ehv_bytechan.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837
  1. /* ePAPR hypervisor byte channel device driver
  2. *
  3. * Copyright 2009-2011 Freescale Semiconductor, Inc.
  4. *
  5. * Author: Timur Tabi <timur@freescale.com>
  6. *
  7. * This file is licensed under the terms of the GNU General Public License
  8. * version 2. This program is licensed "as is" without any warranty of any
  9. * kind, whether express or implied.
  10. *
  11. * This driver support three distinct interfaces, all of which are related to
  12. * ePAPR hypervisor byte channels.
  13. *
  14. * 1) An early-console (udbg) driver. This provides early console output
  15. * through a byte channel. The byte channel handle must be specified in a
  16. * Kconfig option.
  17. *
  18. * 2) A normal console driver. Output is sent to the byte channel designated
  19. * for stdout in the device tree. The console driver is for handling kernel
  20. * printk calls.
  21. *
  22. * 3) A tty driver, which is used to handle user-space input and output. The
  23. * byte channel used for the console is designated as the default tty.
  24. */
  25. #include <linux/module.h>
  26. #include <linux/init.h>
  27. #include <linux/slab.h>
  28. #include <linux/err.h>
  29. #include <linux/interrupt.h>
  30. #include <linux/fs.h>
  31. #include <linux/poll.h>
  32. #include <asm/epapr_hcalls.h>
  33. #include <linux/of.h>
  34. #include <linux/of_irq.h>
  35. #include <linux/platform_device.h>
  36. #include <linux/cdev.h>
  37. #include <linux/console.h>
  38. #include <linux/tty.h>
  39. #include <linux/tty_flip.h>
  40. #include <linux/circ_buf.h>
  41. #include <asm/udbg.h>
  42. /* The size of the transmit circular buffer. This must be a power of two. */
  43. #define BUF_SIZE 2048
  44. /* Per-byte channel private data */
  45. struct ehv_bc_data {
  46. struct device *dev;
  47. struct tty_port port;
  48. uint32_t handle;
  49. unsigned int rx_irq;
  50. unsigned int tx_irq;
  51. spinlock_t lock; /* lock for transmit buffer */
  52. unsigned char buf[BUF_SIZE]; /* transmit circular buffer */
  53. unsigned int head; /* circular buffer head */
  54. unsigned int tail; /* circular buffer tail */
  55. int tx_irq_enabled; /* true == TX interrupt is enabled */
  56. };
  57. /* Array of byte channel objects */
  58. static struct ehv_bc_data *bcs;
  59. /* Byte channel handle for stdout (and stdin), taken from device tree */
  60. static unsigned int stdout_bc;
  61. /* Virtual IRQ for the byte channel handle for stdin, taken from device tree */
  62. static unsigned int stdout_irq;
  63. /**************************** SUPPORT FUNCTIONS ****************************/
  64. /*
  65. * Enable the transmit interrupt
  66. *
  67. * Unlike a serial device, byte channels have no mechanism for disabling their
  68. * own receive or transmit interrupts. To emulate that feature, we toggle
  69. * the IRQ in the kernel.
  70. *
  71. * We cannot just blindly call enable_irq() or disable_irq(), because these
  72. * calls are reference counted. This means that we cannot call enable_irq()
  73. * if interrupts are already enabled. This can happen in two situations:
  74. *
  75. * 1. The tty layer makes two back-to-back calls to ehv_bc_tty_write()
  76. * 2. A transmit interrupt occurs while executing ehv_bc_tx_dequeue()
  77. *
  78. * To work around this, we keep a flag to tell us if the IRQ is enabled or not.
  79. */
  80. static void enable_tx_interrupt(struct ehv_bc_data *bc)
  81. {
  82. if (!bc->tx_irq_enabled) {
  83. enable_irq(bc->tx_irq);
  84. bc->tx_irq_enabled = 1;
  85. }
  86. }
  87. static void disable_tx_interrupt(struct ehv_bc_data *bc)
  88. {
  89. if (bc->tx_irq_enabled) {
  90. disable_irq_nosync(bc->tx_irq);
  91. bc->tx_irq_enabled = 0;
  92. }
  93. }
  94. /*
  95. * find the byte channel handle to use for the console
  96. *
  97. * The byte channel to be used for the console is specified via a "stdout"
  98. * property in the /chosen node.
  99. */
  100. static int find_console_handle(void)
  101. {
  102. struct device_node *np = of_stdout;
  103. const uint32_t *iprop;
  104. /* We don't care what the aliased node is actually called. We only
  105. * care if it's compatible with "epapr,hv-byte-channel", because that
  106. * indicates that it's a byte channel node.
  107. */
  108. if (!np || !of_device_is_compatible(np, "epapr,hv-byte-channel"))
  109. return 0;
  110. stdout_irq = irq_of_parse_and_map(np, 0);
  111. if (stdout_irq == NO_IRQ) {
  112. pr_err("ehv-bc: no 'interrupts' property in %s node\n", np->full_name);
  113. return 0;
  114. }
  115. /*
  116. * The 'hv-handle' property contains the handle for this byte channel.
  117. */
  118. iprop = of_get_property(np, "hv-handle", NULL);
  119. if (!iprop) {
  120. pr_err("ehv-bc: no 'hv-handle' property in %s node\n",
  121. np->name);
  122. return 0;
  123. }
  124. stdout_bc = be32_to_cpu(*iprop);
  125. return 1;
  126. }
  127. /*************************** EARLY CONSOLE DRIVER ***************************/
  128. #ifdef CONFIG_PPC_EARLY_DEBUG_EHV_BC
  129. /*
  130. * send a byte to a byte channel, wait if necessary
  131. *
  132. * This function sends a byte to a byte channel, and it waits and
  133. * retries if the byte channel is full. It returns if the character
  134. * has been sent, or if some error has occurred.
  135. *
  136. */
  137. static void byte_channel_spin_send(const char data)
  138. {
  139. int ret, count;
  140. do {
  141. count = 1;
  142. ret = ev_byte_channel_send(CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE,
  143. &count, &data);
  144. } while (ret == EV_EAGAIN);
  145. }
  146. /*
  147. * The udbg subsystem calls this function to display a single character.
  148. * We convert CR to a CR/LF.
  149. */
  150. static void ehv_bc_udbg_putc(char c)
  151. {
  152. if (c == '\n')
  153. byte_channel_spin_send('\r');
  154. byte_channel_spin_send(c);
  155. }
  156. /*
  157. * early console initialization
  158. *
  159. * PowerPC kernels support an early printk console, also known as udbg.
  160. * This function must be called via the ppc_md.init_early function pointer.
  161. * At this point, the device tree has been unflattened, so we can obtain the
  162. * byte channel handle for stdout.
  163. *
  164. * We only support displaying of characters (putc). We do not support
  165. * keyboard input.
  166. */
  167. void __init udbg_init_ehv_bc(void)
  168. {
  169. unsigned int rx_count, tx_count;
  170. unsigned int ret;
  171. /* Verify the byte channel handle */
  172. ret = ev_byte_channel_poll(CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE,
  173. &rx_count, &tx_count);
  174. if (ret)
  175. return;
  176. udbg_putc = ehv_bc_udbg_putc;
  177. register_early_udbg_console();
  178. udbg_printf("ehv-bc: early console using byte channel handle %u\n",
  179. CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE);
  180. }
  181. #endif
  182. /****************************** CONSOLE DRIVER ******************************/
  183. static struct tty_driver *ehv_bc_driver;
  184. /*
  185. * Byte channel console sending worker function.
  186. *
  187. * For consoles, if the output buffer is full, we should just spin until it
  188. * clears.
  189. */
  190. static int ehv_bc_console_byte_channel_send(unsigned int handle, const char *s,
  191. unsigned int count)
  192. {
  193. unsigned int len;
  194. int ret = 0;
  195. while (count) {
  196. len = min_t(unsigned int, count, EV_BYTE_CHANNEL_MAX_BYTES);
  197. do {
  198. ret = ev_byte_channel_send(handle, &len, s);
  199. } while (ret == EV_EAGAIN);
  200. count -= len;
  201. s += len;
  202. }
  203. return ret;
  204. }
  205. /*
  206. * write a string to the console
  207. *
  208. * This function gets called to write a string from the kernel, typically from
  209. * a printk(). This function spins until all data is written.
  210. *
  211. * We copy the data to a temporary buffer because we need to insert a \r in
  212. * front of every \n. It's more efficient to copy the data to the buffer than
  213. * it is to make multiple hcalls for each character or each newline.
  214. */
  215. static void ehv_bc_console_write(struct console *co, const char *s,
  216. unsigned int count)
  217. {
  218. char s2[EV_BYTE_CHANNEL_MAX_BYTES];
  219. unsigned int i, j = 0;
  220. char c;
  221. for (i = 0; i < count; i++) {
  222. c = *s++;
  223. if (c == '\n')
  224. s2[j++] = '\r';
  225. s2[j++] = c;
  226. if (j >= (EV_BYTE_CHANNEL_MAX_BYTES - 1)) {
  227. if (ehv_bc_console_byte_channel_send(stdout_bc, s2, j))
  228. return;
  229. j = 0;
  230. }
  231. }
  232. if (j)
  233. ehv_bc_console_byte_channel_send(stdout_bc, s2, j);
  234. }
  235. /*
  236. * When /dev/console is opened, the kernel iterates the console list looking
  237. * for one with ->device and then calls that method. On success, it expects
  238. * the passed-in int* to contain the minor number to use.
  239. */
  240. static struct tty_driver *ehv_bc_console_device(struct console *co, int *index)
  241. {
  242. *index = co->index;
  243. return ehv_bc_driver;
  244. }
  245. static struct console ehv_bc_console = {
  246. .name = "ttyEHV",
  247. .write = ehv_bc_console_write,
  248. .device = ehv_bc_console_device,
  249. .flags = CON_PRINTBUFFER | CON_ENABLED,
  250. };
  251. /*
  252. * Console initialization
  253. *
  254. * This is the first function that is called after the device tree is
  255. * available, so here is where we determine the byte channel handle and IRQ for
  256. * stdout/stdin, even though that information is used by the tty and character
  257. * drivers.
  258. */
  259. static int __init ehv_bc_console_init(void)
  260. {
  261. if (!find_console_handle()) {
  262. pr_debug("ehv-bc: stdout is not a byte channel\n");
  263. return -ENODEV;
  264. }
  265. #ifdef CONFIG_PPC_EARLY_DEBUG_EHV_BC
  266. /* Print a friendly warning if the user chose the wrong byte channel
  267. * handle for udbg.
  268. */
  269. if (stdout_bc != CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE)
  270. pr_warn("ehv-bc: udbg handle %u is not the stdout handle\n",
  271. CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE);
  272. #endif
  273. /* add_preferred_console() must be called before register_console(),
  274. otherwise it won't work. However, we don't want to enumerate all the
  275. byte channels here, either, since we only care about one. */
  276. add_preferred_console(ehv_bc_console.name, ehv_bc_console.index, NULL);
  277. register_console(&ehv_bc_console);
  278. pr_info("ehv-bc: registered console driver for byte channel %u\n",
  279. stdout_bc);
  280. return 0;
  281. }
  282. console_initcall(ehv_bc_console_init);
  283. /******************************** TTY DRIVER ********************************/
  284. /*
  285. * byte channel receive interupt handler
  286. *
  287. * This ISR is called whenever data is available on a byte channel.
  288. */
  289. static irqreturn_t ehv_bc_tty_rx_isr(int irq, void *data)
  290. {
  291. struct ehv_bc_data *bc = data;
  292. unsigned int rx_count, tx_count, len;
  293. int count;
  294. char buffer[EV_BYTE_CHANNEL_MAX_BYTES];
  295. int ret;
  296. /* Find out how much data needs to be read, and then ask the TTY layer
  297. * if it can handle that much. We want to ensure that every byte we
  298. * read from the byte channel will be accepted by the TTY layer.
  299. */
  300. ev_byte_channel_poll(bc->handle, &rx_count, &tx_count);
  301. count = tty_buffer_request_room(&bc->port, rx_count);
  302. /* 'count' is the maximum amount of data the TTY layer can accept at
  303. * this time. However, during testing, I was never able to get 'count'
  304. * to be less than 'rx_count'. I'm not sure whether I'm calling it
  305. * correctly.
  306. */
  307. while (count > 0) {
  308. len = min_t(unsigned int, count, sizeof(buffer));
  309. /* Read some data from the byte channel. This function will
  310. * never return more than EV_BYTE_CHANNEL_MAX_BYTES bytes.
  311. */
  312. ev_byte_channel_receive(bc->handle, &len, buffer);
  313. /* 'len' is now the amount of data that's been received. 'len'
  314. * can't be zero, and most likely it's equal to one.
  315. */
  316. /* Pass the received data to the tty layer. */
  317. ret = tty_insert_flip_string(&bc->port, buffer, len);
  318. /* 'ret' is the number of bytes that the TTY layer accepted.
  319. * If it's not equal to 'len', then it means the buffer is
  320. * full, which should never happen. If it does happen, we can
  321. * exit gracefully, but we drop the last 'len - ret' characters
  322. * that we read from the byte channel.
  323. */
  324. if (ret != len)
  325. break;
  326. count -= len;
  327. }
  328. /* Tell the tty layer that we're done. */
  329. tty_flip_buffer_push(&bc->port);
  330. return IRQ_HANDLED;
  331. }
  332. /*
  333. * dequeue the transmit buffer to the hypervisor
  334. *
  335. * This function, which can be called in interrupt context, dequeues as much
  336. * data as possible from the transmit buffer to the byte channel.
  337. */
  338. static void ehv_bc_tx_dequeue(struct ehv_bc_data *bc)
  339. {
  340. unsigned int count;
  341. unsigned int len, ret;
  342. unsigned long flags;
  343. do {
  344. spin_lock_irqsave(&bc->lock, flags);
  345. len = min_t(unsigned int,
  346. CIRC_CNT_TO_END(bc->head, bc->tail, BUF_SIZE),
  347. EV_BYTE_CHANNEL_MAX_BYTES);
  348. ret = ev_byte_channel_send(bc->handle, &len, bc->buf + bc->tail);
  349. /* 'len' is valid only if the return code is 0 or EV_EAGAIN */
  350. if (!ret || (ret == EV_EAGAIN))
  351. bc->tail = (bc->tail + len) & (BUF_SIZE - 1);
  352. count = CIRC_CNT(bc->head, bc->tail, BUF_SIZE);
  353. spin_unlock_irqrestore(&bc->lock, flags);
  354. } while (count && !ret);
  355. spin_lock_irqsave(&bc->lock, flags);
  356. if (CIRC_CNT(bc->head, bc->tail, BUF_SIZE))
  357. /*
  358. * If we haven't emptied the buffer, then enable the TX IRQ.
  359. * We'll get an interrupt when there's more room in the
  360. * hypervisor's output buffer.
  361. */
  362. enable_tx_interrupt(bc);
  363. else
  364. disable_tx_interrupt(bc);
  365. spin_unlock_irqrestore(&bc->lock, flags);
  366. }
  367. /*
  368. * byte channel transmit interupt handler
  369. *
  370. * This ISR is called whenever space becomes available for transmitting
  371. * characters on a byte channel.
  372. */
  373. static irqreturn_t ehv_bc_tty_tx_isr(int irq, void *data)
  374. {
  375. struct ehv_bc_data *bc = data;
  376. ehv_bc_tx_dequeue(bc);
  377. tty_port_tty_wakeup(&bc->port);
  378. return IRQ_HANDLED;
  379. }
  380. /*
  381. * This function is called when the tty layer has data for us send. We store
  382. * the data first in a circular buffer, and then dequeue as much of that data
  383. * as possible.
  384. *
  385. * We don't need to worry about whether there is enough room in the buffer for
  386. * all the data. The purpose of ehv_bc_tty_write_room() is to tell the tty
  387. * layer how much data it can safely send to us. We guarantee that
  388. * ehv_bc_tty_write_room() will never lie, so the tty layer will never send us
  389. * too much data.
  390. */
  391. static int ehv_bc_tty_write(struct tty_struct *ttys, const unsigned char *s,
  392. int count)
  393. {
  394. struct ehv_bc_data *bc = ttys->driver_data;
  395. unsigned long flags;
  396. unsigned int len;
  397. unsigned int written = 0;
  398. while (1) {
  399. spin_lock_irqsave(&bc->lock, flags);
  400. len = CIRC_SPACE_TO_END(bc->head, bc->tail, BUF_SIZE);
  401. if (count < len)
  402. len = count;
  403. if (len) {
  404. memcpy(bc->buf + bc->head, s, len);
  405. bc->head = (bc->head + len) & (BUF_SIZE - 1);
  406. }
  407. spin_unlock_irqrestore(&bc->lock, flags);
  408. if (!len)
  409. break;
  410. s += len;
  411. count -= len;
  412. written += len;
  413. }
  414. ehv_bc_tx_dequeue(bc);
  415. return written;
  416. }
  417. /*
  418. * This function can be called multiple times for a given tty_struct, which is
  419. * why we initialize bc->ttys in ehv_bc_tty_port_activate() instead.
  420. *
  421. * The tty layer will still call this function even if the device was not
  422. * registered (i.e. tty_register_device() was not called). This happens
  423. * because tty_register_device() is optional and some legacy drivers don't
  424. * use it. So we need to check for that.
  425. */
  426. static int ehv_bc_tty_open(struct tty_struct *ttys, struct file *filp)
  427. {
  428. struct ehv_bc_data *bc = &bcs[ttys->index];
  429. if (!bc->dev)
  430. return -ENODEV;
  431. return tty_port_open(&bc->port, ttys, filp);
  432. }
  433. /*
  434. * Amazingly, if ehv_bc_tty_open() returns an error code, the tty layer will
  435. * still call this function to close the tty device. So we can't assume that
  436. * the tty port has been initialized.
  437. */
  438. static void ehv_bc_tty_close(struct tty_struct *ttys, struct file *filp)
  439. {
  440. struct ehv_bc_data *bc = &bcs[ttys->index];
  441. if (bc->dev)
  442. tty_port_close(&bc->port, ttys, filp);
  443. }
  444. /*
  445. * Return the amount of space in the output buffer
  446. *
  447. * This is actually a contract between the driver and the tty layer outlining
  448. * how much write room the driver can guarantee will be sent OR BUFFERED. This
  449. * driver MUST honor the return value.
  450. */
  451. static int ehv_bc_tty_write_room(struct tty_struct *ttys)
  452. {
  453. struct ehv_bc_data *bc = ttys->driver_data;
  454. unsigned long flags;
  455. int count;
  456. spin_lock_irqsave(&bc->lock, flags);
  457. count = CIRC_SPACE(bc->head, bc->tail, BUF_SIZE);
  458. spin_unlock_irqrestore(&bc->lock, flags);
  459. return count;
  460. }
  461. /*
  462. * Stop sending data to the tty layer
  463. *
  464. * This function is called when the tty layer's input buffers are getting full,
  465. * so the driver should stop sending it data. The easiest way to do this is to
  466. * disable the RX IRQ, which will prevent ehv_bc_tty_rx_isr() from being
  467. * called.
  468. *
  469. * The hypervisor will continue to queue up any incoming data. If there is any
  470. * data in the queue when the RX interrupt is enabled, we'll immediately get an
  471. * RX interrupt.
  472. */
  473. static void ehv_bc_tty_throttle(struct tty_struct *ttys)
  474. {
  475. struct ehv_bc_data *bc = ttys->driver_data;
  476. disable_irq(bc->rx_irq);
  477. }
  478. /*
  479. * Resume sending data to the tty layer
  480. *
  481. * This function is called after previously calling ehv_bc_tty_throttle(). The
  482. * tty layer's input buffers now have more room, so the driver can resume
  483. * sending it data.
  484. */
  485. static void ehv_bc_tty_unthrottle(struct tty_struct *ttys)
  486. {
  487. struct ehv_bc_data *bc = ttys->driver_data;
  488. /* If there is any data in the queue when the RX interrupt is enabled,
  489. * we'll immediately get an RX interrupt.
  490. */
  491. enable_irq(bc->rx_irq);
  492. }
  493. static void ehv_bc_tty_hangup(struct tty_struct *ttys)
  494. {
  495. struct ehv_bc_data *bc = ttys->driver_data;
  496. ehv_bc_tx_dequeue(bc);
  497. tty_port_hangup(&bc->port);
  498. }
  499. /*
  500. * TTY driver operations
  501. *
  502. * If we could ask the hypervisor how much data is still in the TX buffer, or
  503. * at least how big the TX buffers are, then we could implement the
  504. * .wait_until_sent and .chars_in_buffer functions.
  505. */
  506. static const struct tty_operations ehv_bc_ops = {
  507. .open = ehv_bc_tty_open,
  508. .close = ehv_bc_tty_close,
  509. .write = ehv_bc_tty_write,
  510. .write_room = ehv_bc_tty_write_room,
  511. .throttle = ehv_bc_tty_throttle,
  512. .unthrottle = ehv_bc_tty_unthrottle,
  513. .hangup = ehv_bc_tty_hangup,
  514. };
  515. /*
  516. * initialize the TTY port
  517. *
  518. * This function will only be called once, no matter how many times
  519. * ehv_bc_tty_open() is called. That's why we register the ISR here, and also
  520. * why we initialize tty_struct-related variables here.
  521. */
  522. static int ehv_bc_tty_port_activate(struct tty_port *port,
  523. struct tty_struct *ttys)
  524. {
  525. struct ehv_bc_data *bc = container_of(port, struct ehv_bc_data, port);
  526. int ret;
  527. ttys->driver_data = bc;
  528. ret = request_irq(bc->rx_irq, ehv_bc_tty_rx_isr, 0, "ehv-bc", bc);
  529. if (ret < 0) {
  530. dev_err(bc->dev, "could not request rx irq %u (ret=%i)\n",
  531. bc->rx_irq, ret);
  532. return ret;
  533. }
  534. /* request_irq also enables the IRQ */
  535. bc->tx_irq_enabled = 1;
  536. ret = request_irq(bc->tx_irq, ehv_bc_tty_tx_isr, 0, "ehv-bc", bc);
  537. if (ret < 0) {
  538. dev_err(bc->dev, "could not request tx irq %u (ret=%i)\n",
  539. bc->tx_irq, ret);
  540. free_irq(bc->rx_irq, bc);
  541. return ret;
  542. }
  543. /* The TX IRQ is enabled only when we can't write all the data to the
  544. * byte channel at once, so by default it's disabled.
  545. */
  546. disable_tx_interrupt(bc);
  547. return 0;
  548. }
  549. static void ehv_bc_tty_port_shutdown(struct tty_port *port)
  550. {
  551. struct ehv_bc_data *bc = container_of(port, struct ehv_bc_data, port);
  552. free_irq(bc->tx_irq, bc);
  553. free_irq(bc->rx_irq, bc);
  554. }
  555. static const struct tty_port_operations ehv_bc_tty_port_ops = {
  556. .activate = ehv_bc_tty_port_activate,
  557. .shutdown = ehv_bc_tty_port_shutdown,
  558. };
  559. static int ehv_bc_tty_probe(struct platform_device *pdev)
  560. {
  561. struct device_node *np = pdev->dev.of_node;
  562. struct ehv_bc_data *bc;
  563. const uint32_t *iprop;
  564. unsigned int handle;
  565. int ret;
  566. static unsigned int index = 1;
  567. unsigned int i;
  568. iprop = of_get_property(np, "hv-handle", NULL);
  569. if (!iprop) {
  570. dev_err(&pdev->dev, "no 'hv-handle' property in %s node\n",
  571. np->name);
  572. return -ENODEV;
  573. }
  574. /* We already told the console layer that the index for the console
  575. * device is zero, so we need to make sure that we use that index when
  576. * we probe the console byte channel node.
  577. */
  578. handle = be32_to_cpu(*iprop);
  579. i = (handle == stdout_bc) ? 0 : index++;
  580. bc = &bcs[i];
  581. bc->handle = handle;
  582. bc->head = 0;
  583. bc->tail = 0;
  584. spin_lock_init(&bc->lock);
  585. bc->rx_irq = irq_of_parse_and_map(np, 0);
  586. bc->tx_irq = irq_of_parse_and_map(np, 1);
  587. if ((bc->rx_irq == NO_IRQ) || (bc->tx_irq == NO_IRQ)) {
  588. dev_err(&pdev->dev, "no 'interrupts' property in %s node\n",
  589. np->name);
  590. ret = -ENODEV;
  591. goto error;
  592. }
  593. tty_port_init(&bc->port);
  594. bc->port.ops = &ehv_bc_tty_port_ops;
  595. bc->dev = tty_port_register_device(&bc->port, ehv_bc_driver, i,
  596. &pdev->dev);
  597. if (IS_ERR(bc->dev)) {
  598. ret = PTR_ERR(bc->dev);
  599. dev_err(&pdev->dev, "could not register tty (ret=%i)\n", ret);
  600. goto error;
  601. }
  602. dev_set_drvdata(&pdev->dev, bc);
  603. dev_info(&pdev->dev, "registered /dev/%s%u for byte channel %u\n",
  604. ehv_bc_driver->name, i, bc->handle);
  605. return 0;
  606. error:
  607. tty_port_destroy(&bc->port);
  608. irq_dispose_mapping(bc->tx_irq);
  609. irq_dispose_mapping(bc->rx_irq);
  610. memset(bc, 0, sizeof(struct ehv_bc_data));
  611. return ret;
  612. }
  613. static int ehv_bc_tty_remove(struct platform_device *pdev)
  614. {
  615. struct ehv_bc_data *bc = dev_get_drvdata(&pdev->dev);
  616. tty_unregister_device(ehv_bc_driver, bc - bcs);
  617. tty_port_destroy(&bc->port);
  618. irq_dispose_mapping(bc->tx_irq);
  619. irq_dispose_mapping(bc->rx_irq);
  620. return 0;
  621. }
  622. static const struct of_device_id ehv_bc_tty_of_ids[] = {
  623. { .compatible = "epapr,hv-byte-channel" },
  624. {}
  625. };
  626. static struct platform_driver ehv_bc_tty_driver = {
  627. .driver = {
  628. .name = "ehv-bc",
  629. .of_match_table = ehv_bc_tty_of_ids,
  630. },
  631. .probe = ehv_bc_tty_probe,
  632. .remove = ehv_bc_tty_remove,
  633. };
  634. /**
  635. * ehv_bc_init - ePAPR hypervisor byte channel driver initialization
  636. *
  637. * This function is called when this module is loaded.
  638. */
  639. static int __init ehv_bc_init(void)
  640. {
  641. struct device_node *np;
  642. unsigned int count = 0; /* Number of elements in bcs[] */
  643. int ret;
  644. pr_info("ePAPR hypervisor byte channel driver\n");
  645. /* Count the number of byte channels */
  646. for_each_compatible_node(np, NULL, "epapr,hv-byte-channel")
  647. count++;
  648. if (!count)
  649. return -ENODEV;
  650. /* The array index of an element in bcs[] is the same as the tty index
  651. * for that element. If you know the address of an element in the
  652. * array, then you can use pointer math (e.g. "bc - bcs") to get its
  653. * tty index.
  654. */
  655. bcs = kzalloc(count * sizeof(struct ehv_bc_data), GFP_KERNEL);
  656. if (!bcs)
  657. return -ENOMEM;
  658. ehv_bc_driver = alloc_tty_driver(count);
  659. if (!ehv_bc_driver) {
  660. ret = -ENOMEM;
  661. goto error;
  662. }
  663. ehv_bc_driver->driver_name = "ehv-bc";
  664. ehv_bc_driver->name = ehv_bc_console.name;
  665. ehv_bc_driver->type = TTY_DRIVER_TYPE_CONSOLE;
  666. ehv_bc_driver->subtype = SYSTEM_TYPE_CONSOLE;
  667. ehv_bc_driver->init_termios = tty_std_termios;
  668. ehv_bc_driver->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV;
  669. tty_set_operations(ehv_bc_driver, &ehv_bc_ops);
  670. ret = tty_register_driver(ehv_bc_driver);
  671. if (ret) {
  672. pr_err("ehv-bc: could not register tty driver (ret=%i)\n", ret);
  673. goto error;
  674. }
  675. ret = platform_driver_register(&ehv_bc_tty_driver);
  676. if (ret) {
  677. pr_err("ehv-bc: could not register platform driver (ret=%i)\n",
  678. ret);
  679. goto error;
  680. }
  681. return 0;
  682. error:
  683. if (ehv_bc_driver) {
  684. tty_unregister_driver(ehv_bc_driver);
  685. put_tty_driver(ehv_bc_driver);
  686. }
  687. kfree(bcs);
  688. return ret;
  689. }
  690. /**
  691. * ehv_bc_exit - ePAPR hypervisor byte channel driver termination
  692. *
  693. * This function is called when this driver is unloaded.
  694. */
  695. static void __exit ehv_bc_exit(void)
  696. {
  697. platform_driver_unregister(&ehv_bc_tty_driver);
  698. tty_unregister_driver(ehv_bc_driver);
  699. put_tty_driver(ehv_bc_driver);
  700. kfree(bcs);
  701. }
  702. module_init(ehv_bc_init);
  703. module_exit(ehv_bc_exit);
  704. MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
  705. MODULE_DESCRIPTION("ePAPR hypervisor byte channel driver");
  706. MODULE_LICENSE("GPL v2");