Supports: 2.4 GHz
  1466. */
  1467. static const struct rf_channel rf_vals_bg_2522[] = {
  1468. { 1, 0x00002050, 0x000c1fda, 0x00000101, 0 },
  1469. { 2, 0x00002050, 0x000c1fee, 0x00000101, 0 },
  1470. { 3, 0x00002050, 0x000c2002, 0x00000101, 0 },
  1471. { 4, 0x00002050, 0x000c2016, 0x00000101, 0 },
  1472. { 5, 0x00002050, 0x000c202a, 0x00000101, 0 },
  1473. { 6, 0x00002050, 0x000c203e, 0x00000101, 0 },
  1474. { 7, 0x00002050, 0x000c2052, 0x00000101, 0 },
  1475. { 8, 0x00002050, 0x000c2066, 0x00000101, 0 },
  1476. { 9, 0x00002050, 0x000c207a, 0x00000101, 0 },
  1477. { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
  1478. { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
  1479. { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
  1480. { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
  1481. { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
  1482. };
  1483. /*
  1484. * RF value list for RF2523
  1485. * Supports: 2.4 GHz
  1486. */
  1487. static const struct rf_channel rf_vals_bg_2523[] = {
  1488. { 1, 0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
  1489. { 2, 0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
  1490. { 3, 0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
  1491. { 4, 0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
  1492. { 5, 0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
  1493. { 6, 0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
  1494. { 7, 0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
  1495. { 8, 0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
  1496. { 9, 0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
  1497. { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
  1498. { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
  1499. { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
  1500. { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
  1501. { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
  1502. };
  1503. /*
  1504. * RF value list for RF2524
  1505. * Supports: 2.4 GHz
  1506. */
  1507. static const struct rf_channel rf_vals_bg_2524[] = {
  1508. { 1, 0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
  1509. { 2, 0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
  1510. { 3, 0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
  1511. { 4, 0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
  1512. { 5, 0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
  1513. { 6, 0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
  1514. { 7, 0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
  1515. { 8, 0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
  1516. { 9, 0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
  1517. { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
  1518. { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
  1519. { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
  1520. { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
  1521. { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
  1522. };
  1523. /*
  1524. * RF value list for RF2525
  1525. * Supports: 2.4 GHz
  1526. */
  1527. static const struct rf_channel rf_vals_bg_2525[] = {
  1528. { 1, 0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
  1529. { 2, 0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
  1530. { 3, 0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
  1531. { 4, 0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
  1532. { 5, 0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
  1533. { 6, 0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
  1534. { 7, 0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
  1535. { 8, 0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
  1536. { 9, 0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
  1537. { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
  1538. { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
  1539. { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
  1540. { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
  1541. { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
  1542. };
  1543. /*
  1544. * RF value list for RF2525e
  1545. * Supports: 2.4 GHz
  1546. */
  1547. static const struct rf_channel rf_vals_bg_2525e[] = {
  1548. { 1, 0x00022020, 0x00081136, 0x00060111, 0x00000a0b },
  1549. { 2, 0x00022020, 0x0008113a, 0x00060111, 0x00000a0b },
  1550. { 3, 0x00022020, 0x0008113e, 0x00060111, 0x00000a0b },
  1551. { 4, 0x00022020, 0x00081182, 0x00060111, 0x00000a0b },
  1552. { 5, 0x00022020, 0x00081186, 0x00060111, 0x00000a0b },
  1553. { 6, 0x00022020, 0x0008118a, 0x00060111, 0x00000a0b },
  1554. { 7, 0x00022020, 0x0008118e, 0x00060111, 0x00000a0b },
  1555. { 8, 0x00022020, 0x00081192, 0x00060111, 0x00000a0b },
  1556. { 9, 0x00022020, 0x00081196, 0x00060111, 0x00000a0b },
  1557. { 10, 0x00022020, 0x0008119a, 0x00060111, 0x00000a0b },
  1558. { 11, 0x00022020, 0x0008119e, 0x00060111, 0x00000a0b },
  1559. { 12, 0x00022020, 0x000811a2, 0x00060111, 0x00000a0b },
  1560. { 13, 0x00022020, 0x000811a6, 0x00060111, 0x00000a0b },
  1561. { 14, 0x00022020, 0x000811ae, 0x00060111, 0x00000a1b },
  1562. };
  1563. /*
  1564. * RF value list for RF5222
  1565. * Supports: 2.4 GHz & 5.2 GHz
  1566. */
  1567. static const struct rf_channel rf_vals_5222[] = {
  1568. { 1, 0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
  1569. { 2, 0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
  1570. { 3, 0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
  1571. { 4, 0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
  1572. { 5, 0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
  1573. { 6, 0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
  1574. { 7, 0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
  1575. { 8, 0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
  1576. { 9, 0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
  1577. { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
  1578. { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
  1579. { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
  1580. { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
  1581. { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
  1582. /* 802.11 UNI / HyperLan 2 */
  1583. { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
  1584. { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
  1585. { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
  1586. { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
  1587. { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
  1588. { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
  1589. { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
  1590. { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
  1591. /* 802.11 HyperLan 2 */
  1592. { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
  1593. { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
  1594. { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
  1595. { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
  1596. { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
  1597. { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
  1598. { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
  1599. { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
  1600. { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
  1601. { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
  1602. /* 802.11 UNII */
  1603. { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
  1604. { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
  1605. { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
  1606. { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
  1607. { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
  1608. };
  1609. static int rt2500pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
  1610. {
  1611. struct hw_mode_spec *spec = &rt2x00dev->spec;
  1612. struct channel_info *info;
  1613. char *tx_power;
  1614. unsigned int i;
  1615. /*
  1616. * Initialize all hw fields.
  1617. */
  1618. ieee80211_hw_set(rt2x00dev->hw, PS_NULLFUNC_STACK);
  1619. ieee80211_hw_set(rt2x00dev->hw, SUPPORTS_PS);
  1620. ieee80211_hw_set(rt2x00dev->hw, HOST_BROADCAST_PS_BUFFERING);
  1621. ieee80211_hw_set(rt2x00dev->hw, SIGNAL_DBM);
  1622. SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
  1623. SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
  1624. rt2x00_eeprom_addr(rt2x00dev,
  1625. EEPROM_MAC_ADDR_0));
  1626. /*
  1627. * Disable powersaving as default.
  1628. */
  1629. rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
  1630. /*
  1631. * Initialize hw_mode information.
  1632. */
  1633. spec->supported_bands = SUPPORT_BAND_2GHZ;
  1634. spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
  1635. if (rt2x00_rf(rt2x00dev, RF2522)) {
  1636. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
  1637. spec->channels = rf_vals_bg_2522;
  1638. } else if (rt2x00_rf(rt2x00dev, RF2523)) {
  1639. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
  1640. spec->channels = rf_vals_bg_2523;
  1641. } else if (rt2x00_rf(rt2x00dev, RF2524)) {
  1642. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
  1643. spec->channels = rf_vals_bg_2524;
  1644. } else if (rt2x00_rf(rt2x00dev, RF2525)) {
  1645. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
  1646. spec->channels = rf_vals_bg_2525;
  1647. } else if (rt2x00_rf(rt2x00dev, RF2525E)) {
  1648. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
  1649. spec->channels = rf_vals_bg_2525e;
  1650. } else if (rt2x00_rf(rt2x00dev, RF5222)) {
  1651. spec->supported_bands |= SUPPORT_BAND_5GHZ;
  1652. spec->num_channels = ARRAY_SIZE(rf_vals_5222);
  1653. spec->channels = rf_vals_5222;
  1654. }
  1655. /*
  1656. * Create channel information array
  1657. */
  1658. info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
  1659. if (!info)
  1660. return -ENOMEM;
  1661. spec->channels_info = info;
  1662. tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
  1663. for (i = 0; i < 14; i++) {
  1664. info[i].max_power = MAX_TXPOWER;
  1665. info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
  1666. }
  1667. if (spec->num_channels > 14) {
  1668. for (i = 14; i < spec->num_channels; i++) {
  1669. info[i].max_power = MAX_TXPOWER;
  1670. info[i].default_power1 = DEFAULT_TXPOWER;
  1671. }
  1672. }
  1673. return 0;
  1674. }
  1675. static int rt2500pci_probe_hw(struct rt2x00_dev *rt2x00dev)
  1676. {
  1677. int retval;
  1678. u32 reg;
  1679. /*
  1680. * Allocate eeprom data.
  1681. */
  1682. retval = rt2500pci_validate_eeprom(rt2x00dev);
  1683. if (retval)
  1684. return retval;
  1685. retval = rt2500pci_init_eeprom(rt2x00dev);
  1686. if (retval)
  1687. return retval;
  1688. /*
  1689. * Enable rfkill polling by setting GPIO direction of the
  1690. * rfkill switch GPIO pin correctly.
  1691. */
  1692. rt2x00mmio_register_read(rt2x00dev, GPIOCSR, &reg);
  1693. rt2x00_set_field32(&reg, GPIOCSR_DIR0, 1);
  1694. rt2x00mmio_register_write(rt2x00dev, GPIOCSR, reg);
  1695. /*
  1696. * Initialize hw specifications.
  1697. */
  1698. retval = rt2500pci_probe_hw_mode(rt2x00dev);
  1699. if (retval)
  1700. return retval;
  1701. /*
  1702. * This device requires the atim queue and DMA-mapped skbs.
  1703. */
  1704. __set_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags);
  1705. __set_bit(REQUIRE_DMA, &rt2x00dev->cap_flags);
  1706. __set_bit(REQUIRE_SW_SEQNO, &rt2x00dev->cap_flags);
  1707. /*
  1708. * Set the rssi offset.
  1709. */
  1710. rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
  1711. return 0;
  1712. }
  1713. /*
  1714. * IEEE80211 stack callback functions.
  1715. */
  1716. static u64 rt2500pci_get_tsf(struct ieee80211_hw *hw,
  1717. struct ieee80211_vif *vif)
  1718. {
  1719. struct rt2x00_dev *rt2x00dev = hw->priv;
  1720. u64 tsf;
  1721. u32 reg;
  1722. rt2x00mmio_register_read(rt2x00dev, CSR17, &reg);
  1723. tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
  1724. rt2x00mmio_register_read(rt2x00dev, CSR16, &reg);
  1725. tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
  1726. return tsf;
  1727. }
  1728. static int rt2500pci_tx_last_beacon(struct ieee80211_hw *hw)
  1729. {
  1730. struct rt2x00_dev *rt2x00dev = hw->priv;
  1731. u32 reg;
  1732. rt2x00mmio_register_read(rt2x00dev, CSR15, &reg);
  1733. return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
  1734. }
  1735. static const struct ieee80211_ops rt2500pci_mac80211_ops = {
  1736. .tx = rt2x00mac_tx,
  1737. .start = rt2x00mac_start,
  1738. .stop = rt2x00mac_stop,
  1739. .add_interface = rt2x00mac_add_interface,
  1740. .remove_interface = rt2x00mac_remove_interface,
  1741. .config = rt2x00mac_config,
  1742. .configure_filter = rt2x00mac_configure_filter,
  1743. .sw_scan_start = rt2x00mac_sw_scan_start,
  1744. .sw_scan_complete = rt2x00mac_sw_scan_complete,
  1745. .get_stats = rt2x00mac_get_stats,
  1746. .bss_info_changed = rt2x00mac_bss_info_changed,
  1747. .conf_tx = rt2x00mac_conf_tx,
  1748. .get_tsf = rt2500pci_get_tsf,
  1749. .tx_last_beacon = rt2500pci_tx_last_beacon,
  1750. .rfkill_poll = rt2x00mac_rfkill_poll,
  1751. .flush = rt2x00mac_flush,
  1752. .set_antenna = rt2x00mac_set_antenna,
  1753. .get_antenna = rt2x00mac_get_antenna,
  1754. .get_ringparam = rt2x00mac_get_ringparam,
  1755. .tx_frames_pending = rt2x00mac_tx_frames_pending,
  1756. };
  1757. static const struct rt2x00lib_ops rt2500pci_rt2x00_ops = {
  1758. .irq_handler = rt2500pci_interrupt,
  1759. .txstatus_tasklet = rt2500pci_txstatus_tasklet,
  1760. .tbtt_tasklet = rt2500pci_tbtt_tasklet,
  1761. .rxdone_tasklet = rt2500pci_rxdone_tasklet,
  1762. .probe_hw = rt2500pci_probe_hw,
  1763. .initialize = rt2x00mmio_initialize,
  1764. .uninitialize = rt2x00mmio_uninitialize,
  1765. .get_entry_state = rt2500pci_get_entry_state,
  1766. .clear_entry = rt2500pci_clear_entry,
  1767. .set_device_state = rt2500pci_set_device_state,
  1768. .rfkill_poll = rt2500pci_rfkill_poll,
  1769. .link_stats = rt2500pci_link_stats,
  1770. .reset_tuner = rt2500pci_reset_tuner,
  1771. .link_tuner = rt2500pci_link_tuner,
  1772. .start_queue = rt2500pci_start_queue,
  1773. .kick_queue = rt2500pci_kick_queue,
  1774. .stop_queue = rt2500pci_stop_queue,
  1775. .flush_queue = rt2x00mmio_flush_queue,
  1776. .write_tx_desc = rt2500pci_write_tx_desc,
  1777. .write_beacon = rt2500pci_write_beacon,
  1778. .fill_rxdone = rt2500pci_fill_rxdone,
  1779. .config_filter = rt2500pci_config_filter,
  1780. .config_intf = rt2500pci_config_intf,
  1781. .config_erp = rt2500pci_config_erp,
  1782. .config_ant = rt2500pci_config_ant,
  1783. .config = rt2500pci_config,
  1784. };
  1785. static void rt2500pci_queue_init(struct data_queue *queue)
  1786. {
  1787. switch (queue->qid) {
  1788. case QID_RX:
  1789. queue->limit = 32;
  1790. queue->data_size = DATA_FRAME_SIZE;
  1791. queue->desc_size = RXD_DESC_SIZE;
  1792. queue->priv_size = sizeof(struct queue_entry_priv_mmio);
  1793. break;
  1794. case QID_AC_VO:
  1795. case QID_AC_VI:
  1796. case QID_AC_BE:
  1797. case QID_AC_BK:
  1798. queue->limit = 32;
  1799. queue->data_size = DATA_FRAME_SIZE;
  1800. queue->desc_size = TXD_DESC_SIZE;
  1801. queue->priv_size = sizeof(struct queue_entry_priv_mmio);
  1802. break;
  1803. case QID_BEACON:
  1804. queue->limit = 1;
  1805. queue->data_size = MGMT_FRAME_SIZE;
  1806. queue->desc_size = TXD_DESC_SIZE;
  1807. queue->priv_size = sizeof(struct queue_entry_priv_mmio);
  1808. break;
  1809. case QID_ATIM:
  1810. queue->limit = 8;
  1811. queue->data_size = DATA_FRAME_SIZE;
  1812. queue->desc_size = TXD_DESC_SIZE;
  1813. queue->priv_size = sizeof(struct queue_entry_priv_mmio);
  1814. break;
  1815. default:
  1816. BUG();
  1817. break;
  1818. }
  1819. }
  1820. static const struct rt2x00_ops rt2500pci_ops = {
  1821. .name = KBUILD_MODNAME,
  1822. .max_ap_intf = 1,
  1823. .eeprom_size = EEPROM_SIZE,
  1824. .rf_size = RF_SIZE,
  1825. .tx_queues = NUM_TX_QUEUES,
  1826. .queue_init = rt2500pci_queue_init,
  1827. .lib = &rt2500pci_rt2x00_ops,
  1828. .hw = &rt2500pci_mac80211_ops,
  1829. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  1830. .debugfs = &rt2500pci_rt2x00debug,
  1831. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  1832. };
  1833. /*
  1834. * RT2500pci module information.
  1835. */
  1836. static const struct pci_device_id rt2500pci_device_table[] = {
  1837. { PCI_DEVICE(0x1814, 0x0201) },
  1838. { 0, }
  1839. };
  1840. MODULE_AUTHOR(DRV_PROJECT);
  1841. MODULE_VERSION(DRV_VERSION);
  1842. MODULE_DESCRIPTION("Ralink RT2500 PCI & PCMCIA Wireless LAN driver.");
  1843. MODULE_SUPPORTED_DEVICE("Ralink RT2560 PCI & PCMCIA chipset based cards");
  1844. MODULE_DEVICE_TABLE(pci, rt2500pci_device_table);
  1845. MODULE_LICENSE("GPL");
  1846. static int rt2500pci_probe(struct pci_dev *pci_dev,
  1847. const struct pci_device_id *id)
  1848. {
  1849. return rt2x00pci_probe(pci_dev, &rt2500pci_ops);
  1850. }
  1851. static struct pci_driver rt2500pci_driver = {
  1852. .name = KBUILD_MODNAME,
  1853. .id_table = rt2500pci_device_table,
  1854. .probe = rt2500pci_probe,
  1855. .remove = rt2x00pci_remove,
  1856. .suspend = rt2x00pci_suspend,
  1857. .resume = rt2x00pci_resume,
  1858. };
  1859. module_pci_driver(rt2500pci_driver);