urb.c 32 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969
  1. #include <linux/module.h>
  2. #include <linux/string.h>
  3. #include <linux/bitops.h>
  4. #include <linux/slab.h>
  5. #include <linux/log2.h>
  6. #include <linux/usb.h>
  7. #include <linux/wait.h>
  8. #include <linux/usb/hcd.h>
  9. #include <linux/scatterlist.h>
  10. #define to_urb(d) container_of(d, struct urb, kref)
  11. static void urb_destroy(struct kref *kref)
  12. {
  13. struct urb *urb = to_urb(kref);
  14. if (urb->transfer_flags & URB_FREE_BUFFER)
  15. kfree(urb->transfer_buffer);
  16. kfree(urb);
  17. }
  18. /**
  19. * usb_init_urb - initializes a urb so that it can be used by a USB driver
  20. * @urb: pointer to the urb to initialize
  21. *
  22. * Initializes a urb so that the USB subsystem can use it properly.
  23. *
  24. * If a urb is created with a call to usb_alloc_urb() it is not
  25. * necessary to call this function. Only use this if you allocate the
  26. * space for a struct urb on your own. If you call this function, be
  27. * careful when freeing the memory for your urb that it is no longer in
  28. * use by the USB core.
  29. *
  30. * Only use this function if you _really_ understand what you are doing.
  31. */
  32. void usb_init_urb(struct urb *urb)
  33. {
  34. if (urb) {
  35. memset(urb, 0, sizeof(*urb));
  36. kref_init(&urb->kref);
  37. INIT_LIST_HEAD(&urb->anchor_list);
  38. }
  39. }
  40. EXPORT_SYMBOL_GPL(usb_init_urb);
  41. /**
  42. * usb_alloc_urb - creates a new urb for a USB driver to use
  43. * @iso_packets: number of iso packets for this urb
  44. * @mem_flags: the type of memory to allocate, see kmalloc() for a list of
  45. * valid options for this.
  46. *
  47. * Creates an urb for the USB driver to use, initializes a few internal
  48. * structures, increments the usage counter, and returns a pointer to it.
  49. *
  50. * If the driver want to use this urb for interrupt, control, or bulk
  51. * endpoints, pass '0' as the number of iso packets.
  52. *
  53. * The driver must call usb_free_urb() when it is finished with the urb.
  54. *
  55. * Return: A pointer to the new urb, or %NULL if no memory is available.
  56. */
  57. struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags)
  58. {
  59. struct urb *urb;
  60. urb = kmalloc(sizeof(struct urb) +
  61. iso_packets * sizeof(struct usb_iso_packet_descriptor),
  62. mem_flags);
  63. if (!urb) {
  64. printk(KERN_ERR "alloc_urb: kmalloc failed\n");
  65. return NULL;
  66. }
  67. usb_init_urb(urb);
  68. return urb;
  69. }
  70. EXPORT_SYMBOL_GPL(usb_alloc_urb);
  71. /**
  72. * usb_free_urb - frees the memory used by a urb when all users of it are finished
  73. * @urb: pointer to the urb to free, may be NULL
  74. *
  75. * Must be called when a user of a urb is finished with it. When the last user
  76. * of the urb calls this function, the memory of the urb is freed.
  77. *
  78. * Note: The transfer buffer associated with the urb is not freed unless the
  79. * URB_FREE_BUFFER transfer flag is set.
  80. */
  81. void usb_free_urb(struct urb *urb)
  82. {
  83. if (urb)
  84. kref_put(&urb->kref, urb_destroy);
  85. }
  86. EXPORT_SYMBOL_GPL(usb_free_urb);
  87. /**
  88. * usb_get_urb - increments the reference count of the urb
  89. * @urb: pointer to the urb to modify, may be NULL
  90. *
  91. * This must be called whenever a urb is transferred from a device driver to a
  92. * host controller driver. This allows proper reference counting to happen
  93. * for urbs.
  94. *
  95. * Return: A pointer to the urb with the incremented reference counter.
  96. */
  97. struct urb *usb_get_urb(struct urb *urb)
  98. {
  99. if (urb)
  100. kref_get(&urb->kref);
  101. return urb;
  102. }
  103. EXPORT_SYMBOL_GPL(usb_get_urb);
  104. /**
  105. * usb_anchor_urb - anchors an URB while it is processed
  106. * @urb: pointer to the urb to anchor
  107. * @anchor: pointer to the anchor
  108. *
  109. * This can be called to have access to URBs which are to be executed
  110. * without bothering to track them
  111. */
  112. void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor)
  113. {
  114. unsigned long flags;
  115. spin_lock_irqsave(&anchor->lock, flags);
  116. usb_get_urb(urb);
  117. list_add_tail(&urb->anchor_list, &anchor->urb_list);
  118. urb->anchor = anchor;
  119. if (unlikely(anchor->poisoned))
  120. atomic_inc(&urb->reject);
  121. spin_unlock_irqrestore(&anchor->lock, flags);
  122. }
  123. EXPORT_SYMBOL_GPL(usb_anchor_urb);
  124. static int usb_anchor_check_wakeup(struct usb_anchor *anchor)
  125. {
  126. return atomic_read(&anchor->suspend_wakeups) == 0 &&
  127. list_empty(&anchor->urb_list);
  128. }
  129. /* Callers must hold anchor->lock */
  130. static void __usb_unanchor_urb(struct urb *urb, struct usb_anchor *anchor)
  131. {
  132. urb->anchor = NULL;
  133. list_del(&urb->anchor_list);
  134. usb_put_urb(urb);
  135. if (usb_anchor_check_wakeup(anchor))
  136. wake_up(&anchor->wait);
  137. }
  138. /**
  139. * usb_unanchor_urb - unanchors an URB
  140. * @urb: pointer to the urb to anchor
  141. *
  142. * Call this to stop the system keeping track of this URB
  143. */
  144. void usb_unanchor_urb(struct urb *urb)
  145. {
  146. unsigned long flags;
  147. struct usb_anchor *anchor;
  148. if (!urb)
  149. return;
  150. anchor = urb->anchor;
  151. if (!anchor)
  152. return;
  153. spin_lock_irqsave(&anchor->lock, flags);
  154. /*
  155. * At this point, we could be competing with another thread which
  156. * has the same intention. To protect the urb from being unanchored
  157. * twice, only the winner of the race gets the job.
  158. */
  159. if (likely(anchor == urb->anchor))
  160. __usb_unanchor_urb(urb, anchor);
  161. spin_unlock_irqrestore(&anchor->lock, flags);
  162. }
  163. EXPORT_SYMBOL_GPL(usb_unanchor_urb);
  164. /*-------------------------------------------------------------------*/
  165. /**
  166. * usb_submit_urb - issue an asynchronous transfer request for an endpoint
  167. * @urb: pointer to the urb describing the request
  168. * @mem_flags: the type of memory to allocate, see kmalloc() for a list
  169. * of valid options for this.
  170. *
  171. * This submits a transfer request, and transfers control of the URB
  172. * describing that request to the USB subsystem. Request completion will
  173. * be indicated later, asynchronously, by calling the completion handler.
  174. * The three types of completion are success, error, and unlink
  175. * (a software-induced fault, also called "request cancellation").
  176. *
  177. * URBs may be submitted in interrupt context.
  178. *
  179. * The caller must have correctly initialized the URB before submitting
  180. * it. Functions such as usb_fill_bulk_urb() and usb_fill_control_urb() are
  181. * available to ensure that most fields are correctly initialized, for
  182. * the particular kind of transfer, although they will not initialize
  183. * any transfer flags.
  184. *
  185. * If the submission is successful, the complete() callback from the URB
  186. * will be called exactly once, when the USB core and Host Controller Driver
  187. * (HCD) are finished with the URB. When the completion function is called,
  188. * control of the URB is returned to the device driver which issued the
  189. * request. The completion handler may then immediately free or reuse that
  190. * URB.
  191. *
  192. * With few exceptions, USB device drivers should never access URB fields
  193. * provided by usbcore or the HCD until its complete() is called.
  194. * The exceptions relate to periodic transfer scheduling. For both
  195. * interrupt and isochronous urbs, as part of successful URB submission
  196. * urb->interval is modified to reflect the actual transfer period used
  197. * (normally some power of two units). And for isochronous urbs,
  198. * urb->start_frame is modified to reflect when the URB's transfers were
  199. * scheduled to start.
  200. *
  201. * Not all isochronous transfer scheduling policies will work, but most
  202. * host controller drivers should easily handle ISO queues going from now
  203. * until 10-200 msec into the future. Drivers should try to keep at
  204. * least one or two msec of data in the queue; many controllers require
  205. * that new transfers start at least 1 msec in the future when they are
  206. * added. If the driver is unable to keep up and the queue empties out,
  207. * the behavior for new submissions is governed by the URB_ISO_ASAP flag.
  208. * If the flag is set, or if the queue is idle, then the URB is always
  209. * assigned to the first available (and not yet expired) slot in the
  210. * endpoint's schedule. If the flag is not set and the queue is active
  211. * then the URB is always assigned to the next slot in the schedule
  212. * following the end of the endpoint's previous URB, even if that slot is
  213. * in the past. When a packet is assigned in this way to a slot that has
  214. * already expired, the packet is not transmitted and the corresponding
  215. * usb_iso_packet_descriptor's status field will return -EXDEV. If this
  216. * would happen to all the packets in the URB, submission fails with a
  217. * -EXDEV error code.
  218. *
  219. * For control endpoints, the synchronous usb_control_msg() call is
  220. * often used (in non-interrupt context) instead of this call.
  221. * That is often used through convenience wrappers, for the requests
  222. * that are standardized in the USB 2.0 specification. For bulk
  223. * endpoints, a synchronous usb_bulk_msg() call is available.
  224. *
  225. * Return:
  226. * 0 on successful submissions. A negative error number otherwise.
  227. *
  228. * Request Queuing:
  229. *
  230. * URBs may be submitted to endpoints before previous ones complete, to
  231. * minimize the impact of interrupt latencies and system overhead on data
  232. * throughput. With that queuing policy, an endpoint's queue would never
  233. * be empty. This is required for continuous isochronous data streams,
  234. * and may also be required for some kinds of interrupt transfers. Such
  235. * queuing also maximizes bandwidth utilization by letting USB controllers
  236. * start work on later requests before driver software has finished the
  237. * completion processing for earlier (successful) requests.
  238. *
  239. * As of Linux 2.6, all USB endpoint transfer queues support depths greater
  240. * than one. This was previously a HCD-specific behavior, except for ISO
  241. * transfers. Non-isochronous endpoint queues are inactive during cleanup
  242. * after faults (transfer errors or cancellation).
  243. *
  244. * Reserved Bandwidth Transfers:
  245. *
  246. * Periodic transfers (interrupt or isochronous) are performed repeatedly,
  247. * using the interval specified in the urb. Submitting the first urb to
  248. * the endpoint reserves the bandwidth necessary to make those transfers.
  249. * If the USB subsystem can't allocate sufficient bandwidth to perform
  250. * the periodic request, submitting such a periodic request should fail.
  251. *
  252. * For devices under xHCI, the bandwidth is reserved at configuration time, or
  253. * when the alt setting is selected. If there is not enough bus bandwidth, the
  254. * configuration/alt setting request will fail. Therefore, submissions to
  255. * periodic endpoints on devices under xHCI should never fail due to bandwidth
  256. * constraints.
  257. *
  258. * Device drivers must explicitly request that repetition, by ensuring that
  259. * some URB is always on the endpoint's queue (except possibly for short
  260. * periods during completion callbacks). When there is no longer an urb
  261. * queued, the endpoint's bandwidth reservation is canceled. This means
  262. * drivers can use their completion handlers to ensure they keep bandwidth
  263. * they need, by reinitializing and resubmitting the just-completed urb
  264. * until the driver longer needs that periodic bandwidth.
  265. *
  266. * Memory Flags:
  267. *
  268. * The general rules for how to decide which mem_flags to use
  269. * are the same as for kmalloc. There are four
  270. * different possible values; GFP_KERNEL, GFP_NOFS, GFP_NOIO and
  271. * GFP_ATOMIC.
  272. *
  273. * GFP_NOFS is not ever used, as it has not been implemented yet.
  274. *
  275. * GFP_ATOMIC is used when
  276. * (a) you are inside a completion handler, an interrupt, bottom half,
  277. * tasklet or timer, or
  278. * (b) you are holding a spinlock or rwlock (does not apply to
  279. * semaphores), or
  280. * (c) current->state != TASK_RUNNING, this is the case only after
  281. * you've changed it.
  282. *
  283. * GFP_NOIO is used in the block io path and error handling of storage
  284. * devices.
  285. *
  286. * All other situations use GFP_KERNEL.
  287. *
  288. * Some more specific rules for mem_flags can be inferred, such as
  289. * (1) start_xmit, timeout, and receive methods of network drivers must
  290. * use GFP_ATOMIC (they are called with a spinlock held);
  291. * (2) queuecommand methods of scsi drivers must use GFP_ATOMIC (also
  292. * called with a spinlock held);
  293. * (3) If you use a kernel thread with a network driver you must use
  294. * GFP_NOIO, unless (b) or (c) apply;
  295. * (4) after you have done a down() you can use GFP_KERNEL, unless (b) or (c)
  296. * apply or your are in a storage driver's block io path;
  297. * (5) USB probe and disconnect can use GFP_KERNEL unless (b) or (c) apply; and
  298. * (6) changing firmware on a running storage or net device uses
  299. * GFP_NOIO, unless b) or c) apply
  300. *
  301. */
  302. int usb_submit_urb(struct urb *urb, gfp_t mem_flags)
  303. {
  304. static int pipetypes[4] = {
  305. PIPE_CONTROL, PIPE_ISOCHRONOUS, PIPE_BULK, PIPE_INTERRUPT
  306. };
  307. int xfertype, max;
  308. struct usb_device *dev;
  309. struct usb_host_endpoint *ep;
  310. int is_out;
  311. unsigned int allowed;
  312. if (!urb || !urb->complete)
  313. return -EINVAL;
  314. if (urb->hcpriv) {
  315. WARN_ONCE(1, "URB %pK submitted while active\n", urb);
  316. return -EBUSY;
  317. }
  318. dev = urb->dev;
  319. if ((!dev) || (dev->state < USB_STATE_UNAUTHENTICATED))
  320. return -ENODEV;
  321. /* For now, get the endpoint from the pipe. Eventually drivers
  322. * will be required to set urb->ep directly and we will eliminate
  323. * urb->pipe.
  324. */
  325. ep = usb_pipe_endpoint(dev, urb->pipe);
  326. if (!ep)
  327. return -ENOENT;
  328. urb->ep = ep;
  329. urb->status = -EINPROGRESS;
  330. urb->actual_length = 0;
  331. /* Lots of sanity checks, so HCDs can rely on clean data
  332. * and don't need to duplicate tests
  333. */
  334. xfertype = usb_endpoint_type(&ep->desc);
  335. if (xfertype == USB_ENDPOINT_XFER_CONTROL) {
  336. struct usb_ctrlrequest *setup =
  337. (struct usb_ctrlrequest *) urb->setup_packet;
  338. if (!setup)
  339. return -ENOEXEC;
  340. is_out = !(setup->bRequestType & USB_DIR_IN) ||
  341. !setup->wLength;
  342. } else {
  343. is_out = usb_endpoint_dir_out(&ep->desc);
  344. }
  345. /* Clear the internal flags and cache the direction for later use */
  346. urb->transfer_flags &= ~(URB_DIR_MASK | URB_DMA_MAP_SINGLE |
  347. URB_DMA_MAP_PAGE | URB_DMA_MAP_SG | URB_MAP_LOCAL |
  348. URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL |
  349. URB_DMA_SG_COMBINED);
  350. urb->transfer_flags |= (is_out ? URB_DIR_OUT : URB_DIR_IN);
  351. if (xfertype != USB_ENDPOINT_XFER_CONTROL &&
  352. dev->state < USB_STATE_CONFIGURED)
  353. return -ENODEV;
  354. max = usb_endpoint_maxp(&ep->desc);
  355. if (max <= 0) {
  356. dev_dbg(&dev->dev,
  357. "bogus endpoint ep%d%s in %s (bad maxpacket %d)\n",
  358. usb_endpoint_num(&ep->desc), is_out ? "out" : "in",
  359. __func__, max);
  360. return -EMSGSIZE;
  361. }
  362. /* periodic transfers limit size per frame/uframe,
  363. * but drivers only control those sizes for ISO.
  364. * while we're checking, initialize return status.
  365. */
  366. if (xfertype == USB_ENDPOINT_XFER_ISOC) {
  367. int n, len;
  368. /* SuperSpeed isoc endpoints have up to 16 bursts of up to
  369. * 3 packets each
  370. */
  371. if (dev->speed >= USB_SPEED_SUPER) {
  372. int burst = 1 + ep->ss_ep_comp.bMaxBurst;
  373. int mult = USB_SS_MULT(ep->ss_ep_comp.bmAttributes);
  374. max *= burst;
  375. max *= mult;
  376. }
  377. /* "high bandwidth" mode, 1-3 packets/uframe? */
  378. if (dev->speed == USB_SPEED_HIGH) {
  379. int mult = 1 + ((max >> 11) & 0x03);
  380. max &= 0x07ff;
  381. max *= mult;
  382. }
  383. if (urb->number_of_packets <= 0)
  384. return -EINVAL;
  385. for (n = 0; n < urb->number_of_packets; n++) {
  386. len = urb->iso_frame_desc[n].length;
  387. if (len < 0 || len > max)
  388. return -EMSGSIZE;
  389. urb->iso_frame_desc[n].status = -EXDEV;
  390. urb->iso_frame_desc[n].actual_length = 0;
  391. }
  392. } else if (urb->num_sgs && !urb->dev->bus->no_sg_constraint &&
  393. dev->speed != USB_SPEED_WIRELESS) {
  394. struct scatterlist *sg;
  395. int i;
  396. for_each_sg(urb->sg, sg, urb->num_sgs - 1, i)
  397. if (sg->length % max)
  398. return -EINVAL;
  399. }
  400. /* the I/O buffer must be mapped/unmapped, except when length=0 */
  401. if (urb->transfer_buffer_length > INT_MAX)
  402. return -EMSGSIZE;
  403. /*
  404. * stuff that drivers shouldn't do, but which shouldn't
  405. * cause problems in HCDs if they get it wrong.
  406. */
  407. /* Check that the pipe's type matches the endpoint's type */
  408. if (usb_pipetype(urb->pipe) != pipetypes[xfertype])
  409. dev_WARN(&dev->dev, "BOGUS urb xfer, pipe %x != type %x\n",
  410. usb_pipetype(urb->pipe), pipetypes[xfertype]);
  411. /* Check against a simple/standard policy */
  412. allowed = (URB_NO_TRANSFER_DMA_MAP | URB_NO_INTERRUPT | URB_DIR_MASK |
  413. URB_FREE_BUFFER);
  414. switch (xfertype) {
  415. case USB_ENDPOINT_XFER_BULK:
  416. case USB_ENDPOINT_XFER_INT:
  417. if (is_out)
  418. allowed |= URB_ZERO_PACKET;
  419. /* FALLTHROUGH */
  420. case USB_ENDPOINT_XFER_CONTROL:
  421. allowed |= URB_NO_FSBR; /* only affects UHCI */
  422. /* FALLTHROUGH */
  423. default: /* all non-iso endpoints */
  424. if (!is_out)
  425. allowed |= URB_SHORT_NOT_OK;
  426. break;
  427. case USB_ENDPOINT_XFER_ISOC:
  428. allowed |= URB_ISO_ASAP;
  429. break;
  430. }
  431. allowed &= urb->transfer_flags;
  432. /* warn if submitter gave bogus flags */
  433. if (allowed != urb->transfer_flags)
  434. dev_WARN(&dev->dev, "BOGUS urb flags, %x --> %x\n",
  435. urb->transfer_flags, allowed);
  436. /*
  437. * Force periodic transfer intervals to be legal values that are
  438. * a power of two (so HCDs don't need to).
  439. *
  440. * FIXME want bus->{intr,iso}_sched_horizon values here. Each HC
  441. * supports different values... this uses EHCI/UHCI defaults (and
  442. * EHCI can use smaller non-default values).
  443. */
  444. switch (xfertype) {
  445. case USB_ENDPOINT_XFER_ISOC:
  446. case USB_ENDPOINT_XFER_INT:
  447. /* too small? */
  448. switch (dev->speed) {
  449. case USB_SPEED_WIRELESS:
  450. if ((urb->interval < 6)
  451. && (xfertype == USB_ENDPOINT_XFER_INT))
  452. return -EINVAL;
  453. default:
  454. if (urb->interval <= 0)
  455. return -EINVAL;
  456. break;
  457. }
  458. /* too big? */
  459. switch (dev->speed) {
  460. case USB_SPEED_SUPER_PLUS:
  461. case USB_SPEED_SUPER: /* units are 125us */
  462. /* Handle up to 2^(16-1) microframes */
  463. if (urb->interval > (1 << 15))
  464. return -EINVAL;
  465. max = 1 << 15;
  466. break;
  467. case USB_SPEED_WIRELESS:
  468. if (urb->interval > 16)
  469. return -EINVAL;
  470. break;
  471. case USB_SPEED_HIGH: /* units are microframes */
  472. /* NOTE usb handles 2^15 */
  473. if (urb->interval > (1024 * 8))
  474. urb->interval = 1024 * 8;
  475. max = 1024 * 8;
  476. break;
  477. case USB_SPEED_FULL: /* units are frames/msec */
  478. case USB_SPEED_LOW:
  479. if (xfertype == USB_ENDPOINT_XFER_INT) {
  480. if (urb->interval > 255)
  481. return -EINVAL;
  482. /* NOTE ohci only handles up to 32 */
  483. max = 128;
  484. } else {
  485. if (urb->interval > 1024)
  486. urb->interval = 1024;
  487. /* NOTE usb and ohci handle up to 2^15 */
  488. max = 1024;
  489. }
  490. break;
  491. default:
  492. return -EINVAL;
  493. }
  494. if (dev->speed != USB_SPEED_WIRELESS) {
  495. /* Round down to a power of 2, no more than max */
  496. urb->interval = min(max, 1 << ilog2(urb->interval));
  497. }
  498. }
  499. return usb_hcd_submit_urb(urb, mem_flags);
  500. }
  501. EXPORT_SYMBOL_GPL(usb_submit_urb);
  502. /*-------------------------------------------------------------------*/
  503. /**
  504. * usb_unlink_urb - abort/cancel a transfer request for an endpoint
  505. * @urb: pointer to urb describing a previously submitted request,
  506. * may be NULL
  507. *
  508. * This routine cancels an in-progress request. URBs complete only once
  509. * per submission, and may be canceled only once per submission.
  510. * Successful cancellation means termination of @urb will be expedited
  511. * and the completion handler will be called with a status code
  512. * indicating that the request has been canceled (rather than any other
  513. * code).
  514. *
  515. * Drivers should not call this routine or related routines, such as
  516. * usb_kill_urb() or usb_unlink_anchored_urbs(), after their disconnect
  517. * method has returned. The disconnect function should synchronize with
  518. * a driver's I/O routines to insure that all URB-related activity has
  519. * completed before it returns.
  520. *
  521. * This request is asynchronous, however the HCD might call the ->complete()
  522. * callback during unlink. Therefore when drivers call usb_unlink_urb(), they
  523. * must not hold any locks that may be taken by the completion function.
  524. * Success is indicated by returning -EINPROGRESS, at which time the URB will
  525. * probably not yet have been given back to the device driver. When it is
  526. * eventually called, the completion function will see @urb->status ==
  527. * -ECONNRESET.
  528. * Failure is indicated by usb_unlink_urb() returning any other value.
  529. * Unlinking will fail when @urb is not currently "linked" (i.e., it was
  530. * never submitted, or it was unlinked before, or the hardware is already
  531. * finished with it), even if the completion handler has not yet run.
  532. *
  533. * The URB must not be deallocated while this routine is running. In
  534. * particular, when a driver calls this routine, it must insure that the
  535. * completion handler cannot deallocate the URB.
  536. *
  537. * Return: -EINPROGRESS on success. See description for other values on
  538. * failure.
  539. *
  540. * Unlinking and Endpoint Queues:
  541. *
  542. * [The behaviors and guarantees described below do not apply to virtual
  543. * root hubs but only to endpoint queues for physical USB devices.]
  544. *
  545. * Host Controller Drivers (HCDs) place all the URBs for a particular
  546. * endpoint in a queue. Normally the queue advances as the controller
  547. * hardware processes each request. But when an URB terminates with an
  548. * error its queue generally stops (see below), at least until that URB's
  549. * completion routine returns. It is guaranteed that a stopped queue
  550. * will not restart until all its unlinked URBs have been fully retired,
  551. * with their completion routines run, even if that's not until some time
  552. * after the original completion handler returns. The same behavior and
  553. * guarantee apply when an URB terminates because it was unlinked.
  554. *
  555. * Bulk and interrupt endpoint queues are guaranteed to stop whenever an
  556. * URB terminates with any sort of error, including -ECONNRESET, -ENOENT,
  557. * and -EREMOTEIO. Control endpoint queues behave the same way except
  558. * that they are not guaranteed to stop for -EREMOTEIO errors. Queues
  559. * for isochronous endpoints are treated differently, because they must
  560. * advance at fixed rates. Such queues do not stop when an URB
  561. * encounters an error or is unlinked. An unlinked isochronous URB may
  562. * leave a gap in the stream of packets; it is undefined whether such
  563. * gaps can be filled in.
  564. *
  565. * Note that early termination of an URB because a short packet was
  566. * received will generate a -EREMOTEIO error if and only if the
  567. * URB_SHORT_NOT_OK flag is set. By setting this flag, USB device
  568. * drivers can build deep queues for large or complex bulk transfers
  569. * and clean them up reliably after any sort of aborted transfer by
  570. * unlinking all pending URBs at the first fault.
  571. *
  572. * When a control URB terminates with an error other than -EREMOTEIO, it
  573. * is quite likely that the status stage of the transfer will not take
  574. * place.
  575. */
  576. int usb_unlink_urb(struct urb *urb)
  577. {
  578. if (!urb)
  579. return -EINVAL;
  580. if (!urb->dev)
  581. return -ENODEV;
  582. if (!urb->ep)
  583. return -EIDRM;
  584. return usb_hcd_unlink_urb(urb, -ECONNRESET);
  585. }
  586. EXPORT_SYMBOL_GPL(usb_unlink_urb);
  587. /**
  588. * usb_kill_urb - cancel a transfer request and wait for it to finish
  589. * @urb: pointer to URB describing a previously submitted request,
  590. * may be NULL
  591. *
  592. * This routine cancels an in-progress request. It is guaranteed that
  593. * upon return all completion handlers will have finished and the URB
  594. * will be totally idle and available for reuse. These features make
  595. * this an ideal way to stop I/O in a disconnect() callback or close()
  596. * function. If the request has not already finished or been unlinked
  597. * the completion handler will see urb->status == -ENOENT.
  598. *
  599. * While the routine is running, attempts to resubmit the URB will fail
  600. * with error -EPERM. Thus even if the URB's completion handler always
  601. * tries to resubmit, it will not succeed and the URB will become idle.
  602. *
  603. * The URB must not be deallocated while this routine is running. In
  604. * particular, when a driver calls this routine, it must insure that the
  605. * completion handler cannot deallocate the URB.
  606. *
  607. * This routine may not be used in an interrupt context (such as a bottom
  608. * half or a completion handler), or when holding a spinlock, or in other
  609. * situations where the caller can't schedule().
  610. *
  611. * This routine should not be called by a driver after its disconnect
  612. * method has returned.
  613. */
  614. void usb_kill_urb(struct urb *urb)
  615. {
  616. might_sleep();
  617. if (!(urb && urb->dev && urb->ep))
  618. return;
  619. atomic_inc(&urb->reject);
  620. usb_hcd_unlink_urb(urb, -ENOENT);
  621. wait_event(usb_kill_urb_queue, atomic_read(&urb->use_count) == 0);
  622. atomic_dec(&urb->reject);
  623. }
  624. EXPORT_SYMBOL_GPL(usb_kill_urb);
  625. /**
  626. * usb_poison_urb - reliably kill a transfer and prevent further use of an URB
  627. * @urb: pointer to URB describing a previously submitted request,
  628. * may be NULL
  629. *
  630. * This routine cancels an in-progress request. It is guaranteed that
  631. * upon return all completion handlers will have finished and the URB
  632. * will be totally idle and cannot be reused. These features make
  633. * this an ideal way to stop I/O in a disconnect() callback.
  634. * If the request has not already finished or been unlinked
  635. * the completion handler will see urb->status == -ENOENT.
  636. *
  637. * After and while the routine runs, attempts to resubmit the URB will fail
  638. * with error -EPERM. Thus even if the URB's completion handler always
  639. * tries to resubmit, it will not succeed and the URB will become idle.
  640. *
  641. * The URB must not be deallocated while this routine is running. In
  642. * particular, when a driver calls this routine, it must insure that the
  643. * completion handler cannot deallocate the URB.
  644. *
  645. * This routine may not be used in an interrupt context (such as a bottom
  646. * half or a completion handler), or when holding a spinlock, or in other
  647. * situations where the caller can't schedule().
  648. *
  649. * This routine should not be called by a driver after its disconnect
  650. * method has returned.
  651. */
  652. void usb_poison_urb(struct urb *urb)
  653. {
  654. might_sleep();
  655. if (!urb)
  656. return;
  657. atomic_inc(&urb->reject);
  658. if (!urb->dev || !urb->ep)
  659. return;
  660. usb_hcd_unlink_urb(urb, -ENOENT);
  661. wait_event(usb_kill_urb_queue, atomic_read(&urb->use_count) == 0);
  662. }
  663. EXPORT_SYMBOL_GPL(usb_poison_urb);
  664. void usb_unpoison_urb(struct urb *urb)
  665. {
  666. if (!urb)
  667. return;
  668. atomic_dec(&urb->reject);
  669. }
  670. EXPORT_SYMBOL_GPL(usb_unpoison_urb);
  671. /**
  672. * usb_block_urb - reliably prevent further use of an URB
  673. * @urb: pointer to URB to be blocked, may be NULL
  674. *
  675. * After the routine has run, attempts to resubmit the URB will fail
  676. * with error -EPERM. Thus even if the URB's completion handler always
  677. * tries to resubmit, it will not succeed and the URB will become idle.
  678. *
  679. * The URB must not be deallocated while this routine is running. In
  680. * particular, when a driver calls this routine, it must insure that the
  681. * completion handler cannot deallocate the URB.
  682. */
  683. void usb_block_urb(struct urb *urb)
  684. {
  685. if (!urb)
  686. return;
  687. atomic_inc(&urb->reject);
  688. }
  689. EXPORT_SYMBOL_GPL(usb_block_urb);
  690. /**
  691. * usb_kill_anchored_urbs - cancel transfer requests en masse
  692. * @anchor: anchor the requests are bound to
  693. *
  694. * this allows all outstanding URBs to be killed starting
  695. * from the back of the queue
  696. *
  697. * This routine should not be called by a driver after its disconnect
  698. * method has returned.
  699. */
  700. void usb_kill_anchored_urbs(struct usb_anchor *anchor)
  701. {
  702. struct urb *victim;
  703. spin_lock_irq(&anchor->lock);
  704. while (!list_empty(&anchor->urb_list)) {
  705. victim = list_entry(anchor->urb_list.prev, struct urb,
  706. anchor_list);
  707. /* we must make sure the URB isn't freed before we kill it*/
  708. usb_get_urb(victim);
  709. spin_unlock_irq(&anchor->lock);
  710. /* this will unanchor the URB */
  711. usb_kill_urb(victim);
  712. usb_put_urb(victim);
  713. spin_lock_irq(&anchor->lock);
  714. }
  715. spin_unlock_irq(&anchor->lock);
  716. }
  717. EXPORT_SYMBOL_GPL(usb_kill_anchored_urbs);
  718. /**
  719. * usb_poison_anchored_urbs - cease all traffic from an anchor
  720. * @anchor: anchor the requests are bound to
  721. *
  722. * this allows all outstanding URBs to be poisoned starting
  723. * from the back of the queue. Newly added URBs will also be
  724. * poisoned
  725. *
  726. * This routine should not be called by a driver after its disconnect
  727. * method has returned.
  728. */
  729. void usb_poison_anchored_urbs(struct usb_anchor *anchor)
  730. {
  731. struct urb *victim;
  732. spin_lock_irq(&anchor->lock);
  733. anchor->poisoned = 1;
  734. while (!list_empty(&anchor->urb_list)) {
  735. victim = list_entry(anchor->urb_list.prev, struct urb,
  736. anchor_list);
  737. /* we must make sure the URB isn't freed before we kill it*/
  738. usb_get_urb(victim);
  739. spin_unlock_irq(&anchor->lock);
  740. /* this will unanchor the URB */
  741. usb_poison_urb(victim);
  742. usb_put_urb(victim);
  743. spin_lock_irq(&anchor->lock);
  744. }
  745. spin_unlock_irq(&anchor->lock);
  746. }
  747. EXPORT_SYMBOL_GPL(usb_poison_anchored_urbs);
  748. /**
  749. * usb_unpoison_anchored_urbs - let an anchor be used successfully again
  750. * @anchor: anchor the requests are bound to
  751. *
  752. * Reverses the effect of usb_poison_anchored_urbs
  753. * the anchor can be used normally after it returns
  754. */
  755. void usb_unpoison_anchored_urbs(struct usb_anchor *anchor)
  756. {
  757. unsigned long flags;
  758. struct urb *lazarus;
  759. spin_lock_irqsave(&anchor->lock, flags);
  760. list_for_each_entry(lazarus, &anchor->urb_list, anchor_list) {
  761. usb_unpoison_urb(lazarus);
  762. }
  763. anchor->poisoned = 0;
  764. spin_unlock_irqrestore(&anchor->lock, flags);
  765. }
  766. EXPORT_SYMBOL_GPL(usb_unpoison_anchored_urbs);
  767. /**
  768. * usb_unlink_anchored_urbs - asynchronously cancel transfer requests en masse
  769. * @anchor: anchor the requests are bound to
  770. *
  771. * this allows all outstanding URBs to be unlinked starting
  772. * from the back of the queue. This function is asynchronous.
  773. * The unlinking is just triggered. It may happen after this
  774. * function has returned.
  775. *
  776. * This routine should not be called by a driver after its disconnect
  777. * method has returned.
  778. */
  779. void usb_unlink_anchored_urbs(struct usb_anchor *anchor)
  780. {
  781. struct urb *victim;
  782. while ((victim = usb_get_from_anchor(anchor)) != NULL) {
  783. usb_unlink_urb(victim);
  784. usb_put_urb(victim);
  785. }
  786. }
  787. EXPORT_SYMBOL_GPL(usb_unlink_anchored_urbs);
  788. /**
  789. * usb_anchor_suspend_wakeups
  790. * @anchor: the anchor you want to suspend wakeups on
  791. *
  792. * Call this to stop the last urb being unanchored from waking up any
  793. * usb_wait_anchor_empty_timeout waiters. This is used in the hcd urb give-
  794. * back path to delay waking up until after the completion handler has run.
  795. */
  796. void usb_anchor_suspend_wakeups(struct usb_anchor *anchor)
  797. {
  798. if (anchor)
  799. atomic_inc(&anchor->suspend_wakeups);
  800. }
  801. EXPORT_SYMBOL_GPL(usb_anchor_suspend_wakeups);
  802. /**
  803. * usb_anchor_resume_wakeups
  804. * @anchor: the anchor you want to resume wakeups on
  805. *
  806. * Allow usb_wait_anchor_empty_timeout waiters to be woken up again, and
  807. * wake up any current waiters if the anchor is empty.
  808. */
  809. void usb_anchor_resume_wakeups(struct usb_anchor *anchor)
  810. {
  811. if (!anchor)
  812. return;
  813. atomic_dec(&anchor->suspend_wakeups);
  814. if (usb_anchor_check_wakeup(anchor))
  815. wake_up(&anchor->wait);
  816. }
  817. EXPORT_SYMBOL_GPL(usb_anchor_resume_wakeups);
  818. /**
  819. * usb_wait_anchor_empty_timeout - wait for an anchor to be unused
  820. * @anchor: the anchor you want to become unused
  821. * @timeout: how long you are willing to wait in milliseconds
  822. *
  823. * Call this is you want to be sure all an anchor's
  824. * URBs have finished
  825. *
  826. * Return: Non-zero if the anchor became unused. Zero on timeout.
  827. */
  828. int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
  829. unsigned int timeout)
  830. {
  831. return wait_event_timeout(anchor->wait,
  832. usb_anchor_check_wakeup(anchor),
  833. msecs_to_jiffies(timeout));
  834. }
  835. EXPORT_SYMBOL_GPL(usb_wait_anchor_empty_timeout);
  836. /**
  837. * usb_get_from_anchor - get an anchor's oldest urb
  838. * @anchor: the anchor whose urb you want
  839. *
  840. * This will take the oldest urb from an anchor,
  841. * unanchor and return it
  842. *
  843. * Return: The oldest urb from @anchor, or %NULL if @anchor has no
  844. * urbs associated with it.
  845. */
  846. struct urb *usb_get_from_anchor(struct usb_anchor *anchor)
  847. {
  848. struct urb *victim;
  849. unsigned long flags;
  850. spin_lock_irqsave(&anchor->lock, flags);
  851. if (!list_empty(&anchor->urb_list)) {
  852. victim = list_entry(anchor->urb_list.next, struct urb,
  853. anchor_list);
  854. usb_get_urb(victim);
  855. __usb_unanchor_urb(victim, anchor);
  856. } else {
  857. victim = NULL;
  858. }
  859. spin_unlock_irqrestore(&anchor->lock, flags);
  860. return victim;
  861. }
  862. EXPORT_SYMBOL_GPL(usb_get_from_anchor);
  863. /**
  864. * usb_scuttle_anchored_urbs - unanchor all an anchor's urbs
  865. * @anchor: the anchor whose urbs you want to unanchor
  866. *
  867. * use this to get rid of all an anchor's urbs
  868. */
  869. void usb_scuttle_anchored_urbs(struct usb_anchor *anchor)
  870. {
  871. struct urb *victim;
  872. unsigned long flags;
  873. spin_lock_irqsave(&anchor->lock, flags);
  874. while (!list_empty(&anchor->urb_list)) {
  875. victim = list_entry(anchor->urb_list.prev, struct urb,
  876. anchor_list);
  877. __usb_unanchor_urb(victim, anchor);
  878. }
  879. spin_unlock_irqrestore(&anchor->lock, flags);
  880. }
  881. EXPORT_SYMBOL_GPL(usb_scuttle_anchored_urbs);
  882. /**
  883. * usb_anchor_empty - is an anchor empty
  884. * @anchor: the anchor you want to query
  885. *
  886. * Return: 1 if the anchor has no urbs associated with it.
  887. */
  888. int usb_anchor_empty(struct usb_anchor *anchor)
  889. {
  890. return list_empty(&anchor->urb_list);
  891. }
  892. EXPORT_SYMBOL_GPL(usb_anchor_empty);