ehci-q.c 41 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476
  1. /*
  2. * Copyright (C) 2001-2004 by David Brownell
  3. *
  4. * This program is free software; you can redistribute it and/or modify it
  5. * under the terms of the GNU General Public License as published by the
  6. * Free Software Foundation; either version 2 of the License, or (at your
  7. * option) any later version.
  8. *
  9. * This program is distributed in the hope that it will be useful, but
  10. * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
  11. * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
  12. * for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write to the Free Software Foundation,
  16. * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  17. */
  18. /* this file is part of ehci-hcd.c */
  19. /*-------------------------------------------------------------------------*/
  20. /*
  21. * EHCI hardware queue manipulation ... the core. QH/QTD manipulation.
  22. *
  23. * Control, bulk, and interrupt traffic all use "qh" lists. They list "qtd"
  24. * entries describing USB transactions, max 16-20kB/entry (with 4kB-aligned
  25. * buffers needed for the larger number). We use one QH per endpoint, queue
  26. * multiple urbs (all three types) per endpoint. URBs may need several qtds.
  27. *
  28. * ISO traffic uses "ISO TD" (itd, and sitd) records, and (along with
  29. * interrupts) needs careful scheduling. Performance improvements can be
  30. * an ongoing challenge. That's in "ehci-sched.c".
  31. *
  32. * USB 1.1 devices are handled (a) by "companion" OHCI or UHCI root hubs,
  33. * or otherwise through transaction translators (TTs) in USB 2.0 hubs using
  34. * (b) special fields in qh entries or (c) split iso entries. TTs will
  35. * buffer low/full speed data so the host collects it at high speed.
  36. */
  37. /*-------------------------------------------------------------------------*/
  38. /* fill a qtd, returning how much of the buffer we were able to queue up */
  39. static int
  40. qtd_fill(struct ehci_hcd *ehci, struct ehci_qtd *qtd, dma_addr_t buf,
  41. size_t len, int token, int maxpacket)
  42. {
  43. int i, count;
  44. u64 addr = buf;
  45. /* one buffer entry per 4K ... first might be short or unaligned */
  46. qtd->hw_buf[0] = cpu_to_hc32(ehci, (u32)addr);
  47. qtd->hw_buf_hi[0] = cpu_to_hc32(ehci, (u32)(addr >> 32));
  48. count = 0x1000 - (buf & 0x0fff); /* rest of that page */
  49. if (likely (len < count)) /* ... iff needed */
  50. count = len;
  51. else {
  52. buf += 0x1000;
  53. buf &= ~0x0fff;
  54. /* per-qtd limit: from 16K to 20K (best alignment) */
  55. for (i = 1; count < len && i < 5; i++) {
  56. addr = buf;
  57. qtd->hw_buf[i] = cpu_to_hc32(ehci, (u32)addr);
  58. qtd->hw_buf_hi[i] = cpu_to_hc32(ehci,
  59. (u32)(addr >> 32));
  60. buf += 0x1000;
  61. if ((count + 0x1000) < len)
  62. count += 0x1000;
  63. else
  64. count = len;
  65. }
  66. /* short packets may only terminate transfers */
  67. if (count != len)
  68. count -= (count % maxpacket);
  69. }
  70. qtd->hw_token = cpu_to_hc32(ehci, (count << 16) | token);
  71. qtd->length = count;
  72. return count;
  73. }
  74. /*-------------------------------------------------------------------------*/
  75. static inline void
  76. qh_update (struct ehci_hcd *ehci, struct ehci_qh *qh, struct ehci_qtd *qtd)
  77. {
  78. struct ehci_qh_hw *hw = qh->hw;
  79. /* writes to an active overlay are unsafe */
  80. WARN_ON(qh->qh_state != QH_STATE_IDLE);
  81. hw->hw_qtd_next = QTD_NEXT(ehci, qtd->qtd_dma);
  82. hw->hw_alt_next = EHCI_LIST_END(ehci);
  83. /* Except for control endpoints, we make hardware maintain data
  84. * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
  85. * and set the pseudo-toggle in udev. Only usb_clear_halt() will
  86. * ever clear it.
  87. */
  88. if (!(hw->hw_info1 & cpu_to_hc32(ehci, QH_TOGGLE_CTL))) {
  89. unsigned is_out, epnum;
  90. is_out = qh->is_out;
  91. epnum = (hc32_to_cpup(ehci, &hw->hw_info1) >> 8) & 0x0f;
  92. if (unlikely(!usb_gettoggle(qh->ps.udev, epnum, is_out))) {
  93. hw->hw_token &= ~cpu_to_hc32(ehci, QTD_TOGGLE);
  94. usb_settoggle(qh->ps.udev, epnum, is_out, 1);
  95. }
  96. }
  97. hw->hw_token &= cpu_to_hc32(ehci, QTD_TOGGLE | QTD_STS_PING);
  98. }
  99. /* if it weren't for a common silicon quirk (writing the dummy into the qh
  100. * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
  101. * recovery (including urb dequeue) would need software changes to a QH...
  102. */
  103. static void
  104. qh_refresh (struct ehci_hcd *ehci, struct ehci_qh *qh)
  105. {
  106. struct ehci_qtd *qtd;
  107. qtd = list_entry(qh->qtd_list.next, struct ehci_qtd, qtd_list);
  108. /*
  109. * first qtd may already be partially processed.
  110. * If we come here during unlink, the QH overlay region
  111. * might have reference to the just unlinked qtd. The
  112. * qtd is updated in qh_completions(). Update the QH
  113. * overlay here.
  114. */
  115. if (qh->hw->hw_token & ACTIVE_BIT(ehci))
  116. qh->hw->hw_qtd_next = qtd->hw_next;
  117. else
  118. qh_update(ehci, qh, qtd);
  119. }
  120. /*-------------------------------------------------------------------------*/
  121. static void qh_link_async(struct ehci_hcd *ehci, struct ehci_qh *qh);
  122. static void ehci_clear_tt_buffer_complete(struct usb_hcd *hcd,
  123. struct usb_host_endpoint *ep)
  124. {
  125. struct ehci_hcd *ehci = hcd_to_ehci(hcd);
  126. struct ehci_qh *qh = ep->hcpriv;
  127. unsigned long flags;
  128. spin_lock_irqsave(&ehci->lock, flags);
  129. qh->clearing_tt = 0;
  130. if (qh->qh_state == QH_STATE_IDLE && !list_empty(&qh->qtd_list)
  131. && ehci->rh_state == EHCI_RH_RUNNING)
  132. qh_link_async(ehci, qh);
  133. spin_unlock_irqrestore(&ehci->lock, flags);
  134. }
  135. static void ehci_clear_tt_buffer(struct ehci_hcd *ehci, struct ehci_qh *qh,
  136. struct urb *urb, u32 token)
  137. {
  138. /* If an async split transaction gets an error or is unlinked,
  139. * the TT buffer may be left in an indeterminate state. We
  140. * have to clear the TT buffer.
  141. *
  142. * Note: this routine is never called for Isochronous transfers.
  143. */
  144. if (urb->dev->tt && !usb_pipeint(urb->pipe) && !qh->clearing_tt) {
  145. #ifdef CONFIG_DYNAMIC_DEBUG
  146. struct usb_device *tt = urb->dev->tt->hub;
  147. dev_dbg(&tt->dev,
  148. "clear tt buffer port %d, a%d ep%d t%08x\n",
  149. urb->dev->ttport, urb->dev->devnum,
  150. usb_pipeendpoint(urb->pipe), token);
  151. #endif /* CONFIG_DYNAMIC_DEBUG */
  152. if (!ehci_is_TDI(ehci)
  153. || urb->dev->tt->hub !=
  154. ehci_to_hcd(ehci)->self.root_hub) {
  155. if (usb_hub_clear_tt_buffer(urb) == 0)
  156. qh->clearing_tt = 1;
  157. } else {
  158. /* REVISIT ARC-derived cores don't clear the root
  159. * hub TT buffer in this way...
  160. */
  161. }
  162. }
  163. }
  164. static int qtd_copy_status (
  165. struct ehci_hcd *ehci,
  166. struct urb *urb,
  167. size_t length,
  168. u32 token
  169. )
  170. {
  171. int status = -EINPROGRESS;
  172. /* count IN/OUT bytes, not SETUP (even short packets) */
  173. if (likely (QTD_PID (token) != 2))
  174. urb->actual_length += length - QTD_LENGTH (token);
  175. /* don't modify error codes */
  176. if (unlikely(urb->unlinked))
  177. return status;
  178. /* force cleanup after short read; not always an error */
  179. if (unlikely (IS_SHORT_READ (token)))
  180. status = -EREMOTEIO;
  181. /* serious "can't proceed" faults reported by the hardware */
  182. if (token & QTD_STS_HALT) {
  183. if (token & QTD_STS_BABBLE) {
  184. /* FIXME "must" disable babbling device's port too */
  185. status = -EOVERFLOW;
  186. /* CERR nonzero + halt --> stall */
  187. } else if (QTD_CERR(token)) {
  188. status = -EPIPE;
  189. /* In theory, more than one of the following bits can be set
  190. * since they are sticky and the transaction is retried.
  191. * Which to test first is rather arbitrary.
  192. */
  193. } else if (token & QTD_STS_MMF) {
  194. /* fs/ls interrupt xfer missed the complete-split */
  195. status = -EPROTO;
  196. } else if (token & QTD_STS_DBE) {
  197. status = (QTD_PID (token) == 1) /* IN ? */
  198. ? -ENOSR /* hc couldn't read data */
  199. : -ECOMM; /* hc couldn't write data */
  200. } else if (token & QTD_STS_XACT) {
  201. /* timeout, bad CRC, wrong PID, etc */
  202. ehci_dbg(ehci, "devpath %s ep%d%s 3strikes\n",
  203. urb->dev->devpath,
  204. usb_pipeendpoint(urb->pipe),
  205. usb_pipein(urb->pipe) ? "in" : "out");
  206. status = -EPROTO;
  207. } else { /* unknown */
  208. status = -EPROTO;
  209. }
  210. }
  211. return status;
  212. }
  213. static void
  214. ehci_urb_done(struct ehci_hcd *ehci, struct urb *urb, int status)
  215. {
  216. if (usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
  217. /* ... update hc-wide periodic stats */
  218. ehci_to_hcd(ehci)->self.bandwidth_int_reqs--;
  219. }
  220. if (unlikely(urb->unlinked)) {
  221. COUNT(ehci->stats.unlink);
  222. } else {
  223. /* report non-error and short read status as zero */
  224. if (status == -EINPROGRESS || status == -EREMOTEIO)
  225. status = 0;
  226. COUNT(ehci->stats.complete);
  227. }
  228. #ifdef EHCI_URB_TRACE
  229. ehci_dbg (ehci,
  230. "%s %s urb %p ep%d%s status %d len %d/%d\n",
  231. __func__, urb->dev->devpath, urb,
  232. usb_pipeendpoint (urb->pipe),
  233. usb_pipein (urb->pipe) ? "in" : "out",
  234. status,
  235. urb->actual_length, urb->transfer_buffer_length);
  236. #endif
  237. usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
  238. usb_hcd_giveback_urb(ehci_to_hcd(ehci), urb, status);
  239. }
  240. static int qh_schedule (struct ehci_hcd *ehci, struct ehci_qh *qh);
  241. /*
  242. * Process and free completed qtds for a qh, returning URBs to drivers.
  243. * Chases up to qh->hw_current. Returns nonzero if the caller should
  244. * unlink qh.
  245. */
  246. static unsigned
  247. qh_completions (struct ehci_hcd *ehci, struct ehci_qh *qh)
  248. {
  249. struct ehci_qtd *last, *end = qh->dummy;
  250. struct list_head *entry, *tmp;
  251. int last_status;
  252. int stopped;
  253. u8 state;
  254. struct ehci_qh_hw *hw = qh->hw;
  255. /* completions (or tasks on other cpus) must never clobber HALT
  256. * till we've gone through and cleaned everything up, even when
  257. * they add urbs to this qh's queue or mark them for unlinking.
  258. *
  259. * NOTE: unlinking expects to be done in queue order.
  260. *
  261. * It's a bug for qh->qh_state to be anything other than
  262. * QH_STATE_IDLE, unless our caller is scan_async() or
  263. * scan_intr().
  264. */
  265. state = qh->qh_state;
  266. qh->qh_state = QH_STATE_COMPLETING;
  267. stopped = (state == QH_STATE_IDLE);
  268. rescan:
  269. last = NULL;
  270. last_status = -EINPROGRESS;
  271. qh->dequeue_during_giveback = 0;
  272. /* remove de-activated QTDs from front of queue.
  273. * after faults (including short reads), cleanup this urb
  274. * then let the queue advance.
  275. * if queue is stopped, handles unlinks.
  276. */
  277. list_for_each_safe (entry, tmp, &qh->qtd_list) {
  278. struct ehci_qtd *qtd;
  279. struct urb *urb;
  280. u32 token = 0;
  281. qtd = list_entry (entry, struct ehci_qtd, qtd_list);
  282. urb = qtd->urb;
  283. /* clean up any state from previous QTD ...*/
  284. if (last) {
  285. if (likely (last->urb != urb)) {
  286. ehci_urb_done(ehci, last->urb, last_status);
  287. last_status = -EINPROGRESS;
  288. }
  289. ehci_qtd_free (ehci, last);
  290. last = NULL;
  291. }
  292. /* ignore urbs submitted during completions we reported */
  293. if (qtd == end)
  294. break;
  295. /* hardware copies qtd out of qh overlay */
  296. rmb ();
  297. token = hc32_to_cpu(ehci, qtd->hw_token);
  298. /* always clean up qtds the hc de-activated */
  299. retry_xacterr:
  300. if ((token & QTD_STS_ACTIVE) == 0) {
  301. /* Report Data Buffer Error: non-fatal but useful */
  302. if (token & QTD_STS_DBE)
  303. ehci_dbg(ehci,
  304. "detected DataBufferErr for urb %p ep%d%s len %d, qtd %p [qh %p]\n",
  305. urb,
  306. usb_endpoint_num(&urb->ep->desc),
  307. usb_endpoint_dir_in(&urb->ep->desc) ? "in" : "out",
  308. urb->transfer_buffer_length,
  309. qtd,
  310. qh);
  311. /* on STALL, error, and short reads this urb must
  312. * complete and all its qtds must be recycled.
  313. */
  314. if ((token & QTD_STS_HALT) != 0) {
  315. /* retry transaction errors until we
  316. * reach the software xacterr limit
  317. */
  318. if ((token & QTD_STS_XACT) &&
  319. QTD_CERR(token) == 0 &&
  320. ++qh->xacterrs < QH_XACTERR_MAX &&
  321. !urb->unlinked) {
  322. ehci_dbg(ehci,
  323. "detected XactErr len %zu/%zu retry %d\n",
  324. qtd->length - QTD_LENGTH(token), qtd->length, qh->xacterrs);
  325. /* reset the token in the qtd and the
  326. * qh overlay (which still contains
  327. * the qtd) so that we pick up from
  328. * where we left off
  329. */
  330. token &= ~QTD_STS_HALT;
  331. token |= QTD_STS_ACTIVE |
  332. (EHCI_TUNE_CERR << 10);
  333. qtd->hw_token = cpu_to_hc32(ehci,
  334. token);
  335. wmb();
  336. hw->hw_token = cpu_to_hc32(ehci,
  337. token);
  338. goto retry_xacterr;
  339. }
  340. stopped = 1;
  341. /* magic dummy for some short reads; qh won't advance.
  342. * that silicon quirk can kick in with this dummy too.
  343. *
  344. * other short reads won't stop the queue, including
  345. * control transfers (status stage handles that) or
  346. * most other single-qtd reads ... the queue stops if
  347. * URB_SHORT_NOT_OK was set so the driver submitting
  348. * the urbs could clean it up.
  349. */
  350. } else if (IS_SHORT_READ (token)
  351. && !(qtd->hw_alt_next
  352. & EHCI_LIST_END(ehci))) {
  353. stopped = 1;
  354. }
  355. /* stop scanning when we reach qtds the hc is using */
  356. } else if (likely (!stopped
  357. && ehci->rh_state >= EHCI_RH_RUNNING)) {
  358. break;
  359. /* scan the whole queue for unlinks whenever it stops */
  360. } else {
  361. stopped = 1;
  362. /* cancel everything if we halt, suspend, etc */
  363. if (ehci->rh_state < EHCI_RH_RUNNING)
  364. last_status = -ESHUTDOWN;
  365. /* this qtd is active; skip it unless a previous qtd
  366. * for its urb faulted, or its urb was canceled.
  367. */
  368. else if (last_status == -EINPROGRESS && !urb->unlinked)
  369. continue;
  370. /*
  371. * If this was the active qtd when the qh was unlinked
  372. * and the overlay's token is active, then the overlay
  373. * hasn't been written back to the qtd yet so use its
  374. * token instead of the qtd's. After the qtd is
  375. * processed and removed, the overlay won't be valid
  376. * any more.
  377. */
  378. if (state == QH_STATE_IDLE &&
  379. qh->qtd_list.next == &qtd->qtd_list &&
  380. (hw->hw_token & ACTIVE_BIT(ehci))) {
  381. token = hc32_to_cpu(ehci, hw->hw_token);
  382. hw->hw_token &= ~ACTIVE_BIT(ehci);
  383. /* An unlink may leave an incomplete
  384. * async transaction in the TT buffer.
  385. * We have to clear it.
  386. */
  387. ehci_clear_tt_buffer(ehci, qh, urb, token);
  388. }
  389. }
  390. /* unless we already know the urb's status, collect qtd status
  391. * and update count of bytes transferred. in common short read
  392. * cases with only one data qtd (including control transfers),
  393. * queue processing won't halt. but with two or more qtds (for
  394. * example, with a 32 KB transfer), when the first qtd gets a
  395. * short read the second must be removed by hand.
  396. */
  397. if (last_status == -EINPROGRESS) {
  398. last_status = qtd_copy_status(ehci, urb,
  399. qtd->length, token);
  400. if (last_status == -EREMOTEIO
  401. && (qtd->hw_alt_next
  402. & EHCI_LIST_END(ehci)))
  403. last_status = -EINPROGRESS;
  404. /* As part of low/full-speed endpoint-halt processing
  405. * we must clear the TT buffer (11.17.5).
  406. */
  407. if (unlikely(last_status != -EINPROGRESS &&
  408. last_status != -EREMOTEIO)) {
  409. /* The TT's in some hubs malfunction when they
  410. * receive this request following a STALL (they
  411. * stop sending isochronous packets). Since a
  412. * STALL can't leave the TT buffer in a busy
  413. * state (if you believe Figures 11-48 - 11-51
  414. * in the USB 2.0 spec), we won't clear the TT
  415. * buffer in this case. Strictly speaking this
  416. * is a violation of the spec.
  417. */
  418. if (last_status != -EPIPE)
  419. ehci_clear_tt_buffer(ehci, qh, urb,
  420. token);
  421. }
  422. }
  423. /* if we're removing something not at the queue head,
  424. * patch the hardware queue pointer.
  425. */
  426. if (stopped && qtd->qtd_list.prev != &qh->qtd_list) {
  427. last = list_entry (qtd->qtd_list.prev,
  428. struct ehci_qtd, qtd_list);
  429. last->hw_next = qtd->hw_next;
  430. }
  431. /* remove qtd; it's recycled after possible urb completion */
  432. list_del (&qtd->qtd_list);
  433. last = qtd;
  434. /* reinit the xacterr counter for the next qtd */
  435. qh->xacterrs = 0;
  436. }
  437. /* last urb's completion might still need calling */
  438. if (likely (last != NULL)) {
  439. ehci_urb_done(ehci, last->urb, last_status);
  440. ehci_qtd_free (ehci, last);
  441. }
  442. /* Do we need to rescan for URBs dequeued during a giveback? */
  443. if (unlikely(qh->dequeue_during_giveback)) {
  444. /* If the QH is already unlinked, do the rescan now. */
  445. if (state == QH_STATE_IDLE)
  446. goto rescan;
  447. /* Otherwise the caller must unlink the QH. */
  448. }
  449. /* restore original state; caller must unlink or relink */
  450. qh->qh_state = state;
  451. /* be sure the hardware's done with the qh before refreshing
  452. * it after fault cleanup, or recovering from silicon wrongly
  453. * overlaying the dummy qtd (which reduces DMA chatter).
  454. *
  455. * We won't refresh a QH that's linked (after the HC
  456. * stopped the queue). That avoids a race:
  457. * - HC reads first part of QH;
  458. * - CPU updates that first part and the token;
  459. * - HC reads rest of that QH, including token
  460. * Result: HC gets an inconsistent image, and then
  461. * DMAs to/from the wrong memory (corrupting it).
  462. *
  463. * That should be rare for interrupt transfers,
  464. * except maybe high bandwidth ...
  465. */
  466. if (stopped != 0 || hw->hw_qtd_next == EHCI_LIST_END(ehci))
  467. qh->exception = 1;
  468. /* Let the caller know if the QH needs to be unlinked. */
  469. return qh->exception;
  470. }
  471. /*-------------------------------------------------------------------------*/
  472. // high bandwidth multiplier, as encoded in highspeed endpoint descriptors
  473. #define hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03))
  474. // ... and packet size, for any kind of endpoint descriptor
  475. #define max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff)
  476. /*
  477. * reverse of qh_urb_transaction: free a list of TDs.
  478. * used for cleanup after errors, before HC sees an URB's TDs.
  479. */
  480. static void qtd_list_free (
  481. struct ehci_hcd *ehci,
  482. struct urb *urb,
  483. struct list_head *qtd_list
  484. ) {
  485. struct list_head *entry, *temp;
  486. list_for_each_safe (entry, temp, qtd_list) {
  487. struct ehci_qtd *qtd;
  488. qtd = list_entry (entry, struct ehci_qtd, qtd_list);
  489. list_del (&qtd->qtd_list);
  490. ehci_qtd_free (ehci, qtd);
  491. }
  492. }
  493. /*
  494. * create a list of filled qtds for this URB; won't link into qh.
  495. */
  496. static struct list_head *
  497. qh_urb_transaction (
  498. struct ehci_hcd *ehci,
  499. struct urb *urb,
  500. struct list_head *head,
  501. gfp_t flags
  502. ) {
  503. struct ehci_qtd *qtd, *qtd_prev;
  504. dma_addr_t buf;
  505. int len, this_sg_len, maxpacket;
  506. int is_input;
  507. u32 token;
  508. int i;
  509. struct scatterlist *sg;
  510. /*
  511. * URBs map to sequences of QTDs: one logical transaction
  512. */
  513. qtd = ehci_qtd_alloc (ehci, flags);
  514. if (unlikely (!qtd))
  515. return NULL;
  516. list_add_tail (&qtd->qtd_list, head);
  517. qtd->urb = urb;
  518. token = QTD_STS_ACTIVE;
  519. token |= (EHCI_TUNE_CERR << 10);
  520. /* for split transactions, SplitXState initialized to zero */
  521. len = urb->transfer_buffer_length;
  522. is_input = usb_pipein (urb->pipe);
  523. if (usb_pipecontrol (urb->pipe)) {
  524. /* SETUP pid */
  525. qtd_fill(ehci, qtd, urb->setup_dma,
  526. sizeof (struct usb_ctrlrequest),
  527. token | (2 /* "setup" */ << 8), 8);
  528. /* ... and always at least one more pid */
  529. token ^= QTD_TOGGLE;
  530. qtd_prev = qtd;
  531. qtd = ehci_qtd_alloc (ehci, flags);
  532. if (unlikely (!qtd))
  533. goto cleanup;
  534. qtd->urb = urb;
  535. qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
  536. list_add_tail (&qtd->qtd_list, head);
  537. /* for zero length DATA stages, STATUS is always IN */
  538. if (len == 0)
  539. token |= (1 /* "in" */ << 8);
  540. }
  541. /*
  542. * data transfer stage: buffer setup
  543. */
  544. i = urb->num_mapped_sgs;
  545. if (len > 0 && i > 0) {
  546. sg = urb->sg;
  547. buf = sg_dma_address(sg);
  548. /* urb->transfer_buffer_length may be smaller than the
  549. * size of the scatterlist (or vice versa)
  550. */
  551. this_sg_len = min_t(int, sg_dma_len(sg), len);
  552. } else {
  553. sg = NULL;
  554. buf = urb->transfer_dma;
  555. this_sg_len = len;
  556. }
  557. if (is_input)
  558. token |= (1 /* "in" */ << 8);
  559. /* else it's already initted to "out" pid (0 << 8) */
  560. maxpacket = max_packet(usb_maxpacket(urb->dev, urb->pipe, !is_input));
  561. /*
  562. * buffer gets wrapped in one or more qtds;
  563. * last one may be "short" (including zero len)
  564. * and may serve as a control status ack
  565. */
  566. for (;;) {
  567. int this_qtd_len;
  568. this_qtd_len = qtd_fill(ehci, qtd, buf, this_sg_len, token,
  569. maxpacket);
  570. this_sg_len -= this_qtd_len;
  571. len -= this_qtd_len;
  572. buf += this_qtd_len;
  573. /*
  574. * short reads advance to a "magic" dummy instead of the next
  575. * qtd ... that forces the queue to stop, for manual cleanup.
  576. * (this will usually be overridden later.)
  577. */
  578. if (is_input)
  579. qtd->hw_alt_next = ehci->async->hw->hw_alt_next;
  580. /* qh makes control packets use qtd toggle; maybe switch it */
  581. if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0)
  582. token ^= QTD_TOGGLE;
  583. if (likely(this_sg_len <= 0)) {
  584. if (--i <= 0 || len <= 0)
  585. break;
  586. sg = sg_next(sg);
  587. buf = sg_dma_address(sg);
  588. this_sg_len = min_t(int, sg_dma_len(sg), len);
  589. }
  590. qtd_prev = qtd;
  591. qtd = ehci_qtd_alloc (ehci, flags);
  592. if (unlikely (!qtd))
  593. goto cleanup;
  594. qtd->urb = urb;
  595. qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
  596. list_add_tail (&qtd->qtd_list, head);
  597. }
  598. /*
  599. * unless the caller requires manual cleanup after short reads,
  600. * have the alt_next mechanism keep the queue running after the
  601. * last data qtd (the only one, for control and most other cases).
  602. */
  603. if (likely ((urb->transfer_flags & URB_SHORT_NOT_OK) == 0
  604. || usb_pipecontrol (urb->pipe)))
  605. qtd->hw_alt_next = EHCI_LIST_END(ehci);
  606. /*
  607. * control requests may need a terminating data "status" ack;
  608. * other OUT ones may need a terminating short packet
  609. * (zero length).
  610. */
  611. if (likely (urb->transfer_buffer_length != 0)) {
  612. int one_more = 0;
  613. if (usb_pipecontrol (urb->pipe)) {
  614. one_more = 1;
  615. token ^= 0x0100; /* "in" <--> "out" */
  616. token |= QTD_TOGGLE; /* force DATA1 */
  617. } else if (usb_pipeout(urb->pipe)
  618. && (urb->transfer_flags & URB_ZERO_PACKET)
  619. && !(urb->transfer_buffer_length % maxpacket)) {
  620. one_more = 1;
  621. }
  622. if (one_more) {
  623. qtd_prev = qtd;
  624. qtd = ehci_qtd_alloc (ehci, flags);
  625. if (unlikely (!qtd))
  626. goto cleanup;
  627. qtd->urb = urb;
  628. qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
  629. list_add_tail (&qtd->qtd_list, head);
  630. /* never any data in such packets */
  631. qtd_fill(ehci, qtd, 0, 0, token, 0);
  632. }
  633. }
  634. /* by default, enable interrupt on urb completion */
  635. if (likely (!(urb->transfer_flags & URB_NO_INTERRUPT)))
  636. qtd->hw_token |= cpu_to_hc32(ehci, QTD_IOC);
  637. return head;
  638. cleanup:
  639. qtd_list_free (ehci, urb, head);
  640. return NULL;
  641. }
  642. /*-------------------------------------------------------------------------*/
  643. // Would be best to create all qh's from config descriptors,
  644. // when each interface/altsetting is established. Unlink
  645. // any previous qh and cancel its urbs first; endpoints are
  646. // implicitly reset then (data toggle too).
  647. // That'd mean updating how usbcore talks to HCDs. (2.7?)
  648. /*
  649. * Each QH holds a qtd list; a QH is used for everything except iso.
  650. *
  651. * For interrupt urbs, the scheduler must set the microframe scheduling
  652. * mask(s) each time the QH gets scheduled. For highspeed, that's
  653. * just one microframe in the s-mask. For split interrupt transactions
  654. * there are additional complications: c-mask, maybe FSTNs.
  655. */
  656. static struct ehci_qh *
  657. qh_make (
  658. struct ehci_hcd *ehci,
  659. struct urb *urb,
  660. gfp_t flags
  661. ) {
  662. struct ehci_qh *qh = ehci_qh_alloc (ehci, flags);
  663. u32 info1 = 0, info2 = 0;
  664. int is_input, type;
  665. int maxp = 0;
  666. struct usb_tt *tt = urb->dev->tt;
  667. struct ehci_qh_hw *hw;
  668. if (!qh)
  669. return qh;
  670. /*
  671. * init endpoint/device data for this QH
  672. */
  673. info1 |= usb_pipeendpoint (urb->pipe) << 8;
  674. info1 |= usb_pipedevice (urb->pipe) << 0;
  675. is_input = usb_pipein (urb->pipe);
  676. type = usb_pipetype (urb->pipe);
  677. maxp = usb_maxpacket (urb->dev, urb->pipe, !is_input);
  678. /* 1024 byte maxpacket is a hardware ceiling. High bandwidth
  679. * acts like up to 3KB, but is built from smaller packets.
  680. */
  681. if (max_packet(maxp) > 1024) {
  682. ehci_dbg(ehci, "bogus qh maxpacket %d\n", max_packet(maxp));
  683. goto done;
  684. }
  685. /* Compute interrupt scheduling parameters just once, and save.
  686. * - allowing for high bandwidth, how many nsec/uframe are used?
  687. * - split transactions need a second CSPLIT uframe; same question
  688. * - splits also need a schedule gap (for full/low speed I/O)
  689. * - qh has a polling interval
  690. *
  691. * For control/bulk requests, the HC or TT handles these.
  692. */
  693. if (type == PIPE_INTERRUPT) {
  694. unsigned tmp;
  695. qh->ps.usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH,
  696. is_input, 0,
  697. hb_mult(maxp) * max_packet(maxp)));
  698. qh->ps.phase = NO_FRAME;
  699. if (urb->dev->speed == USB_SPEED_HIGH) {
  700. qh->ps.c_usecs = 0;
  701. qh->gap_uf = 0;
  702. if (urb->interval > 1 && urb->interval < 8) {
  703. /* NOTE interval 2 or 4 uframes could work.
  704. * But interval 1 scheduling is simpler, and
  705. * includes high bandwidth.
  706. */
  707. urb->interval = 1;
  708. } else if (urb->interval > ehci->periodic_size << 3) {
  709. urb->interval = ehci->periodic_size << 3;
  710. }
  711. qh->ps.period = urb->interval >> 3;
  712. /* period for bandwidth allocation */
  713. tmp = min_t(unsigned, EHCI_BANDWIDTH_SIZE,
  714. 1 << (urb->ep->desc.bInterval - 1));
  715. /* Allow urb->interval to override */
  716. qh->ps.bw_uperiod = min_t(unsigned, tmp, urb->interval);
  717. qh->ps.bw_period = qh->ps.bw_uperiod >> 3;
  718. } else {
  719. int think_time;
  720. /* gap is f(FS/LS transfer times) */
  721. qh->gap_uf = 1 + usb_calc_bus_time (urb->dev->speed,
  722. is_input, 0, maxp) / (125 * 1000);
  723. /* FIXME this just approximates SPLIT/CSPLIT times */
  724. if (is_input) { // SPLIT, gap, CSPLIT+DATA
  725. qh->ps.c_usecs = qh->ps.usecs + HS_USECS(0);
  726. qh->ps.usecs = HS_USECS(1);
  727. } else { // SPLIT+DATA, gap, CSPLIT
  728. qh->ps.usecs += HS_USECS(1);
  729. qh->ps.c_usecs = HS_USECS(0);
  730. }
  731. think_time = tt ? tt->think_time : 0;
  732. qh->ps.tt_usecs = NS_TO_US(think_time +
  733. usb_calc_bus_time (urb->dev->speed,
  734. is_input, 0, max_packet (maxp)));
  735. if (urb->interval > ehci->periodic_size)
  736. urb->interval = ehci->periodic_size;
  737. qh->ps.period = urb->interval;
  738. /* period for bandwidth allocation */
  739. tmp = min_t(unsigned, EHCI_BANDWIDTH_FRAMES,
  740. urb->ep->desc.bInterval);
  741. tmp = rounddown_pow_of_two(tmp);
  742. /* Allow urb->interval to override */
  743. qh->ps.bw_period = min_t(unsigned, tmp, urb->interval);
  744. qh->ps.bw_uperiod = qh->ps.bw_period << 3;
  745. }
  746. }
  747. /* support for tt scheduling, and access to toggles */
  748. qh->ps.udev = urb->dev;
  749. qh->ps.ep = urb->ep;
  750. /* using TT? */
  751. switch (urb->dev->speed) {
  752. case USB_SPEED_LOW:
  753. info1 |= QH_LOW_SPEED;
  754. /* FALL THROUGH */
  755. case USB_SPEED_FULL:
  756. /* EPS 0 means "full" */
  757. if (type != PIPE_INTERRUPT)
  758. info1 |= (EHCI_TUNE_RL_TT << 28);
  759. if (type == PIPE_CONTROL) {
  760. info1 |= QH_CONTROL_EP; /* for TT */
  761. info1 |= QH_TOGGLE_CTL; /* toggle from qtd */
  762. }
  763. info1 |= maxp << 16;
  764. info2 |= (EHCI_TUNE_MULT_TT << 30);
  765. /* Some Freescale processors have an erratum in which the
  766. * port number in the queue head was 0..N-1 instead of 1..N.
  767. */
  768. if (ehci_has_fsl_portno_bug(ehci))
  769. info2 |= (urb->dev->ttport-1) << 23;
  770. else
  771. info2 |= urb->dev->ttport << 23;
  772. /* set the address of the TT; for TDI's integrated
  773. * root hub tt, leave it zeroed.
  774. */
  775. if (tt && tt->hub != ehci_to_hcd(ehci)->self.root_hub)
  776. info2 |= tt->hub->devnum << 16;
  777. /* NOTE: if (PIPE_INTERRUPT) { scheduler sets c-mask } */
  778. break;
  779. case USB_SPEED_HIGH: /* no TT involved */
  780. info1 |= QH_HIGH_SPEED;
  781. if (type == PIPE_CONTROL) {
  782. info1 |= (EHCI_TUNE_RL_HS << 28);
  783. info1 |= 64 << 16; /* usb2 fixed maxpacket */
  784. info1 |= QH_TOGGLE_CTL; /* toggle from qtd */
  785. info2 |= (EHCI_TUNE_MULT_HS << 30);
  786. } else if (type == PIPE_BULK) {
  787. info1 |= (EHCI_TUNE_RL_HS << 28);
  788. /* The USB spec says that high speed bulk endpoints
  789. * always use 512 byte maxpacket. But some device
  790. * vendors decided to ignore that, and MSFT is happy
  791. * to help them do so. So now people expect to use
  792. * such nonconformant devices with Linux too; sigh.
  793. */
  794. info1 |= max_packet(maxp) << 16;
  795. info2 |= (EHCI_TUNE_MULT_HS << 30);
  796. } else { /* PIPE_INTERRUPT */
  797. info1 |= max_packet (maxp) << 16;
  798. info2 |= hb_mult (maxp) << 30;
  799. }
  800. break;
  801. default:
  802. ehci_dbg(ehci, "bogus dev %p speed %d\n", urb->dev,
  803. urb->dev->speed);
  804. done:
  805. qh_destroy(ehci, qh);
  806. return NULL;
  807. }
  808. /* NOTE: if (PIPE_INTERRUPT) { scheduler sets s-mask } */
  809. /* init as live, toggle clear */
  810. qh->qh_state = QH_STATE_IDLE;
  811. hw = qh->hw;
  812. hw->hw_info1 = cpu_to_hc32(ehci, info1);
  813. hw->hw_info2 = cpu_to_hc32(ehci, info2);
  814. qh->is_out = !is_input;
  815. usb_settoggle (urb->dev, usb_pipeendpoint (urb->pipe), !is_input, 1);
  816. return qh;
  817. }
  818. /*-------------------------------------------------------------------------*/
  819. static void enable_async(struct ehci_hcd *ehci)
  820. {
  821. if (ehci->async_count++)
  822. return;
  823. /* Stop waiting to turn off the async schedule */
  824. ehci->enabled_hrtimer_events &= ~BIT(EHCI_HRTIMER_DISABLE_ASYNC);
  825. /* Don't start the schedule until ASS is 0 */
  826. ehci_poll_ASS(ehci);
  827. turn_on_io_watchdog(ehci);
  828. }
  829. static void disable_async(struct ehci_hcd *ehci)
  830. {
  831. if (--ehci->async_count)
  832. return;
  833. /* The async schedule and unlink lists are supposed to be empty */
  834. WARN_ON(ehci->async->qh_next.qh || !list_empty(&ehci->async_unlink) ||
  835. !list_empty(&ehci->async_idle));
  836. /* Don't turn off the schedule until ASS is 1 */
  837. ehci_poll_ASS(ehci);
  838. }
  839. /* move qh (and its qtds) onto async queue; maybe enable queue. */
  840. static void qh_link_async (struct ehci_hcd *ehci, struct ehci_qh *qh)
  841. {
  842. __hc32 dma = QH_NEXT(ehci, qh->qh_dma);
  843. struct ehci_qh *head;
  844. /* Don't link a QH if there's a Clear-TT-Buffer pending */
  845. if (unlikely(qh->clearing_tt))
  846. return;
  847. WARN_ON(qh->qh_state != QH_STATE_IDLE);
  848. /* clear halt and/or toggle; and maybe recover from silicon quirk */
  849. qh_refresh(ehci, qh);
  850. /* splice right after start */
  851. head = ehci->async;
  852. qh->qh_next = head->qh_next;
  853. qh->hw->hw_next = head->hw->hw_next;
  854. wmb ();
  855. head->qh_next.qh = qh;
  856. head->hw->hw_next = dma;
  857. qh->qh_state = QH_STATE_LINKED;
  858. qh->xacterrs = 0;
  859. qh->exception = 0;
  860. /* qtd completions reported later by interrupt */
  861. enable_async(ehci);
  862. }
  863. /*-------------------------------------------------------------------------*/
  864. /*
  865. * For control/bulk/interrupt, return QH with these TDs appended.
  866. * Allocates and initializes the QH if necessary.
  867. * Returns null if it can't allocate a QH it needs to.
  868. * If the QH has TDs (urbs) already, that's great.
  869. */
  870. static struct ehci_qh *qh_append_tds (
  871. struct ehci_hcd *ehci,
  872. struct urb *urb,
  873. struct list_head *qtd_list,
  874. int epnum,
  875. void **ptr
  876. )
  877. {
  878. struct ehci_qh *qh = NULL;
  879. __hc32 qh_addr_mask = cpu_to_hc32(ehci, 0x7f);
  880. qh = (struct ehci_qh *) *ptr;
  881. if (unlikely (qh == NULL)) {
  882. /* can't sleep here, we have ehci->lock... */
  883. qh = qh_make (ehci, urb, GFP_ATOMIC);
  884. *ptr = qh;
  885. }
  886. if (likely (qh != NULL)) {
  887. struct ehci_qtd *qtd;
  888. if (unlikely (list_empty (qtd_list)))
  889. qtd = NULL;
  890. else
  891. qtd = list_entry (qtd_list->next, struct ehci_qtd,
  892. qtd_list);
  893. /* control qh may need patching ... */
  894. if (unlikely (epnum == 0)) {
  895. /* usb_reset_device() briefly reverts to address 0 */
  896. if (usb_pipedevice (urb->pipe) == 0)
  897. qh->hw->hw_info1 &= ~qh_addr_mask;
  898. }
  899. /* just one way to queue requests: swap with the dummy qtd.
  900. * only hc or qh_refresh() ever modify the overlay.
  901. */
  902. if (likely (qtd != NULL)) {
  903. struct ehci_qtd *dummy;
  904. dma_addr_t dma;
  905. __hc32 token;
  906. /* to avoid racing the HC, use the dummy td instead of
  907. * the first td of our list (becomes new dummy). both
  908. * tds stay deactivated until we're done, when the
  909. * HC is allowed to fetch the old dummy (4.10.2).
  910. */
  911. token = qtd->hw_token;
  912. qtd->hw_token = HALT_BIT(ehci);
  913. dummy = qh->dummy;
  914. dma = dummy->qtd_dma;
  915. *dummy = *qtd;
  916. dummy->qtd_dma = dma;
  917. list_del (&qtd->qtd_list);
  918. list_add (&dummy->qtd_list, qtd_list);
  919. list_splice_tail(qtd_list, &qh->qtd_list);
  920. ehci_qtd_init(ehci, qtd, qtd->qtd_dma);
  921. qh->dummy = qtd;
  922. /* hc must see the new dummy at list end */
  923. dma = qtd->qtd_dma;
  924. qtd = list_entry (qh->qtd_list.prev,
  925. struct ehci_qtd, qtd_list);
  926. qtd->hw_next = QTD_NEXT(ehci, dma);
  927. /* let the hc process these next qtds */
  928. wmb ();
  929. dummy->hw_token = token;
  930. urb->hcpriv = qh;
  931. }
  932. }
  933. return qh;
  934. }
  935. /*-------------------------------------------------------------------------*/
  936. static int
  937. submit_async (
  938. struct ehci_hcd *ehci,
  939. struct urb *urb,
  940. struct list_head *qtd_list,
  941. gfp_t mem_flags
  942. ) {
  943. int epnum;
  944. unsigned long flags;
  945. struct ehci_qh *qh = NULL;
  946. int rc;
  947. epnum = urb->ep->desc.bEndpointAddress;
  948. #ifdef EHCI_URB_TRACE
  949. {
  950. struct ehci_qtd *qtd;
  951. qtd = list_entry(qtd_list->next, struct ehci_qtd, qtd_list);
  952. ehci_dbg(ehci,
  953. "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
  954. __func__, urb->dev->devpath, urb,
  955. epnum & 0x0f, (epnum & USB_DIR_IN) ? "in" : "out",
  956. urb->transfer_buffer_length,
  957. qtd, urb->ep->hcpriv);
  958. }
  959. #endif
  960. spin_lock_irqsave (&ehci->lock, flags);
  961. if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) {
  962. rc = -ESHUTDOWN;
  963. goto done;
  964. }
  965. rc = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
  966. if (unlikely(rc))
  967. goto done;
  968. qh = qh_append_tds(ehci, urb, qtd_list, epnum, &urb->ep->hcpriv);
  969. if (unlikely(qh == NULL)) {
  970. usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
  971. rc = -ENOMEM;
  972. goto done;
  973. }
  974. /* Control/bulk operations through TTs don't need scheduling,
  975. * the HC and TT handle it when the TT has a buffer ready.
  976. */
  977. if (likely (qh->qh_state == QH_STATE_IDLE))
  978. qh_link_async(ehci, qh);
  979. done:
  980. spin_unlock_irqrestore (&ehci->lock, flags);
  981. if (unlikely (qh == NULL))
  982. qtd_list_free (ehci, urb, qtd_list);
  983. return rc;
  984. }
  985. /*-------------------------------------------------------------------------*/
  986. #ifdef CONFIG_USB_HCD_TEST_MODE
  987. /*
  988. * This function creates the qtds and submits them for the
  989. * SINGLE_STEP_SET_FEATURE Test.
  990. * This is done in two parts: first SETUP req for GetDesc is sent then
  991. * 15 seconds later, the IN stage for GetDesc starts to req data from dev
  992. *
  993. * is_setup : i/p arguement decides which of the two stage needs to be
  994. * performed; TRUE - SETUP and FALSE - IN+STATUS
  995. * Returns 0 if success
  996. */
  997. static int submit_single_step_set_feature(
  998. struct usb_hcd *hcd,
  999. struct urb *urb,
  1000. int is_setup
  1001. ) {
  1002. struct ehci_hcd *ehci = hcd_to_ehci(hcd);
  1003. struct list_head qtd_list;
  1004. struct list_head *head;
  1005. struct ehci_qtd *qtd, *qtd_prev;
  1006. dma_addr_t buf;
  1007. int len, maxpacket;
  1008. u32 token;
  1009. INIT_LIST_HEAD(&qtd_list);
  1010. head = &qtd_list;
  1011. /* URBs map to sequences of QTDs: one logical transaction */
  1012. qtd = ehci_qtd_alloc(ehci, GFP_KERNEL);
  1013. if (unlikely(!qtd))
  1014. return -1;
  1015. list_add_tail(&qtd->qtd_list, head);
  1016. qtd->urb = urb;
  1017. token = QTD_STS_ACTIVE;
  1018. token |= (EHCI_TUNE_CERR << 10);
  1019. len = urb->transfer_buffer_length;
  1020. /*
  1021. * Check if the request is to perform just the SETUP stage (getDesc)
  1022. * as in SINGLE_STEP_SET_FEATURE test, DATA stage (IN) happens
  1023. * 15 secs after the setup
  1024. */
  1025. if (is_setup) {
  1026. /* SETUP pid */
  1027. qtd_fill(ehci, qtd, urb->setup_dma,
  1028. sizeof(struct usb_ctrlrequest),
  1029. token | (2 /* "setup" */ << 8), 8);
  1030. submit_async(ehci, urb, &qtd_list, GFP_ATOMIC);
  1031. return 0; /*Return now; we shall come back after 15 seconds*/
  1032. }
  1033. /*
  1034. * IN: data transfer stage: buffer setup : start the IN txn phase for
  1035. * the get_Desc SETUP which was sent 15seconds back
  1036. */
  1037. token ^= QTD_TOGGLE; /*We need to start IN with DATA-1 Pid-sequence*/
  1038. buf = urb->transfer_dma;
  1039. token |= (1 /* "in" */ << 8); /*This is IN stage*/
  1040. maxpacket = max_packet(usb_maxpacket(urb->dev, urb->pipe, 0));
  1041. qtd_fill(ehci, qtd, buf, len, token, maxpacket);
  1042. /*
  1043. * Our IN phase shall always be a short read; so keep the queue running
  1044. * and let it advance to the next qtd which zero length OUT status
  1045. */
  1046. qtd->hw_alt_next = EHCI_LIST_END(ehci);
  1047. /* STATUS stage for GetDesc control request */
  1048. token ^= 0x0100; /* "in" <--> "out" */
  1049. token |= QTD_TOGGLE; /* force DATA1 */
  1050. qtd_prev = qtd;
  1051. qtd = ehci_qtd_alloc(ehci, GFP_ATOMIC);
  1052. if (unlikely(!qtd))
  1053. goto cleanup;
  1054. qtd->urb = urb;
  1055. qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
  1056. list_add_tail(&qtd->qtd_list, head);
  1057. /* dont fill any data in such packets */
  1058. qtd_fill(ehci, qtd, 0, 0, token, 0);
  1059. /* by default, enable interrupt on urb completion */
  1060. if (likely(!(urb->transfer_flags & URB_NO_INTERRUPT)))
  1061. qtd->hw_token |= cpu_to_hc32(ehci, QTD_IOC);
  1062. submit_async(ehci, urb, &qtd_list, GFP_KERNEL);
  1063. return 0;
  1064. cleanup:
  1065. qtd_list_free(ehci, urb, head);
  1066. return -1;
  1067. }
  1068. #endif /* CONFIG_USB_HCD_TEST_MODE */
  1069. /*-------------------------------------------------------------------------*/
  1070. static void single_unlink_async(struct ehci_hcd *ehci, struct ehci_qh *qh)
  1071. {
  1072. struct ehci_qh *prev;
  1073. /* Add to the end of the list of QHs waiting for the next IAAD */
  1074. qh->qh_state = QH_STATE_UNLINK_WAIT;
  1075. list_add_tail(&qh->unlink_node, &ehci->async_unlink);
  1076. /* Unlink it from the schedule */
  1077. prev = ehci->async;
  1078. while (prev->qh_next.qh != qh)
  1079. prev = prev->qh_next.qh;
  1080. prev->hw->hw_next = qh->hw->hw_next;
  1081. prev->qh_next = qh->qh_next;
  1082. if (ehci->qh_scan_next == qh)
  1083. ehci->qh_scan_next = qh->qh_next.qh;
  1084. }
  1085. static void start_iaa_cycle(struct ehci_hcd *ehci)
  1086. {
  1087. /* Do nothing if an IAA cycle is already running */
  1088. if (ehci->iaa_in_progress)
  1089. return;
  1090. ehci->iaa_in_progress = true;
  1091. /* If the controller isn't running, we don't have to wait for it */
  1092. if (unlikely(ehci->rh_state < EHCI_RH_RUNNING)) {
  1093. end_unlink_async(ehci);
  1094. /* Otherwise start a new IAA cycle */
  1095. } else if (likely(ehci->rh_state == EHCI_RH_RUNNING)) {
  1096. /* Make sure the unlinks are all visible to the hardware */
  1097. wmb();
  1098. ehci_writel(ehci, ehci->command | CMD_IAAD,
  1099. &ehci->regs->command);
  1100. ehci_readl(ehci, &ehci->regs->command);
  1101. ehci_enable_event(ehci, EHCI_HRTIMER_IAA_WATCHDOG, true);
  1102. }
  1103. }
  1104. /* the async qh for the qtds being unlinked are now gone from the HC */
  1105. static void end_unlink_async(struct ehci_hcd *ehci)
  1106. {
  1107. struct ehci_qh *qh;
  1108. bool early_exit;
  1109. if (ehci->has_synopsys_hc_bug)
  1110. ehci_writel(ehci, (u32) ehci->async->qh_dma,
  1111. &ehci->regs->async_next);
  1112. /* The current IAA cycle has ended */
  1113. ehci->iaa_in_progress = false;
  1114. if (list_empty(&ehci->async_unlink))
  1115. return;
  1116. qh = list_first_entry(&ehci->async_unlink, struct ehci_qh,
  1117. unlink_node); /* QH whose IAA cycle just ended */
  1118. /*
  1119. * If async_unlinking is set then this routine is already running,
  1120. * either on the stack or on another CPU.
  1121. */
  1122. early_exit = ehci->async_unlinking;
  1123. /* If the controller isn't running, process all the waiting QHs */
  1124. if (ehci->rh_state < EHCI_RH_RUNNING)
  1125. list_splice_tail_init(&ehci->async_unlink, &ehci->async_idle);
  1126. /*
  1127. * Intel (?) bug: The HC can write back the overlay region even
  1128. * after the IAA interrupt occurs. In self-defense, always go
  1129. * through two IAA cycles for each QH.
  1130. */
  1131. else if (qh->qh_state == QH_STATE_UNLINK_WAIT) {
  1132. qh->qh_state = QH_STATE_UNLINK;
  1133. early_exit = true;
  1134. }
  1135. /* Otherwise process only the first waiting QH (NVIDIA bug?) */
  1136. else
  1137. list_move_tail(&qh->unlink_node, &ehci->async_idle);
  1138. /* Start a new IAA cycle if any QHs are waiting for it */
  1139. if (!list_empty(&ehci->async_unlink))
  1140. start_iaa_cycle(ehci);
  1141. /*
  1142. * Don't allow nesting or concurrent calls,
  1143. * or wait for the second IAA cycle for the next QH.
  1144. */
  1145. if (early_exit)
  1146. return;
  1147. /* Process the idle QHs */
  1148. ehci->async_unlinking = true;
  1149. while (!list_empty(&ehci->async_idle)) {
  1150. qh = list_first_entry(&ehci->async_idle, struct ehci_qh,
  1151. unlink_node);
  1152. list_del(&qh->unlink_node);
  1153. qh->qh_state = QH_STATE_IDLE;
  1154. qh->qh_next.qh = NULL;
  1155. if (!list_empty(&qh->qtd_list))
  1156. qh_completions(ehci, qh);
  1157. if (!list_empty(&qh->qtd_list) &&
  1158. ehci->rh_state == EHCI_RH_RUNNING)
  1159. qh_link_async(ehci, qh);
  1160. disable_async(ehci);
  1161. }
  1162. ehci->async_unlinking = false;
  1163. }
  1164. static void start_unlink_async(struct ehci_hcd *ehci, struct ehci_qh *qh);
  1165. static void unlink_empty_async(struct ehci_hcd *ehci)
  1166. {
  1167. struct ehci_qh *qh;
  1168. struct ehci_qh *qh_to_unlink = NULL;
  1169. int count = 0;
  1170. /* Find the last async QH which has been empty for a timer cycle */
  1171. for (qh = ehci->async->qh_next.qh; qh; qh = qh->qh_next.qh) {
  1172. if (list_empty(&qh->qtd_list) &&
  1173. qh->qh_state == QH_STATE_LINKED) {
  1174. ++count;
  1175. if (qh->unlink_cycle != ehci->async_unlink_cycle)
  1176. qh_to_unlink = qh;
  1177. }
  1178. }
  1179. /* If nothing else is being unlinked, unlink the last empty QH */
  1180. if (list_empty(&ehci->async_unlink) && qh_to_unlink) {
  1181. start_unlink_async(ehci, qh_to_unlink);
  1182. --count;
  1183. }
  1184. /* Other QHs will be handled later */
  1185. if (count > 0) {
  1186. ehci_enable_event(ehci, EHCI_HRTIMER_ASYNC_UNLINKS, true);
  1187. ++ehci->async_unlink_cycle;
  1188. }
  1189. }
  1190. /* The root hub is suspended; unlink all the async QHs */
  1191. static void __maybe_unused unlink_empty_async_suspended(struct ehci_hcd *ehci)
  1192. {
  1193. struct ehci_qh *qh;
  1194. while (ehci->async->qh_next.qh) {
  1195. qh = ehci->async->qh_next.qh;
  1196. WARN_ON(!list_empty(&qh->qtd_list));
  1197. single_unlink_async(ehci, qh);
  1198. }
  1199. start_iaa_cycle(ehci);
  1200. }
  1201. /* makes sure the async qh will become idle */
  1202. /* caller must own ehci->lock */
  1203. static void start_unlink_async(struct ehci_hcd *ehci, struct ehci_qh *qh)
  1204. {
  1205. /* If the QH isn't linked then there's nothing we can do. */
  1206. if (qh->qh_state != QH_STATE_LINKED)
  1207. return;
  1208. single_unlink_async(ehci, qh);
  1209. start_iaa_cycle(ehci);
  1210. }
  1211. /*-------------------------------------------------------------------------*/
  1212. static void scan_async (struct ehci_hcd *ehci)
  1213. {
  1214. struct ehci_qh *qh;
  1215. bool check_unlinks_later = false;
  1216. ehci->qh_scan_next = ehci->async->qh_next.qh;
  1217. while (ehci->qh_scan_next) {
  1218. qh = ehci->qh_scan_next;
  1219. ehci->qh_scan_next = qh->qh_next.qh;
  1220. /* clean any finished work for this qh */
  1221. if (!list_empty(&qh->qtd_list)) {
  1222. int temp;
  1223. /*
  1224. * Unlinks could happen here; completion reporting
  1225. * drops the lock. That's why ehci->qh_scan_next
  1226. * always holds the next qh to scan; if the next qh
  1227. * gets unlinked then ehci->qh_scan_next is adjusted
  1228. * in single_unlink_async().
  1229. */
  1230. temp = qh_completions(ehci, qh);
  1231. if (unlikely(temp)) {
  1232. start_unlink_async(ehci, qh);
  1233. } else if (list_empty(&qh->qtd_list)
  1234. && qh->qh_state == QH_STATE_LINKED) {
  1235. qh->unlink_cycle = ehci->async_unlink_cycle;
  1236. check_unlinks_later = true;
  1237. }
  1238. }
  1239. }
  1240. /*
  1241. * Unlink empty entries, reducing DMA usage as well
  1242. * as HCD schedule-scanning costs. Delay for any qh
  1243. * we just scanned, there's a not-unusual case that it
  1244. * doesn't stay idle for long.
  1245. */
  1246. if (check_unlinks_later && ehci->rh_state == EHCI_RH_RUNNING &&
  1247. !(ehci->enabled_hrtimer_events &
  1248. BIT(EHCI_HRTIMER_ASYNC_UNLINKS))) {
  1249. ehci_enable_event(ehci, EHCI_HRTIMER_ASYNC_UNLINKS, true);
  1250. ++ehci->async_unlink_cycle;
  1251. }
  1252. }