pinctrl-st.c 49 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771
  1. /*
  2. * Copyright (C) 2013 STMicroelectronics (R&D) Limited.
  3. * Authors:
  4. * Srinivas Kandagatla <srinivas.kandagatla@st.com>
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. */
  10. #include <linux/init.h>
  11. #include <linux/module.h>
  12. #include <linux/slab.h>
  13. #include <linux/err.h>
  14. #include <linux/io.h>
  15. #include <linux/of.h>
  16. #include <linux/of_irq.h>
  17. #include <linux/of_gpio.h>
  18. #include <linux/of_address.h>
  19. #include <linux/regmap.h>
  20. #include <linux/mfd/syscon.h>
  21. #include <linux/pinctrl/pinctrl.h>
  22. #include <linux/pinctrl/pinmux.h>
  23. #include <linux/pinctrl/pinconf.h>
  24. #include <linux/platform_device.h>
  25. #include "core.h"
  26. /* PIO Block registers */
  27. /* PIO output */
  28. #define REG_PIO_POUT 0x00
  29. /* Set bits of POUT */
  30. #define REG_PIO_SET_POUT 0x04
  31. /* Clear bits of POUT */
  32. #define REG_PIO_CLR_POUT 0x08
  33. /* PIO input */
  34. #define REG_PIO_PIN 0x10
  35. /* PIO configuration */
  36. #define REG_PIO_PC(n) (0x20 + (n) * 0x10)
  37. /* Set bits of PC[2:0] */
  38. #define REG_PIO_SET_PC(n) (0x24 + (n) * 0x10)
  39. /* Clear bits of PC[2:0] */
  40. #define REG_PIO_CLR_PC(n) (0x28 + (n) * 0x10)
  41. /* PIO input comparison */
  42. #define REG_PIO_PCOMP 0x50
  43. /* Set bits of PCOMP */
  44. #define REG_PIO_SET_PCOMP 0x54
  45. /* Clear bits of PCOMP */
  46. #define REG_PIO_CLR_PCOMP 0x58
  47. /* PIO input comparison mask */
  48. #define REG_PIO_PMASK 0x60
  49. /* Set bits of PMASK */
  50. #define REG_PIO_SET_PMASK 0x64
  51. /* Clear bits of PMASK */
  52. #define REG_PIO_CLR_PMASK 0x68
  53. #define ST_GPIO_DIRECTION_BIDIR 0x1
  54. #define ST_GPIO_DIRECTION_OUT 0x2
  55. #define ST_GPIO_DIRECTION_IN 0x4
  56. /**
  57. * Packed style retime configuration.
  58. * There are two registers cfg0 and cfg1 in this style for each bank.
  59. * Each field in this register is 8 bit corresponding to 8 pins in the bank.
  60. */
  61. #define RT_P_CFGS_PER_BANK 2
  62. #define RT_P_CFG0_CLK1NOTCLK0_FIELD(reg) REG_FIELD(reg, 0, 7)
  63. #define RT_P_CFG0_DELAY_0_FIELD(reg) REG_FIELD(reg, 16, 23)
  64. #define RT_P_CFG0_DELAY_1_FIELD(reg) REG_FIELD(reg, 24, 31)
  65. #define RT_P_CFG1_INVERTCLK_FIELD(reg) REG_FIELD(reg, 0, 7)
  66. #define RT_P_CFG1_RETIME_FIELD(reg) REG_FIELD(reg, 8, 15)
  67. #define RT_P_CFG1_CLKNOTDATA_FIELD(reg) REG_FIELD(reg, 16, 23)
  68. #define RT_P_CFG1_DOUBLE_EDGE_FIELD(reg) REG_FIELD(reg, 24, 31)
  69. /**
  70. * Dedicated style retime Configuration register
  71. * each register is dedicated per pin.
  72. */
  73. #define RT_D_CFGS_PER_BANK 8
  74. #define RT_D_CFG_CLK_SHIFT 0
  75. #define RT_D_CFG_CLK_MASK (0x3 << 0)
  76. #define RT_D_CFG_CLKNOTDATA_SHIFT 2
  77. #define RT_D_CFG_CLKNOTDATA_MASK BIT(2)
  78. #define RT_D_CFG_DELAY_SHIFT 3
  79. #define RT_D_CFG_DELAY_MASK (0xf << 3)
  80. #define RT_D_CFG_DELAY_INNOTOUT_SHIFT 7
  81. #define RT_D_CFG_DELAY_INNOTOUT_MASK BIT(7)
  82. #define RT_D_CFG_DOUBLE_EDGE_SHIFT 8
  83. #define RT_D_CFG_DOUBLE_EDGE_MASK BIT(8)
  84. #define RT_D_CFG_INVERTCLK_SHIFT 9
  85. #define RT_D_CFG_INVERTCLK_MASK BIT(9)
  86. #define RT_D_CFG_RETIME_SHIFT 10
  87. #define RT_D_CFG_RETIME_MASK BIT(10)
  88. /*
  89. * Pinconf is represented in an opaque unsigned long variable.
  90. * Below is the bit allocation details for each possible configuration.
  91. * All the bit fields can be encapsulated into four variables
  92. * (direction, retime-type, retime-clk, retime-delay)
  93. *
  94. * +----------------+
  95. *[31:28]| reserved-3 |
  96. * +----------------+-------------
  97. *[27] | oe | |
  98. * +----------------+ v
  99. *[26] | pu | [Direction ]
  100. * +----------------+ ^
  101. *[25] | od | |
  102. * +----------------+-------------
  103. *[24] | reserved-2 |
  104. * +----------------+-------------
  105. *[23] | retime | |
  106. * +----------------+ |
  107. *[22] | retime-invclk | |
  108. * +----------------+ v
  109. *[21] |retime-clknotdat| [Retime-type ]
  110. * +----------------+ ^
  111. *[20] | retime-de | |
  112. * +----------------+-------------
  113. *[19:18]| retime-clk |------>[Retime-Clk ]
  114. * +----------------+
  115. *[17:16]| reserved-1 |
  116. * +----------------+
  117. *[15..0]| retime-delay |------>[Retime Delay]
  118. * +----------------+
  119. */
  120. #define ST_PINCONF_UNPACK(conf, param)\
  121. ((conf >> ST_PINCONF_ ##param ##_SHIFT) \
  122. & ST_PINCONF_ ##param ##_MASK)
  123. #define ST_PINCONF_PACK(conf, val, param) (conf |=\
  124. ((val & ST_PINCONF_ ##param ##_MASK) << \
  125. ST_PINCONF_ ##param ##_SHIFT))
  126. /* Output enable */
  127. #define ST_PINCONF_OE_MASK 0x1
  128. #define ST_PINCONF_OE_SHIFT 27
  129. #define ST_PINCONF_OE BIT(27)
  130. #define ST_PINCONF_UNPACK_OE(conf) ST_PINCONF_UNPACK(conf, OE)
  131. #define ST_PINCONF_PACK_OE(conf) ST_PINCONF_PACK(conf, 1, OE)
  132. /* Pull Up */
  133. #define ST_PINCONF_PU_MASK 0x1
  134. #define ST_PINCONF_PU_SHIFT 26
  135. #define ST_PINCONF_PU BIT(26)
  136. #define ST_PINCONF_UNPACK_PU(conf) ST_PINCONF_UNPACK(conf, PU)
  137. #define ST_PINCONF_PACK_PU(conf) ST_PINCONF_PACK(conf, 1, PU)
  138. /* Open Drain */
  139. #define ST_PINCONF_OD_MASK 0x1
  140. #define ST_PINCONF_OD_SHIFT 25
  141. #define ST_PINCONF_OD BIT(25)
  142. #define ST_PINCONF_UNPACK_OD(conf) ST_PINCONF_UNPACK(conf, OD)
  143. #define ST_PINCONF_PACK_OD(conf) ST_PINCONF_PACK(conf, 1, OD)
  144. #define ST_PINCONF_RT_MASK 0x1
  145. #define ST_PINCONF_RT_SHIFT 23
  146. #define ST_PINCONF_RT BIT(23)
  147. #define ST_PINCONF_UNPACK_RT(conf) ST_PINCONF_UNPACK(conf, RT)
  148. #define ST_PINCONF_PACK_RT(conf) ST_PINCONF_PACK(conf, 1, RT)
  149. #define ST_PINCONF_RT_INVERTCLK_MASK 0x1
  150. #define ST_PINCONF_RT_INVERTCLK_SHIFT 22
  151. #define ST_PINCONF_RT_INVERTCLK BIT(22)
  152. #define ST_PINCONF_UNPACK_RT_INVERTCLK(conf) \
  153. ST_PINCONF_UNPACK(conf, RT_INVERTCLK)
  154. #define ST_PINCONF_PACK_RT_INVERTCLK(conf) \
  155. ST_PINCONF_PACK(conf, 1, RT_INVERTCLK)
  156. #define ST_PINCONF_RT_CLKNOTDATA_MASK 0x1
  157. #define ST_PINCONF_RT_CLKNOTDATA_SHIFT 21
  158. #define ST_PINCONF_RT_CLKNOTDATA BIT(21)
  159. #define ST_PINCONF_UNPACK_RT_CLKNOTDATA(conf) \
  160. ST_PINCONF_UNPACK(conf, RT_CLKNOTDATA)
  161. #define ST_PINCONF_PACK_RT_CLKNOTDATA(conf) \
  162. ST_PINCONF_PACK(conf, 1, RT_CLKNOTDATA)
  163. #define ST_PINCONF_RT_DOUBLE_EDGE_MASK 0x1
  164. #define ST_PINCONF_RT_DOUBLE_EDGE_SHIFT 20
  165. #define ST_PINCONF_RT_DOUBLE_EDGE BIT(20)
  166. #define ST_PINCONF_UNPACK_RT_DOUBLE_EDGE(conf) \
  167. ST_PINCONF_UNPACK(conf, RT_DOUBLE_EDGE)
  168. #define ST_PINCONF_PACK_RT_DOUBLE_EDGE(conf) \
  169. ST_PINCONF_PACK(conf, 1, RT_DOUBLE_EDGE)
  170. #define ST_PINCONF_RT_CLK_MASK 0x3
  171. #define ST_PINCONF_RT_CLK_SHIFT 18
  172. #define ST_PINCONF_RT_CLK BIT(18)
  173. #define ST_PINCONF_UNPACK_RT_CLK(conf) ST_PINCONF_UNPACK(conf, RT_CLK)
  174. #define ST_PINCONF_PACK_RT_CLK(conf, val) ST_PINCONF_PACK(conf, val, RT_CLK)
  175. /* RETIME_DELAY in Pico Secs */
  176. #define ST_PINCONF_RT_DELAY_MASK 0xffff
  177. #define ST_PINCONF_RT_DELAY_SHIFT 0
  178. #define ST_PINCONF_UNPACK_RT_DELAY(conf) ST_PINCONF_UNPACK(conf, RT_DELAY)
  179. #define ST_PINCONF_PACK_RT_DELAY(conf, val) \
  180. ST_PINCONF_PACK(conf, val, RT_DELAY)
  181. #define ST_GPIO_PINS_PER_BANK (8)
  182. #define OF_GPIO_ARGS_MIN (4)
  183. #define OF_RT_ARGS_MIN (2)
  184. #define gpio_range_to_bank(chip) \
  185. container_of(chip, struct st_gpio_bank, range)
  186. #define gpio_chip_to_bank(chip) \
  187. container_of(chip, struct st_gpio_bank, gpio_chip)
  188. #define pc_to_bank(pc) \
  189. container_of(pc, struct st_gpio_bank, pc)
  190. enum st_retime_style {
  191. st_retime_style_none,
  192. st_retime_style_packed,
  193. st_retime_style_dedicated,
  194. };
  195. struct st_retime_dedicated {
  196. struct regmap_field *rt[ST_GPIO_PINS_PER_BANK];
  197. };
  198. struct st_retime_packed {
  199. struct regmap_field *clk1notclk0;
  200. struct regmap_field *delay_0;
  201. struct regmap_field *delay_1;
  202. struct regmap_field *invertclk;
  203. struct regmap_field *retime;
  204. struct regmap_field *clknotdata;
  205. struct regmap_field *double_edge;
  206. };
  207. struct st_pio_control {
  208. u32 rt_pin_mask;
  209. struct regmap_field *alt, *oe, *pu, *od;
  210. /* retiming */
  211. union {
  212. struct st_retime_packed rt_p;
  213. struct st_retime_dedicated rt_d;
  214. } rt;
  215. };
  216. struct st_pctl_data {
  217. const enum st_retime_style rt_style;
  218. const unsigned int *input_delays;
  219. const int ninput_delays;
  220. const unsigned int *output_delays;
  221. const int noutput_delays;
  222. /* register offset information */
  223. const int alt, oe, pu, od, rt;
  224. };
  225. struct st_pinconf {
  226. int pin;
  227. const char *name;
  228. unsigned long config;
  229. int altfunc;
  230. };
  231. struct st_pmx_func {
  232. const char *name;
  233. const char **groups;
  234. unsigned ngroups;
  235. };
  236. struct st_pctl_group {
  237. const char *name;
  238. unsigned int *pins;
  239. unsigned npins;
  240. struct st_pinconf *pin_conf;
  241. };
  242. /*
  243. * Edge triggers are not supported at hardware level, it is supported by
  244. * software by exploiting the level trigger support in hardware.
  245. * Software uses a virtual register (EDGE_CONF) for edge trigger configuration
  246. * of each gpio pin in a GPIO bank.
  247. *
  248. * Each bank has a 32 bit EDGE_CONF register which is divided in to 8 parts of
  249. * 4-bits. Each 4-bit space is allocated for each pin in a gpio bank.
  250. *
  251. * bit allocation per pin is:
  252. * Bits: [0 - 3] | [4 - 7] [8 - 11] ... ... ... ... [ 28 - 31]
  253. * --------------------------------------------------------
  254. * | pin-0 | pin-2 | pin-3 | ... ... ... ... | pin -7 |
  255. * --------------------------------------------------------
  256. *
  257. * A pin can have one of following the values in its edge configuration field.
  258. *
  259. * ------- ----------------------------
  260. * [0-3] - Description
  261. * ------- ----------------------------
  262. * 0000 - No edge IRQ.
  263. * 0001 - Falling edge IRQ.
  264. * 0010 - Rising edge IRQ.
  265. * 0011 - Rising and Falling edge IRQ.
  266. * ------- ----------------------------
  267. */
  268. #define ST_IRQ_EDGE_CONF_BITS_PER_PIN 4
  269. #define ST_IRQ_EDGE_MASK 0xf
  270. #define ST_IRQ_EDGE_FALLING BIT(0)
  271. #define ST_IRQ_EDGE_RISING BIT(1)
  272. #define ST_IRQ_EDGE_BOTH (BIT(0) | BIT(1))
  273. #define ST_IRQ_RISING_EDGE_CONF(pin) \
  274. (ST_IRQ_EDGE_RISING << (pin * ST_IRQ_EDGE_CONF_BITS_PER_PIN))
  275. #define ST_IRQ_FALLING_EDGE_CONF(pin) \
  276. (ST_IRQ_EDGE_FALLING << (pin * ST_IRQ_EDGE_CONF_BITS_PER_PIN))
  277. #define ST_IRQ_BOTH_EDGE_CONF(pin) \
  278. (ST_IRQ_EDGE_BOTH << (pin * ST_IRQ_EDGE_CONF_BITS_PER_PIN))
  279. #define ST_IRQ_EDGE_CONF(conf, pin) \
  280. (conf >> (pin * ST_IRQ_EDGE_CONF_BITS_PER_PIN) & ST_IRQ_EDGE_MASK)
  281. struct st_gpio_bank {
  282. struct gpio_chip gpio_chip;
  283. struct pinctrl_gpio_range range;
  284. void __iomem *base;
  285. struct st_pio_control pc;
  286. unsigned long irq_edge_conf;
  287. spinlock_t lock;
  288. };
  289. struct st_pinctrl {
  290. struct device *dev;
  291. struct pinctrl_dev *pctl;
  292. struct st_gpio_bank *banks;
  293. int nbanks;
  294. struct st_pmx_func *functions;
  295. int nfunctions;
  296. struct st_pctl_group *groups;
  297. int ngroups;
  298. struct regmap *regmap;
  299. const struct st_pctl_data *data;
  300. void __iomem *irqmux_base;
  301. };
  302. /* SOC specific data */
  303. /* STiH415 data */
  304. static const unsigned int stih415_input_delays[] = {0, 500, 1000, 1500};
  305. static const unsigned int stih415_output_delays[] = {0, 1000, 2000, 3000};
  306. #define STIH415_PCTRL_COMMON_DATA \
  307. .rt_style = st_retime_style_packed, \
  308. .input_delays = stih415_input_delays, \
  309. .ninput_delays = ARRAY_SIZE(stih415_input_delays), \
  310. .output_delays = stih415_output_delays, \
  311. .noutput_delays = ARRAY_SIZE(stih415_output_delays)
  312. static const struct st_pctl_data stih415_sbc_data = {
  313. STIH415_PCTRL_COMMON_DATA,
  314. .alt = 0, .oe = 5, .pu = 7, .od = 9, .rt = 16,
  315. };
  316. static const struct st_pctl_data stih415_front_data = {
  317. STIH415_PCTRL_COMMON_DATA,
  318. .alt = 0, .oe = 8, .pu = 10, .od = 12, .rt = 16,
  319. };
  320. static const struct st_pctl_data stih415_rear_data = {
  321. STIH415_PCTRL_COMMON_DATA,
  322. .alt = 0, .oe = 6, .pu = 8, .od = 10, .rt = 38,
  323. };
  324. static const struct st_pctl_data stih415_left_data = {
  325. STIH415_PCTRL_COMMON_DATA,
  326. .alt = 0, .oe = 3, .pu = 4, .od = 5, .rt = 6,
  327. };
  328. static const struct st_pctl_data stih415_right_data = {
  329. STIH415_PCTRL_COMMON_DATA,
  330. .alt = 0, .oe = 5, .pu = 7, .od = 9, .rt = 11,
  331. };
  332. /* STiH416 data */
  333. static const unsigned int stih416_delays[] = {0, 300, 500, 750, 1000, 1250,
  334. 1500, 1750, 2000, 2250, 2500, 2750, 3000, 3250 };
  335. static const struct st_pctl_data stih416_data = {
  336. .rt_style = st_retime_style_dedicated,
  337. .input_delays = stih416_delays,
  338. .ninput_delays = ARRAY_SIZE(stih416_delays),
  339. .output_delays = stih416_delays,
  340. .noutput_delays = ARRAY_SIZE(stih416_delays),
  341. .alt = 0, .oe = 40, .pu = 50, .od = 60, .rt = 100,
  342. };
  343. static const struct st_pctl_data stih407_flashdata = {
  344. .rt_style = st_retime_style_none,
  345. .input_delays = stih416_delays,
  346. .ninput_delays = ARRAY_SIZE(stih416_delays),
  347. .output_delays = stih416_delays,
  348. .noutput_delays = ARRAY_SIZE(stih416_delays),
  349. .alt = 0,
  350. .oe = -1, /* Not Available */
  351. .pu = -1, /* Not Available */
  352. .od = 60,
  353. .rt = 100,
  354. };
  355. static struct st_pio_control *st_get_pio_control(
  356. struct pinctrl_dev *pctldev, int pin)
  357. {
  358. struct pinctrl_gpio_range *range =
  359. pinctrl_find_gpio_range_from_pin(pctldev, pin);
  360. struct st_gpio_bank *bank = gpio_range_to_bank(range);
  361. return &bank->pc;
  362. }
  363. /* Low level functions.. */
  364. static inline int st_gpio_bank(int gpio)
  365. {
  366. return gpio/ST_GPIO_PINS_PER_BANK;
  367. }
  368. static inline int st_gpio_pin(int gpio)
  369. {
  370. return gpio%ST_GPIO_PINS_PER_BANK;
  371. }
  372. static void st_pinconf_set_config(struct st_pio_control *pc,
  373. int pin, unsigned long config)
  374. {
  375. struct regmap_field *output_enable = pc->oe;
  376. struct regmap_field *pull_up = pc->pu;
  377. struct regmap_field *open_drain = pc->od;
  378. unsigned int oe_value, pu_value, od_value;
  379. unsigned long mask = BIT(pin);
  380. if (output_enable) {
  381. regmap_field_read(output_enable, &oe_value);
  382. oe_value &= ~mask;
  383. if (config & ST_PINCONF_OE)
  384. oe_value |= mask;
  385. regmap_field_write(output_enable, oe_value);
  386. }
  387. if (pull_up) {
  388. regmap_field_read(pull_up, &pu_value);
  389. pu_value &= ~mask;
  390. if (config & ST_PINCONF_PU)
  391. pu_value |= mask;
  392. regmap_field_write(pull_up, pu_value);
  393. }
  394. if (open_drain) {
  395. regmap_field_read(open_drain, &od_value);
  396. od_value &= ~mask;
  397. if (config & ST_PINCONF_OD)
  398. od_value |= mask;
  399. regmap_field_write(open_drain, od_value);
  400. }
  401. }
  402. static void st_pctl_set_function(struct st_pio_control *pc,
  403. int pin_id, int function)
  404. {
  405. struct regmap_field *alt = pc->alt;
  406. unsigned int val;
  407. int pin = st_gpio_pin(pin_id);
  408. int offset = pin * 4;
  409. if (!alt)
  410. return;
  411. regmap_field_read(alt, &val);
  412. val &= ~(0xf << offset);
  413. val |= function << offset;
  414. regmap_field_write(alt, val);
  415. }
  416. static unsigned int st_pctl_get_pin_function(struct st_pio_control *pc, int pin)
  417. {
  418. struct regmap_field *alt = pc->alt;
  419. unsigned int val;
  420. int offset = pin * 4;
  421. if (!alt)
  422. return 0;
  423. regmap_field_read(alt, &val);
  424. return (val >> offset) & 0xf;
  425. }
  426. static unsigned long st_pinconf_delay_to_bit(unsigned int delay,
  427. const struct st_pctl_data *data, unsigned long config)
  428. {
  429. const unsigned int *delay_times;
  430. int num_delay_times, i, closest_index = -1;
  431. unsigned int closest_divergence = UINT_MAX;
  432. if (ST_PINCONF_UNPACK_OE(config)) {
  433. delay_times = data->output_delays;
  434. num_delay_times = data->noutput_delays;
  435. } else {
  436. delay_times = data->input_delays;
  437. num_delay_times = data->ninput_delays;
  438. }
  439. for (i = 0; i < num_delay_times; i++) {
  440. unsigned int divergence = abs(delay - delay_times[i]);
  441. if (divergence == 0)
  442. return i;
  443. if (divergence < closest_divergence) {
  444. closest_divergence = divergence;
  445. closest_index = i;
  446. }
  447. }
  448. pr_warn("Attempt to set delay %d, closest available %d\n",
  449. delay, delay_times[closest_index]);
  450. return closest_index;
  451. }
  452. static unsigned long st_pinconf_bit_to_delay(unsigned int index,
  453. const struct st_pctl_data *data, unsigned long output)
  454. {
  455. const unsigned int *delay_times;
  456. int num_delay_times;
  457. if (output) {
  458. delay_times = data->output_delays;
  459. num_delay_times = data->noutput_delays;
  460. } else {
  461. delay_times = data->input_delays;
  462. num_delay_times = data->ninput_delays;
  463. }
  464. if (index < num_delay_times) {
  465. return delay_times[index];
  466. } else {
  467. pr_warn("Delay not found in/out delay list\n");
  468. return 0;
  469. }
  470. }
  471. static void st_regmap_field_bit_set_clear_pin(struct regmap_field *field,
  472. int enable, int pin)
  473. {
  474. unsigned int val = 0;
  475. regmap_field_read(field, &val);
  476. if (enable)
  477. val |= BIT(pin);
  478. else
  479. val &= ~BIT(pin);
  480. regmap_field_write(field, val);
  481. }
  482. static void st_pinconf_set_retime_packed(struct st_pinctrl *info,
  483. struct st_pio_control *pc, unsigned long config, int pin)
  484. {
  485. const struct st_pctl_data *data = info->data;
  486. struct st_retime_packed *rt_p = &pc->rt.rt_p;
  487. unsigned int delay;
  488. st_regmap_field_bit_set_clear_pin(rt_p->clk1notclk0,
  489. ST_PINCONF_UNPACK_RT_CLK(config), pin);
  490. st_regmap_field_bit_set_clear_pin(rt_p->clknotdata,
  491. ST_PINCONF_UNPACK_RT_CLKNOTDATA(config), pin);
  492. st_regmap_field_bit_set_clear_pin(rt_p->double_edge,
  493. ST_PINCONF_UNPACK_RT_DOUBLE_EDGE(config), pin);
  494. st_regmap_field_bit_set_clear_pin(rt_p->invertclk,
  495. ST_PINCONF_UNPACK_RT_INVERTCLK(config), pin);
  496. st_regmap_field_bit_set_clear_pin(rt_p->retime,
  497. ST_PINCONF_UNPACK_RT(config), pin);
  498. delay = st_pinconf_delay_to_bit(ST_PINCONF_UNPACK_RT_DELAY(config),
  499. data, config);
  500. /* 2 bit delay, lsb */
  501. st_regmap_field_bit_set_clear_pin(rt_p->delay_0, delay & 0x1, pin);
  502. /* 2 bit delay, msb */
  503. st_regmap_field_bit_set_clear_pin(rt_p->delay_1, delay & 0x2, pin);
  504. }
  505. static void st_pinconf_set_retime_dedicated(struct st_pinctrl *info,
  506. struct st_pio_control *pc, unsigned long config, int pin)
  507. {
  508. int input = ST_PINCONF_UNPACK_OE(config) ? 0 : 1;
  509. int clk = ST_PINCONF_UNPACK_RT_CLK(config);
  510. int clknotdata = ST_PINCONF_UNPACK_RT_CLKNOTDATA(config);
  511. int double_edge = ST_PINCONF_UNPACK_RT_DOUBLE_EDGE(config);
  512. int invertclk = ST_PINCONF_UNPACK_RT_INVERTCLK(config);
  513. int retime = ST_PINCONF_UNPACK_RT(config);
  514. unsigned long delay = st_pinconf_delay_to_bit(
  515. ST_PINCONF_UNPACK_RT_DELAY(config),
  516. info->data, config);
  517. struct st_retime_dedicated *rt_d = &pc->rt.rt_d;
  518. unsigned long retime_config =
  519. ((clk) << RT_D_CFG_CLK_SHIFT) |
  520. ((delay) << RT_D_CFG_DELAY_SHIFT) |
  521. ((input) << RT_D_CFG_DELAY_INNOTOUT_SHIFT) |
  522. ((retime) << RT_D_CFG_RETIME_SHIFT) |
  523. ((clknotdata) << RT_D_CFG_CLKNOTDATA_SHIFT) |
  524. ((invertclk) << RT_D_CFG_INVERTCLK_SHIFT) |
  525. ((double_edge) << RT_D_CFG_DOUBLE_EDGE_SHIFT);
  526. regmap_field_write(rt_d->rt[pin], retime_config);
  527. }
  528. static void st_pinconf_get_direction(struct st_pio_control *pc,
  529. int pin, unsigned long *config)
  530. {
  531. unsigned int oe_value, pu_value, od_value;
  532. if (pc->oe) {
  533. regmap_field_read(pc->oe, &oe_value);
  534. if (oe_value & BIT(pin))
  535. ST_PINCONF_PACK_OE(*config);
  536. }
  537. if (pc->pu) {
  538. regmap_field_read(pc->pu, &pu_value);
  539. if (pu_value & BIT(pin))
  540. ST_PINCONF_PACK_PU(*config);
  541. }
  542. if (pc->od) {
  543. regmap_field_read(pc->od, &od_value);
  544. if (od_value & BIT(pin))
  545. ST_PINCONF_PACK_OD(*config);
  546. }
  547. }
  548. static int st_pinconf_get_retime_packed(struct st_pinctrl *info,
  549. struct st_pio_control *pc, int pin, unsigned long *config)
  550. {
  551. const struct st_pctl_data *data = info->data;
  552. struct st_retime_packed *rt_p = &pc->rt.rt_p;
  553. unsigned int delay_bits, delay, delay0, delay1, val;
  554. int output = ST_PINCONF_UNPACK_OE(*config);
  555. if (!regmap_field_read(rt_p->retime, &val) && (val & BIT(pin)))
  556. ST_PINCONF_PACK_RT(*config);
  557. if (!regmap_field_read(rt_p->clk1notclk0, &val) && (val & BIT(pin)))
  558. ST_PINCONF_PACK_RT_CLK(*config, 1);
  559. if (!regmap_field_read(rt_p->clknotdata, &val) && (val & BIT(pin)))
  560. ST_PINCONF_PACK_RT_CLKNOTDATA(*config);
  561. if (!regmap_field_read(rt_p->double_edge, &val) && (val & BIT(pin)))
  562. ST_PINCONF_PACK_RT_DOUBLE_EDGE(*config);
  563. if (!regmap_field_read(rt_p->invertclk, &val) && (val & BIT(pin)))
  564. ST_PINCONF_PACK_RT_INVERTCLK(*config);
  565. regmap_field_read(rt_p->delay_0, &delay0);
  566. regmap_field_read(rt_p->delay_1, &delay1);
  567. delay_bits = (((delay1 & BIT(pin)) ? 1 : 0) << 1) |
  568. (((delay0 & BIT(pin)) ? 1 : 0));
  569. delay = st_pinconf_bit_to_delay(delay_bits, data, output);
  570. ST_PINCONF_PACK_RT_DELAY(*config, delay);
  571. return 0;
  572. }
  573. static int st_pinconf_get_retime_dedicated(struct st_pinctrl *info,
  574. struct st_pio_control *pc, int pin, unsigned long *config)
  575. {
  576. unsigned int value;
  577. unsigned long delay_bits, delay, rt_clk;
  578. int output = ST_PINCONF_UNPACK_OE(*config);
  579. struct st_retime_dedicated *rt_d = &pc->rt.rt_d;
  580. regmap_field_read(rt_d->rt[pin], &value);
  581. rt_clk = (value & RT_D_CFG_CLK_MASK) >> RT_D_CFG_CLK_SHIFT;
  582. ST_PINCONF_PACK_RT_CLK(*config, rt_clk);
  583. delay_bits = (value & RT_D_CFG_DELAY_MASK) >> RT_D_CFG_DELAY_SHIFT;
  584. delay = st_pinconf_bit_to_delay(delay_bits, info->data, output);
  585. ST_PINCONF_PACK_RT_DELAY(*config, delay);
  586. if (value & RT_D_CFG_CLKNOTDATA_MASK)
  587. ST_PINCONF_PACK_RT_CLKNOTDATA(*config);
  588. if (value & RT_D_CFG_DOUBLE_EDGE_MASK)
  589. ST_PINCONF_PACK_RT_DOUBLE_EDGE(*config);
  590. if (value & RT_D_CFG_INVERTCLK_MASK)
  591. ST_PINCONF_PACK_RT_INVERTCLK(*config);
  592. if (value & RT_D_CFG_RETIME_MASK)
  593. ST_PINCONF_PACK_RT(*config);
  594. return 0;
  595. }
  596. /* GPIO related functions */
  597. static inline void __st_gpio_set(struct st_gpio_bank *bank,
  598. unsigned offset, int value)
  599. {
  600. if (value)
  601. writel(BIT(offset), bank->base + REG_PIO_SET_POUT);
  602. else
  603. writel(BIT(offset), bank->base + REG_PIO_CLR_POUT);
  604. }
  605. static void st_gpio_direction(struct st_gpio_bank *bank,
  606. unsigned int gpio, unsigned int direction)
  607. {
  608. int offset = st_gpio_pin(gpio);
  609. int i = 0;
  610. /**
  611. * There are three configuration registers (PIOn_PC0, PIOn_PC1
  612. * and PIOn_PC2) for each port. These are used to configure the
  613. * PIO port pins. Each pin can be configured as an input, output,
  614. * bidirectional, or alternative function pin. Three bits, one bit
  615. * from each of the three registers, configure the corresponding bit of
  616. * the port. Valid bit settings is:
  617. *
  618. * PC2 PC1 PC0 Direction.
  619. * 0 0 0 [Input Weak pull-up]
  620. * 0 0 or 1 1 [Bidirection]
  621. * 0 1 0 [Output]
  622. * 1 0 0 [Input]
  623. *
  624. * PIOn_SET_PC and PIOn_CLR_PC registers are used to set and clear bits
  625. * individually.
  626. */
  627. for (i = 0; i <= 2; i++) {
  628. if (direction & BIT(i))
  629. writel(BIT(offset), bank->base + REG_PIO_SET_PC(i));
  630. else
  631. writel(BIT(offset), bank->base + REG_PIO_CLR_PC(i));
  632. }
  633. }
  634. static int st_gpio_get(struct gpio_chip *chip, unsigned offset)
  635. {
  636. struct st_gpio_bank *bank = gpio_chip_to_bank(chip);
  637. return !!(readl(bank->base + REG_PIO_PIN) & BIT(offset));
  638. }
  639. static void st_gpio_set(struct gpio_chip *chip, unsigned offset, int value)
  640. {
  641. struct st_gpio_bank *bank = gpio_chip_to_bank(chip);
  642. __st_gpio_set(bank, offset, value);
  643. }
  644. static int st_gpio_direction_input(struct gpio_chip *chip, unsigned offset)
  645. {
  646. pinctrl_gpio_direction_input(chip->base + offset);
  647. return 0;
  648. }
  649. static int st_gpio_direction_output(struct gpio_chip *chip,
  650. unsigned offset, int value)
  651. {
  652. struct st_gpio_bank *bank = gpio_chip_to_bank(chip);
  653. __st_gpio_set(bank, offset, value);
  654. pinctrl_gpio_direction_output(chip->base + offset);
  655. return 0;
  656. }
  657. static int st_gpio_get_direction(struct gpio_chip *chip, unsigned offset)
  658. {
  659. struct st_gpio_bank *bank = gpio_chip_to_bank(chip);
  660. struct st_pio_control pc = bank->pc;
  661. unsigned long config;
  662. unsigned int direction = 0;
  663. unsigned int function;
  664. unsigned int value;
  665. int i = 0;
  666. /* Alternate function direction is handled by Pinctrl */
  667. function = st_pctl_get_pin_function(&pc, offset);
  668. if (function) {
  669. st_pinconf_get_direction(&pc, offset, &config);
  670. return !ST_PINCONF_UNPACK_OE(config);
  671. }
  672. /*
  673. * GPIO direction is handled differently
  674. * - See st_gpio_direction() above for an explanation
  675. */
  676. for (i = 0; i <= 2; i++) {
  677. value = readl(bank->base + REG_PIO_PC(i));
  678. direction |= ((value >> offset) & 0x1) << i;
  679. }
  680. return (direction == ST_GPIO_DIRECTION_IN);
  681. }
  682. static int st_gpio_xlate(struct gpio_chip *gc,
  683. const struct of_phandle_args *gpiospec, u32 *flags)
  684. {
  685. if (WARN_ON(gc->of_gpio_n_cells < 1))
  686. return -EINVAL;
  687. if (WARN_ON(gpiospec->args_count < gc->of_gpio_n_cells))
  688. return -EINVAL;
  689. if (gpiospec->args[0] > gc->ngpio)
  690. return -EINVAL;
  691. return gpiospec->args[0];
  692. }
  693. /* Pinctrl Groups */
  694. static int st_pctl_get_groups_count(struct pinctrl_dev *pctldev)
  695. {
  696. struct st_pinctrl *info = pinctrl_dev_get_drvdata(pctldev);
  697. return info->ngroups;
  698. }
  699. static const char *st_pctl_get_group_name(struct pinctrl_dev *pctldev,
  700. unsigned selector)
  701. {
  702. struct st_pinctrl *info = pinctrl_dev_get_drvdata(pctldev);
  703. return info->groups[selector].name;
  704. }
  705. static int st_pctl_get_group_pins(struct pinctrl_dev *pctldev,
  706. unsigned selector, const unsigned **pins, unsigned *npins)
  707. {
  708. struct st_pinctrl *info = pinctrl_dev_get_drvdata(pctldev);
  709. if (selector >= info->ngroups)
  710. return -EINVAL;
  711. *pins = info->groups[selector].pins;
  712. *npins = info->groups[selector].npins;
  713. return 0;
  714. }
  715. static const inline struct st_pctl_group *st_pctl_find_group_by_name(
  716. const struct st_pinctrl *info, const char *name)
  717. {
  718. int i;
  719. for (i = 0; i < info->ngroups; i++) {
  720. if (!strcmp(info->groups[i].name, name))
  721. return &info->groups[i];
  722. }
  723. return NULL;
  724. }
  725. static int st_pctl_dt_node_to_map(struct pinctrl_dev *pctldev,
  726. struct device_node *np, struct pinctrl_map **map, unsigned *num_maps)
  727. {
  728. struct st_pinctrl *info = pinctrl_dev_get_drvdata(pctldev);
  729. const struct st_pctl_group *grp;
  730. struct pinctrl_map *new_map;
  731. struct device_node *parent;
  732. int map_num, i;
  733. grp = st_pctl_find_group_by_name(info, np->name);
  734. if (!grp) {
  735. dev_err(info->dev, "unable to find group for node %s\n",
  736. np->name);
  737. return -EINVAL;
  738. }
  739. map_num = grp->npins + 1;
  740. new_map = devm_kzalloc(pctldev->dev,
  741. sizeof(*new_map) * map_num, GFP_KERNEL);
  742. if (!new_map)
  743. return -ENOMEM;
  744. parent = of_get_parent(np);
  745. if (!parent) {
  746. devm_kfree(pctldev->dev, new_map);
  747. return -EINVAL;
  748. }
  749. *map = new_map;
  750. *num_maps = map_num;
  751. new_map[0].type = PIN_MAP_TYPE_MUX_GROUP;
  752. new_map[0].data.mux.function = parent->name;
  753. new_map[0].data.mux.group = np->name;
  754. of_node_put(parent);
  755. /* create config map per pin */
  756. new_map++;
  757. for (i = 0; i < grp->npins; i++) {
  758. new_map[i].type = PIN_MAP_TYPE_CONFIGS_PIN;
  759. new_map[i].data.configs.group_or_pin =
  760. pin_get_name(pctldev, grp->pins[i]);
  761. new_map[i].data.configs.configs = &grp->pin_conf[i].config;
  762. new_map[i].data.configs.num_configs = 1;
  763. }
  764. dev_info(pctldev->dev, "maps: function %s group %s num %d\n",
  765. (*map)->data.mux.function, grp->name, map_num);
  766. return 0;
  767. }
  768. static void st_pctl_dt_free_map(struct pinctrl_dev *pctldev,
  769. struct pinctrl_map *map, unsigned num_maps)
  770. {
  771. }
  772. static struct pinctrl_ops st_pctlops = {
  773. .get_groups_count = st_pctl_get_groups_count,
  774. .get_group_pins = st_pctl_get_group_pins,
  775. .get_group_name = st_pctl_get_group_name,
  776. .dt_node_to_map = st_pctl_dt_node_to_map,
  777. .dt_free_map = st_pctl_dt_free_map,
  778. };
  779. /* Pinmux */
  780. static int st_pmx_get_funcs_count(struct pinctrl_dev *pctldev)
  781. {
  782. struct st_pinctrl *info = pinctrl_dev_get_drvdata(pctldev);
  783. return info->nfunctions;
  784. }
  785. static const char *st_pmx_get_fname(struct pinctrl_dev *pctldev,
  786. unsigned selector)
  787. {
  788. struct st_pinctrl *info = pinctrl_dev_get_drvdata(pctldev);
  789. return info->functions[selector].name;
  790. }
  791. static int st_pmx_get_groups(struct pinctrl_dev *pctldev,
  792. unsigned selector, const char * const **grps, unsigned * const ngrps)
  793. {
  794. struct st_pinctrl *info = pinctrl_dev_get_drvdata(pctldev);
  795. *grps = info->functions[selector].groups;
  796. *ngrps = info->functions[selector].ngroups;
  797. return 0;
  798. }
  799. static int st_pmx_set_mux(struct pinctrl_dev *pctldev, unsigned fselector,
  800. unsigned group)
  801. {
  802. struct st_pinctrl *info = pinctrl_dev_get_drvdata(pctldev);
  803. struct st_pinconf *conf = info->groups[group].pin_conf;
  804. struct st_pio_control *pc;
  805. int i;
  806. for (i = 0; i < info->groups[group].npins; i++) {
  807. pc = st_get_pio_control(pctldev, conf[i].pin);
  808. st_pctl_set_function(pc, conf[i].pin, conf[i].altfunc);
  809. }
  810. return 0;
  811. }
  812. static int st_pmx_set_gpio_direction(struct pinctrl_dev *pctldev,
  813. struct pinctrl_gpio_range *range, unsigned gpio,
  814. bool input)
  815. {
  816. struct st_gpio_bank *bank = gpio_range_to_bank(range);
  817. /*
  818. * When a PIO bank is used in its primary function mode (altfunc = 0)
  819. * Output Enable (OE), Open Drain(OD), and Pull Up (PU)
  820. * for the primary PIO functions are driven by the related PIO block
  821. */
  822. st_pctl_set_function(&bank->pc, gpio, 0);
  823. st_gpio_direction(bank, gpio, input ?
  824. ST_GPIO_DIRECTION_IN : ST_GPIO_DIRECTION_OUT);
  825. return 0;
  826. }
  827. static struct pinmux_ops st_pmxops = {
  828. .get_functions_count = st_pmx_get_funcs_count,
  829. .get_function_name = st_pmx_get_fname,
  830. .get_function_groups = st_pmx_get_groups,
  831. .set_mux = st_pmx_set_mux,
  832. .gpio_set_direction = st_pmx_set_gpio_direction,
  833. };
  834. /* Pinconf */
  835. static void st_pinconf_get_retime(struct st_pinctrl *info,
  836. struct st_pio_control *pc, int pin, unsigned long *config)
  837. {
  838. if (info->data->rt_style == st_retime_style_packed)
  839. st_pinconf_get_retime_packed(info, pc, pin, config);
  840. else if (info->data->rt_style == st_retime_style_dedicated)
  841. if ((BIT(pin) & pc->rt_pin_mask))
  842. st_pinconf_get_retime_dedicated(info, pc,
  843. pin, config);
  844. }
  845. static void st_pinconf_set_retime(struct st_pinctrl *info,
  846. struct st_pio_control *pc, int pin, unsigned long config)
  847. {
  848. if (info->data->rt_style == st_retime_style_packed)
  849. st_pinconf_set_retime_packed(info, pc, config, pin);
  850. else if (info->data->rt_style == st_retime_style_dedicated)
  851. if ((BIT(pin) & pc->rt_pin_mask))
  852. st_pinconf_set_retime_dedicated(info, pc,
  853. config, pin);
  854. }
  855. static int st_pinconf_set(struct pinctrl_dev *pctldev, unsigned pin_id,
  856. unsigned long *configs, unsigned num_configs)
  857. {
  858. int pin = st_gpio_pin(pin_id);
  859. struct st_pinctrl *info = pinctrl_dev_get_drvdata(pctldev);
  860. struct st_pio_control *pc = st_get_pio_control(pctldev, pin_id);
  861. int i;
  862. for (i = 0; i < num_configs; i++) {
  863. st_pinconf_set_config(pc, pin, configs[i]);
  864. st_pinconf_set_retime(info, pc, pin, configs[i]);
  865. } /* for each config */
  866. return 0;
  867. }
  868. static int st_pinconf_get(struct pinctrl_dev *pctldev,
  869. unsigned pin_id, unsigned long *config)
  870. {
  871. int pin = st_gpio_pin(pin_id);
  872. struct st_pinctrl *info = pinctrl_dev_get_drvdata(pctldev);
  873. struct st_pio_control *pc = st_get_pio_control(pctldev, pin_id);
  874. *config = 0;
  875. st_pinconf_get_direction(pc, pin, config);
  876. st_pinconf_get_retime(info, pc, pin, config);
  877. return 0;
  878. }
  879. static void st_pinconf_dbg_show(struct pinctrl_dev *pctldev,
  880. struct seq_file *s, unsigned pin_id)
  881. {
  882. struct st_pio_control *pc;
  883. unsigned long config;
  884. unsigned int function;
  885. int offset = st_gpio_pin(pin_id);
  886. char f[16];
  887. mutex_unlock(&pctldev->mutex);
  888. pc = st_get_pio_control(pctldev, pin_id);
  889. st_pinconf_get(pctldev, pin_id, &config);
  890. mutex_lock(&pctldev->mutex);
  891. function = st_pctl_get_pin_function(pc, offset);
  892. if (function)
  893. snprintf(f, 10, "Alt Fn %d", function);
  894. else
  895. snprintf(f, 5, "GPIO");
  896. seq_printf(s, "[OE:%d,PU:%ld,OD:%ld]\t%s\n"
  897. "\t\t[retime:%ld,invclk:%ld,clknotdat:%ld,"
  898. "de:%ld,rt-clk:%ld,rt-delay:%ld]",
  899. !st_gpio_get_direction(&pc_to_bank(pc)->gpio_chip, offset),
  900. ST_PINCONF_UNPACK_PU(config),
  901. ST_PINCONF_UNPACK_OD(config),
  902. f,
  903. ST_PINCONF_UNPACK_RT(config),
  904. ST_PINCONF_UNPACK_RT_INVERTCLK(config),
  905. ST_PINCONF_UNPACK_RT_CLKNOTDATA(config),
  906. ST_PINCONF_UNPACK_RT_DOUBLE_EDGE(config),
  907. ST_PINCONF_UNPACK_RT_CLK(config),
  908. ST_PINCONF_UNPACK_RT_DELAY(config));
  909. }
  910. static struct pinconf_ops st_confops = {
  911. .pin_config_get = st_pinconf_get,
  912. .pin_config_set = st_pinconf_set,
  913. .pin_config_dbg_show = st_pinconf_dbg_show,
  914. };
  915. static void st_pctl_dt_child_count(struct st_pinctrl *info,
  916. struct device_node *np)
  917. {
  918. struct device_node *child;
  919. for_each_child_of_node(np, child) {
  920. if (of_property_read_bool(child, "gpio-controller")) {
  921. info->nbanks++;
  922. } else {
  923. info->nfunctions++;
  924. info->ngroups += of_get_child_count(child);
  925. }
  926. }
  927. }
  928. static int st_pctl_dt_setup_retime_packed(struct st_pinctrl *info,
  929. int bank, struct st_pio_control *pc)
  930. {
  931. struct device *dev = info->dev;
  932. struct regmap *rm = info->regmap;
  933. const struct st_pctl_data *data = info->data;
  934. /* 2 registers per bank */
  935. int reg = (data->rt + bank * RT_P_CFGS_PER_BANK) * 4;
  936. struct st_retime_packed *rt_p = &pc->rt.rt_p;
  937. /* cfg0 */
  938. struct reg_field clk1notclk0 = RT_P_CFG0_CLK1NOTCLK0_FIELD(reg);
  939. struct reg_field delay_0 = RT_P_CFG0_DELAY_0_FIELD(reg);
  940. struct reg_field delay_1 = RT_P_CFG0_DELAY_1_FIELD(reg);
  941. /* cfg1 */
  942. struct reg_field invertclk = RT_P_CFG1_INVERTCLK_FIELD(reg + 4);
  943. struct reg_field retime = RT_P_CFG1_RETIME_FIELD(reg + 4);
  944. struct reg_field clknotdata = RT_P_CFG1_CLKNOTDATA_FIELD(reg + 4);
  945. struct reg_field double_edge = RT_P_CFG1_DOUBLE_EDGE_FIELD(reg + 4);
  946. rt_p->clk1notclk0 = devm_regmap_field_alloc(dev, rm, clk1notclk0);
  947. rt_p->delay_0 = devm_regmap_field_alloc(dev, rm, delay_0);
  948. rt_p->delay_1 = devm_regmap_field_alloc(dev, rm, delay_1);
  949. rt_p->invertclk = devm_regmap_field_alloc(dev, rm, invertclk);
  950. rt_p->retime = devm_regmap_field_alloc(dev, rm, retime);
  951. rt_p->clknotdata = devm_regmap_field_alloc(dev, rm, clknotdata);
  952. rt_p->double_edge = devm_regmap_field_alloc(dev, rm, double_edge);
  953. if (IS_ERR(rt_p->clk1notclk0) || IS_ERR(rt_p->delay_0) ||
  954. IS_ERR(rt_p->delay_1) || IS_ERR(rt_p->invertclk) ||
  955. IS_ERR(rt_p->retime) || IS_ERR(rt_p->clknotdata) ||
  956. IS_ERR(rt_p->double_edge))
  957. return -EINVAL;
  958. return 0;
  959. }
  960. static int st_pctl_dt_setup_retime_dedicated(struct st_pinctrl *info,
  961. int bank, struct st_pio_control *pc)
  962. {
  963. struct device *dev = info->dev;
  964. struct regmap *rm = info->regmap;
  965. const struct st_pctl_data *data = info->data;
  966. /* 8 registers per bank */
  967. int reg_offset = (data->rt + bank * RT_D_CFGS_PER_BANK) * 4;
  968. struct st_retime_dedicated *rt_d = &pc->rt.rt_d;
  969. unsigned int j;
  970. u32 pin_mask = pc->rt_pin_mask;
  971. for (j = 0; j < RT_D_CFGS_PER_BANK; j++) {
  972. if (BIT(j) & pin_mask) {
  973. struct reg_field reg = REG_FIELD(reg_offset, 0, 31);
  974. rt_d->rt[j] = devm_regmap_field_alloc(dev, rm, reg);
  975. if (IS_ERR(rt_d->rt[j]))
  976. return -EINVAL;
  977. reg_offset += 4;
  978. }
  979. }
  980. return 0;
  981. }
  982. static int st_pctl_dt_setup_retime(struct st_pinctrl *info,
  983. int bank, struct st_pio_control *pc)
  984. {
  985. const struct st_pctl_data *data = info->data;
  986. if (data->rt_style == st_retime_style_packed)
  987. return st_pctl_dt_setup_retime_packed(info, bank, pc);
  988. else if (data->rt_style == st_retime_style_dedicated)
  989. return st_pctl_dt_setup_retime_dedicated(info, bank, pc);
  990. return -EINVAL;
  991. }
  992. static struct regmap_field *st_pc_get_value(struct device *dev,
  993. struct regmap *regmap, int bank,
  994. int data, int lsb, int msb)
  995. {
  996. struct reg_field reg = REG_FIELD((data + bank) * 4, lsb, msb);
  997. if (data < 0)
  998. return NULL;
  999. return devm_regmap_field_alloc(dev, regmap, reg);
  1000. }
  1001. static void st_parse_syscfgs(struct st_pinctrl *info, int bank,
  1002. struct device_node *np)
  1003. {
  1004. const struct st_pctl_data *data = info->data;
  1005. /**
  1006. * For a given shared register like OE/PU/OD, there are 8 bits per bank
  1007. * 0:7 belongs to bank0, 8:15 belongs to bank1 ...
  1008. * So each register is shared across 4 banks.
  1009. */
  1010. int lsb = (bank%4) * ST_GPIO_PINS_PER_BANK;
  1011. int msb = lsb + ST_GPIO_PINS_PER_BANK - 1;
  1012. struct st_pio_control *pc = &info->banks[bank].pc;
  1013. struct device *dev = info->dev;
  1014. struct regmap *regmap = info->regmap;
  1015. pc->alt = st_pc_get_value(dev, regmap, bank, data->alt, 0, 31);
  1016. pc->oe = st_pc_get_value(dev, regmap, bank/4, data->oe, lsb, msb);
  1017. pc->pu = st_pc_get_value(dev, regmap, bank/4, data->pu, lsb, msb);
  1018. pc->od = st_pc_get_value(dev, regmap, bank/4, data->od, lsb, msb);
  1019. /* retime avaiable for all pins by default */
  1020. pc->rt_pin_mask = 0xff;
  1021. of_property_read_u32(np, "st,retime-pin-mask", &pc->rt_pin_mask);
  1022. st_pctl_dt_setup_retime(info, bank, pc);
  1023. return;
  1024. }
  1025. /*
  1026. * Each pin is represented in of the below forms.
  1027. * <bank offset mux direction rt_type rt_delay rt_clk>
  1028. */
  1029. static int st_pctl_dt_parse_groups(struct device_node *np,
  1030. struct st_pctl_group *grp, struct st_pinctrl *info, int idx)
  1031. {
  1032. /* bank pad direction val altfunction */
  1033. const __be32 *list;
  1034. struct property *pp;
  1035. struct st_pinconf *conf;
  1036. struct device_node *pins;
  1037. int i = 0, npins = 0, nr_props;
  1038. pins = of_get_child_by_name(np, "st,pins");
  1039. if (!pins)
  1040. return -ENODATA;
  1041. for_each_property_of_node(pins, pp) {
  1042. /* Skip those we do not want to proceed */
  1043. if (!strcmp(pp->name, "name"))
  1044. continue;
  1045. if (pp && (pp->length/sizeof(__be32)) >= OF_GPIO_ARGS_MIN) {
  1046. npins++;
  1047. } else {
  1048. pr_warn("Invalid st,pins in %s node\n", np->name);
  1049. return -EINVAL;
  1050. }
  1051. }
  1052. grp->npins = npins;
  1053. grp->name = np->name;
  1054. grp->pins = devm_kzalloc(info->dev, npins * sizeof(u32), GFP_KERNEL);
  1055. grp->pin_conf = devm_kzalloc(info->dev,
  1056. npins * sizeof(*conf), GFP_KERNEL);
  1057. if (!grp->pins || !grp->pin_conf)
  1058. return -ENOMEM;
  1059. /* <bank offset mux direction rt_type rt_delay rt_clk> */
  1060. for_each_property_of_node(pins, pp) {
  1061. if (!strcmp(pp->name, "name"))
  1062. continue;
  1063. nr_props = pp->length/sizeof(u32);
  1064. list = pp->value;
  1065. conf = &grp->pin_conf[i];
  1066. /* bank & offset */
  1067. be32_to_cpup(list++);
  1068. be32_to_cpup(list++);
  1069. conf->pin = of_get_named_gpio(pins, pp->name, 0);
  1070. conf->name = pp->name;
  1071. grp->pins[i] = conf->pin;
  1072. /* mux */
  1073. conf->altfunc = be32_to_cpup(list++);
  1074. conf->config = 0;
  1075. /* direction */
  1076. conf->config |= be32_to_cpup(list++);
  1077. /* rt_type rt_delay rt_clk */
  1078. if (nr_props >= OF_GPIO_ARGS_MIN + OF_RT_ARGS_MIN) {
  1079. /* rt_type */
  1080. conf->config |= be32_to_cpup(list++);
  1081. /* rt_delay */
  1082. conf->config |= be32_to_cpup(list++);
  1083. /* rt_clk */
  1084. if (nr_props > OF_GPIO_ARGS_MIN + OF_RT_ARGS_MIN)
  1085. conf->config |= be32_to_cpup(list++);
  1086. }
  1087. i++;
  1088. }
  1089. of_node_put(pins);
  1090. return 0;
  1091. }
  1092. static int st_pctl_parse_functions(struct device_node *np,
  1093. struct st_pinctrl *info, u32 index, int *grp_index)
  1094. {
  1095. struct device_node *child;
  1096. struct st_pmx_func *func;
  1097. struct st_pctl_group *grp;
  1098. int ret, i;
  1099. func = &info->functions[index];
  1100. func->name = np->name;
  1101. func->ngroups = of_get_child_count(np);
  1102. if (func->ngroups == 0) {
  1103. dev_err(info->dev, "No groups defined\n");
  1104. return -EINVAL;
  1105. }
  1106. func->groups = devm_kzalloc(info->dev,
  1107. func->ngroups * sizeof(char *), GFP_KERNEL);
  1108. if (!func->groups)
  1109. return -ENOMEM;
  1110. i = 0;
  1111. for_each_child_of_node(np, child) {
  1112. func->groups[i] = child->name;
  1113. grp = &info->groups[*grp_index];
  1114. *grp_index += 1;
  1115. ret = st_pctl_dt_parse_groups(child, grp, info, i++);
  1116. if (ret)
  1117. return ret;
  1118. }
  1119. dev_info(info->dev, "Function[%d\t name:%s,\tgroups:%d]\n",
  1120. index, func->name, func->ngroups);
  1121. return 0;
  1122. }
  1123. static void st_gpio_irq_mask(struct irq_data *d)
  1124. {
  1125. struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
  1126. struct st_gpio_bank *bank = gpio_chip_to_bank(gc);
  1127. writel(BIT(d->hwirq), bank->base + REG_PIO_CLR_PMASK);
  1128. }
  1129. static void st_gpio_irq_unmask(struct irq_data *d)
  1130. {
  1131. struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
  1132. struct st_gpio_bank *bank = gpio_chip_to_bank(gc);
  1133. writel(BIT(d->hwirq), bank->base + REG_PIO_SET_PMASK);
  1134. }
  1135. static int st_gpio_irq_request_resources(struct irq_data *d)
  1136. {
  1137. struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
  1138. st_gpio_direction_input(gc, d->hwirq);
  1139. return gpiochip_lock_as_irq(gc, d->hwirq);
  1140. }
  1141. static void st_gpio_irq_release_resources(struct irq_data *d)
  1142. {
  1143. struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
  1144. gpiochip_unlock_as_irq(gc, d->hwirq);
  1145. }
  1146. static int st_gpio_irq_set_type(struct irq_data *d, unsigned type)
  1147. {
  1148. struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
  1149. struct st_gpio_bank *bank = gpio_chip_to_bank(gc);
  1150. unsigned long flags;
  1151. int comp, pin = d->hwirq;
  1152. u32 val;
  1153. u32 pin_edge_conf = 0;
  1154. switch (type) {
  1155. case IRQ_TYPE_LEVEL_HIGH:
  1156. comp = 0;
  1157. break;
  1158. case IRQ_TYPE_EDGE_FALLING:
  1159. comp = 0;
  1160. pin_edge_conf = ST_IRQ_FALLING_EDGE_CONF(pin);
  1161. break;
  1162. case IRQ_TYPE_LEVEL_LOW:
  1163. comp = 1;
  1164. break;
  1165. case IRQ_TYPE_EDGE_RISING:
  1166. comp = 1;
  1167. pin_edge_conf = ST_IRQ_RISING_EDGE_CONF(pin);
  1168. break;
  1169. case IRQ_TYPE_EDGE_BOTH:
  1170. comp = st_gpio_get(&bank->gpio_chip, pin);
  1171. pin_edge_conf = ST_IRQ_BOTH_EDGE_CONF(pin);
  1172. break;
  1173. default:
  1174. return -EINVAL;
  1175. }
  1176. spin_lock_irqsave(&bank->lock, flags);
  1177. bank->irq_edge_conf &= ~(ST_IRQ_EDGE_MASK << (
  1178. pin * ST_IRQ_EDGE_CONF_BITS_PER_PIN));
  1179. bank->irq_edge_conf |= pin_edge_conf;
  1180. spin_unlock_irqrestore(&bank->lock, flags);
  1181. val = readl(bank->base + REG_PIO_PCOMP);
  1182. val &= ~BIT(pin);
  1183. val |= (comp << pin);
  1184. writel(val, bank->base + REG_PIO_PCOMP);
  1185. return 0;
  1186. }
  1187. /*
  1188. * As edge triggers are not supported at hardware level, it is supported by
  1189. * software by exploiting the level trigger support in hardware.
  1190. *
  1191. * Steps for detection raising edge interrupt in software.
  1192. *
  1193. * Step 1: CONFIGURE pin to detect level LOW interrupts.
  1194. *
  1195. * Step 2: DETECT level LOW interrupt and in irqmux/gpio bank interrupt handler,
  1196. * if the value of pin is low, then CONFIGURE pin for level HIGH interrupt.
  1197. * IGNORE calling the actual interrupt handler for the pin at this stage.
  1198. *
  1199. * Step 3: DETECT level HIGH interrupt and in irqmux/gpio-bank interrupt handler
  1200. * if the value of pin is HIGH, CONFIGURE pin for level LOW interrupt and then
  1201. * DISPATCH the interrupt to the interrupt handler of the pin.
  1202. *
  1203. * step-1 ________ __________
  1204. * | | step - 3
  1205. * | |
  1206. * step -2 |_____|
  1207. *
  1208. * falling edge is also detected int the same way.
  1209. *
  1210. */
  1211. static void __gpio_irq_handler(struct st_gpio_bank *bank)
  1212. {
  1213. unsigned long port_in, port_mask, port_comp, active_irqs;
  1214. unsigned long bank_edge_mask, flags;
  1215. int n, val, ecfg;
  1216. spin_lock_irqsave(&bank->lock, flags);
  1217. bank_edge_mask = bank->irq_edge_conf;
  1218. spin_unlock_irqrestore(&bank->lock, flags);
  1219. for (;;) {
  1220. port_in = readl(bank->base + REG_PIO_PIN);
  1221. port_comp = readl(bank->base + REG_PIO_PCOMP);
  1222. port_mask = readl(bank->base + REG_PIO_PMASK);
  1223. active_irqs = (port_in ^ port_comp) & port_mask;
  1224. if (active_irqs == 0)
  1225. break;
  1226. for_each_set_bit(n, &active_irqs, BITS_PER_LONG) {
  1227. /* check if we are detecting fake edges ... */
  1228. ecfg = ST_IRQ_EDGE_CONF(bank_edge_mask, n);
  1229. if (ecfg) {
  1230. /* edge detection. */
  1231. val = st_gpio_get(&bank->gpio_chip, n);
  1232. writel(BIT(n),
  1233. val ? bank->base + REG_PIO_SET_PCOMP :
  1234. bank->base + REG_PIO_CLR_PCOMP);
  1235. if (ecfg != ST_IRQ_EDGE_BOTH &&
  1236. !((ecfg & ST_IRQ_EDGE_FALLING) ^ val))
  1237. continue;
  1238. }
  1239. generic_handle_irq(irq_find_mapping(bank->gpio_chip.irqdomain, n));
  1240. }
  1241. }
  1242. }
  1243. static void st_gpio_irq_handler(struct irq_desc *desc)
  1244. {
  1245. /* interrupt dedicated per bank */
  1246. struct irq_chip *chip = irq_desc_get_chip(desc);
  1247. struct gpio_chip *gc = irq_desc_get_handler_data(desc);
  1248. struct st_gpio_bank *bank = gpio_chip_to_bank(gc);
  1249. chained_irq_enter(chip, desc);
  1250. __gpio_irq_handler(bank);
  1251. chained_irq_exit(chip, desc);
  1252. }
  1253. static void st_gpio_irqmux_handler(struct irq_desc *desc)
  1254. {
  1255. struct irq_chip *chip = irq_desc_get_chip(desc);
  1256. struct st_pinctrl *info = irq_desc_get_handler_data(desc);
  1257. unsigned long status;
  1258. int n;
  1259. chained_irq_enter(chip, desc);
  1260. status = readl(info->irqmux_base);
  1261. for_each_set_bit(n, &status, info->nbanks)
  1262. __gpio_irq_handler(&info->banks[n]);
  1263. chained_irq_exit(chip, desc);
  1264. }
  1265. static struct gpio_chip st_gpio_template = {
  1266. .request = gpiochip_generic_request,
  1267. .free = gpiochip_generic_free,
  1268. .get = st_gpio_get,
  1269. .set = st_gpio_set,
  1270. .direction_input = st_gpio_direction_input,
  1271. .direction_output = st_gpio_direction_output,
  1272. .get_direction = st_gpio_get_direction,
  1273. .ngpio = ST_GPIO_PINS_PER_BANK,
  1274. .of_gpio_n_cells = 1,
  1275. .of_xlate = st_gpio_xlate,
  1276. };
  1277. static struct irq_chip st_gpio_irqchip = {
  1278. .name = "GPIO",
  1279. .irq_request_resources = st_gpio_irq_request_resources,
  1280. .irq_release_resources = st_gpio_irq_release_resources,
  1281. .irq_disable = st_gpio_irq_mask,
  1282. .irq_mask = st_gpio_irq_mask,
  1283. .irq_unmask = st_gpio_irq_unmask,
  1284. .irq_set_type = st_gpio_irq_set_type,
  1285. .flags = IRQCHIP_SKIP_SET_WAKE,
  1286. };
  1287. static int st_gpiolib_register_bank(struct st_pinctrl *info,
  1288. int bank_nr, struct device_node *np)
  1289. {
  1290. struct st_gpio_bank *bank = &info->banks[bank_nr];
  1291. struct pinctrl_gpio_range *range = &bank->range;
  1292. struct device *dev = info->dev;
  1293. int bank_num = of_alias_get_id(np, "gpio");
  1294. struct resource res, irq_res;
  1295. int gpio_irq = 0, err;
  1296. if (of_address_to_resource(np, 0, &res))
  1297. return -ENODEV;
  1298. bank->base = devm_ioremap_resource(dev, &res);
  1299. if (IS_ERR(bank->base))
  1300. return PTR_ERR(bank->base);
  1301. bank->gpio_chip = st_gpio_template;
  1302. bank->gpio_chip.base = bank_num * ST_GPIO_PINS_PER_BANK;
  1303. bank->gpio_chip.ngpio = ST_GPIO_PINS_PER_BANK;
  1304. bank->gpio_chip.of_node = np;
  1305. bank->gpio_chip.dev = dev;
  1306. spin_lock_init(&bank->lock);
  1307. of_property_read_string(np, "st,bank-name", &range->name);
  1308. bank->gpio_chip.label = range->name;
  1309. range->id = bank_num;
  1310. range->pin_base = range->base = range->id * ST_GPIO_PINS_PER_BANK;
  1311. range->npins = bank->gpio_chip.ngpio;
  1312. range->gc = &bank->gpio_chip;
  1313. err = gpiochip_add(&bank->gpio_chip);
  1314. if (err) {
  1315. dev_err(dev, "Failed to add gpiochip(%d)!\n", bank_num);
  1316. return err;
  1317. }
  1318. dev_info(dev, "%s bank added.\n", range->name);
  1319. /**
  1320. * GPIO bank can have one of the two possible types of
  1321. * interrupt-wirings.
  1322. *
  1323. * First type is via irqmux, single interrupt is used by multiple
  1324. * gpio banks. This reduces number of overall interrupts numbers
  1325. * required. All these banks belong to a single pincontroller.
  1326. * _________
  1327. * | |----> [gpio-bank (n) ]
  1328. * | |----> [gpio-bank (n + 1)]
  1329. * [irqN]-- | irq-mux |----> [gpio-bank (n + 2)]
  1330. * | |----> [gpio-bank (... )]
  1331. * |_________|----> [gpio-bank (n + 7)]
  1332. *
  1333. * Second type has a dedicated interrupt per each gpio bank.
  1334. *
  1335. * [irqN]----> [gpio-bank (n)]
  1336. */
  1337. if (of_irq_to_resource(np, 0, &irq_res)) {
  1338. gpio_irq = irq_res.start;
  1339. gpiochip_set_chained_irqchip(&bank->gpio_chip, &st_gpio_irqchip,
  1340. gpio_irq, st_gpio_irq_handler);
  1341. }
  1342. if (info->irqmux_base || gpio_irq > 0) {
  1343. err = gpiochip_irqchip_add(&bank->gpio_chip, &st_gpio_irqchip,
  1344. 0, handle_simple_irq,
  1345. IRQ_TYPE_LEVEL_LOW);
  1346. if (err) {
  1347. gpiochip_remove(&bank->gpio_chip);
  1348. dev_info(dev, "could not add irqchip\n");
  1349. return err;
  1350. }
  1351. } else {
  1352. dev_info(dev, "No IRQ support for %s bank\n", np->full_name);
  1353. }
  1354. return 0;
  1355. }
  1356. static const struct of_device_id st_pctl_of_match[] = {
  1357. { .compatible = "st,stih415-sbc-pinctrl", .data = &stih415_sbc_data },
  1358. { .compatible = "st,stih415-rear-pinctrl", .data = &stih415_rear_data },
  1359. { .compatible = "st,stih415-left-pinctrl", .data = &stih415_left_data },
  1360. { .compatible = "st,stih415-right-pinctrl",
  1361. .data = &stih415_right_data },
  1362. { .compatible = "st,stih415-front-pinctrl",
  1363. .data = &stih415_front_data },
  1364. { .compatible = "st,stih416-sbc-pinctrl", .data = &stih416_data},
  1365. { .compatible = "st,stih416-front-pinctrl", .data = &stih416_data},
  1366. { .compatible = "st,stih416-rear-pinctrl", .data = &stih416_data},
  1367. { .compatible = "st,stih416-fvdp-fe-pinctrl", .data = &stih416_data},
  1368. { .compatible = "st,stih416-fvdp-lite-pinctrl", .data = &stih416_data},
  1369. { .compatible = "st,stih407-sbc-pinctrl", .data = &stih416_data},
  1370. { .compatible = "st,stih407-front-pinctrl", .data = &stih416_data},
  1371. { .compatible = "st,stih407-rear-pinctrl", .data = &stih416_data},
  1372. { .compatible = "st,stih407-flash-pinctrl", .data = &stih407_flashdata},
  1373. { /* sentinel */ }
  1374. };
  1375. static int st_pctl_probe_dt(struct platform_device *pdev,
  1376. struct pinctrl_desc *pctl_desc, struct st_pinctrl *info)
  1377. {
  1378. int ret = 0;
  1379. int i = 0, j = 0, k = 0, bank;
  1380. struct pinctrl_pin_desc *pdesc;
  1381. struct device_node *np = pdev->dev.of_node;
  1382. struct device_node *child;
  1383. int grp_index = 0;
  1384. int irq = 0;
  1385. struct resource *res;
  1386. st_pctl_dt_child_count(info, np);
  1387. if (!info->nbanks) {
  1388. dev_err(&pdev->dev, "you need atleast one gpio bank\n");
  1389. return -EINVAL;
  1390. }
  1391. dev_info(&pdev->dev, "nbanks = %d\n", info->nbanks);
  1392. dev_info(&pdev->dev, "nfunctions = %d\n", info->nfunctions);
  1393. dev_info(&pdev->dev, "ngroups = %d\n", info->ngroups);
  1394. info->functions = devm_kzalloc(&pdev->dev,
  1395. info->nfunctions * sizeof(*info->functions), GFP_KERNEL);
  1396. info->groups = devm_kzalloc(&pdev->dev,
  1397. info->ngroups * sizeof(*info->groups) , GFP_KERNEL);
  1398. info->banks = devm_kzalloc(&pdev->dev,
  1399. info->nbanks * sizeof(*info->banks), GFP_KERNEL);
  1400. if (!info->functions || !info->groups || !info->banks)
  1401. return -ENOMEM;
  1402. info->regmap = syscon_regmap_lookup_by_phandle(np, "st,syscfg");
  1403. if (IS_ERR(info->regmap)) {
  1404. dev_err(info->dev, "No syscfg phandle specified\n");
  1405. return PTR_ERR(info->regmap);
  1406. }
  1407. info->data = of_match_node(st_pctl_of_match, np)->data;
  1408. irq = platform_get_irq(pdev, 0);
  1409. if (irq > 0) {
  1410. res = platform_get_resource_byname(pdev,
  1411. IORESOURCE_MEM, "irqmux");
  1412. info->irqmux_base = devm_ioremap_resource(&pdev->dev, res);
  1413. if (IS_ERR(info->irqmux_base))
  1414. return PTR_ERR(info->irqmux_base);
  1415. irq_set_chained_handler_and_data(irq, st_gpio_irqmux_handler,
  1416. info);
  1417. }
  1418. pctl_desc->npins = info->nbanks * ST_GPIO_PINS_PER_BANK;
  1419. pdesc = devm_kzalloc(&pdev->dev,
  1420. sizeof(*pdesc) * pctl_desc->npins, GFP_KERNEL);
  1421. if (!pdesc)
  1422. return -ENOMEM;
  1423. pctl_desc->pins = pdesc;
  1424. bank = 0;
  1425. for_each_child_of_node(np, child) {
  1426. if (of_property_read_bool(child, "gpio-controller")) {
  1427. const char *bank_name = NULL;
  1428. ret = st_gpiolib_register_bank(info, bank, child);
  1429. if (ret)
  1430. return ret;
  1431. k = info->banks[bank].range.pin_base;
  1432. bank_name = info->banks[bank].range.name;
  1433. for (j = 0; j < ST_GPIO_PINS_PER_BANK; j++, k++) {
  1434. pdesc->number = k;
  1435. pdesc->name = kasprintf(GFP_KERNEL, "%s[%d]",
  1436. bank_name, j);
  1437. pdesc++;
  1438. }
  1439. st_parse_syscfgs(info, bank, child);
  1440. bank++;
  1441. } else {
  1442. ret = st_pctl_parse_functions(child, info,
  1443. i++, &grp_index);
  1444. if (ret) {
  1445. dev_err(&pdev->dev, "No functions found.\n");
  1446. return ret;
  1447. }
  1448. }
  1449. }
  1450. return 0;
  1451. }
  1452. static int st_pctl_probe(struct platform_device *pdev)
  1453. {
  1454. struct st_pinctrl *info;
  1455. struct pinctrl_desc *pctl_desc;
  1456. int ret, i;
  1457. if (!pdev->dev.of_node) {
  1458. dev_err(&pdev->dev, "device node not found.\n");
  1459. return -EINVAL;
  1460. }
  1461. pctl_desc = devm_kzalloc(&pdev->dev, sizeof(*pctl_desc), GFP_KERNEL);
  1462. if (!pctl_desc)
  1463. return -ENOMEM;
  1464. info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
  1465. if (!info)
  1466. return -ENOMEM;
  1467. info->dev = &pdev->dev;
  1468. platform_set_drvdata(pdev, info);
  1469. ret = st_pctl_probe_dt(pdev, pctl_desc, info);
  1470. if (ret)
  1471. return ret;
  1472. pctl_desc->owner = THIS_MODULE;
  1473. pctl_desc->pctlops = &st_pctlops;
  1474. pctl_desc->pmxops = &st_pmxops;
  1475. pctl_desc->confops = &st_confops;
  1476. pctl_desc->name = dev_name(&pdev->dev);
  1477. info->pctl = pinctrl_register(pctl_desc, &pdev->dev, info);
  1478. if (IS_ERR(info->pctl)) {
  1479. dev_err(&pdev->dev, "Failed pinctrl registration\n");
  1480. return PTR_ERR(info->pctl);
  1481. }
  1482. for (i = 0; i < info->nbanks; i++)
  1483. pinctrl_add_gpio_range(info->pctl, &info->banks[i].range);
  1484. return 0;
  1485. }
  1486. static struct platform_driver st_pctl_driver = {
  1487. .driver = {
  1488. .name = "st-pinctrl",
  1489. .of_match_table = st_pctl_of_match,
  1490. },
  1491. .probe = st_pctl_probe,
  1492. };
  1493. static int __init st_pctl_init(void)
  1494. {
  1495. return platform_driver_register(&st_pctl_driver);
  1496. }
  1497. arch_initcall(st_pctl_init);