disk-io.c 119 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/fs.h>
  19. #include <linux/blkdev.h>
  20. #include <linux/scatterlist.h>
  21. #include <linux/swap.h>
  22. #include <linux/radix-tree.h>
  23. #include <linux/writeback.h>
  24. #include <linux/buffer_head.h>
  25. #include <linux/workqueue.h>
  26. #include <linux/kthread.h>
  27. #include <linux/freezer.h>
  28. #include <linux/slab.h>
  29. #include <linux/migrate.h>
  30. #include <linux/ratelimit.h>
  31. #include <linux/uuid.h>
  32. #include <linux/semaphore.h>
  33. #include <asm/unaligned.h>
  34. #include "ctree.h"
  35. #include "disk-io.h"
  36. #include "hash.h"
  37. #include "transaction.h"
  38. #include "btrfs_inode.h"
  39. #include "volumes.h"
  40. #include "print-tree.h"
  41. #include "locking.h"
  42. #include "tree-log.h"
  43. #include "free-space-cache.h"
  44. #include "inode-map.h"
  45. #include "check-integrity.h"
  46. #include "rcu-string.h"
  47. #include "dev-replace.h"
  48. #include "raid56.h"
  49. #include "sysfs.h"
  50. #include "qgroup.h"
  51. #include "tree-checker.h"
  52. #ifdef CONFIG_X86
  53. #include <asm/cpufeature.h>
  54. #endif
  55. static const struct extent_io_ops btree_extent_io_ops;
  56. static void end_workqueue_fn(struct btrfs_work *work);
  57. static void free_fs_root(struct btrfs_root *root);
  58. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  59. int read_only);
  60. static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
  61. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  62. struct btrfs_root *root);
  63. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  64. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  65. struct extent_io_tree *dirty_pages,
  66. int mark);
  67. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  68. struct extent_io_tree *pinned_extents);
  69. static int btrfs_cleanup_transaction(struct btrfs_root *root);
  70. static void btrfs_error_commit_super(struct btrfs_root *root);
  71. /*
  72. * btrfs_end_io_wq structs are used to do processing in task context when an IO
  73. * is complete. This is used during reads to verify checksums, and it is used
  74. * by writes to insert metadata for new file extents after IO is complete.
  75. */
  76. struct btrfs_end_io_wq {
  77. struct bio *bio;
  78. bio_end_io_t *end_io;
  79. void *private;
  80. struct btrfs_fs_info *info;
  81. int error;
  82. enum btrfs_wq_endio_type metadata;
  83. struct list_head list;
  84. struct btrfs_work work;
  85. };
  86. static struct kmem_cache *btrfs_end_io_wq_cache;
  87. int __init btrfs_end_io_wq_init(void)
  88. {
  89. btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
  90. sizeof(struct btrfs_end_io_wq),
  91. 0,
  92. SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
  93. NULL);
  94. if (!btrfs_end_io_wq_cache)
  95. return -ENOMEM;
  96. return 0;
  97. }
  98. void btrfs_end_io_wq_exit(void)
  99. {
  100. if (btrfs_end_io_wq_cache)
  101. kmem_cache_destroy(btrfs_end_io_wq_cache);
  102. }
  103. /*
  104. * async submit bios are used to offload expensive checksumming
  105. * onto the worker threads. They checksum file and metadata bios
  106. * just before they are sent down the IO stack.
  107. */
  108. struct async_submit_bio {
  109. struct inode *inode;
  110. struct bio *bio;
  111. struct list_head list;
  112. extent_submit_bio_hook_t *submit_bio_start;
  113. extent_submit_bio_hook_t *submit_bio_done;
  114. int rw;
  115. int mirror_num;
  116. unsigned long bio_flags;
  117. /*
  118. * bio_offset is optional, can be used if the pages in the bio
  119. * can't tell us where in the file the bio should go
  120. */
  121. u64 bio_offset;
  122. struct btrfs_work work;
  123. int error;
  124. };
  125. /*
  126. * Lockdep class keys for extent_buffer->lock's in this root. For a given
  127. * eb, the lockdep key is determined by the btrfs_root it belongs to and
  128. * the level the eb occupies in the tree.
  129. *
  130. * Different roots are used for different purposes and may nest inside each
  131. * other and they require separate keysets. As lockdep keys should be
  132. * static, assign keysets according to the purpose of the root as indicated
  133. * by btrfs_root->objectid. This ensures that all special purpose roots
  134. * have separate keysets.
  135. *
  136. * Lock-nesting across peer nodes is always done with the immediate parent
  137. * node locked thus preventing deadlock. As lockdep doesn't know this, use
  138. * subclass to avoid triggering lockdep warning in such cases.
  139. *
  140. * The key is set by the readpage_end_io_hook after the buffer has passed
  141. * csum validation but before the pages are unlocked. It is also set by
  142. * btrfs_init_new_buffer on freshly allocated blocks.
  143. *
  144. * We also add a check to make sure the highest level of the tree is the
  145. * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
  146. * needs update as well.
  147. */
  148. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  149. # if BTRFS_MAX_LEVEL != 8
  150. # error
  151. # endif
  152. static struct btrfs_lockdep_keyset {
  153. u64 id; /* root objectid */
  154. const char *name_stem; /* lock name stem */
  155. char names[BTRFS_MAX_LEVEL + 1][20];
  156. struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
  157. } btrfs_lockdep_keysets[] = {
  158. { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
  159. { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
  160. { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
  161. { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
  162. { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
  163. { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
  164. { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
  165. { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
  166. { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
  167. { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
  168. { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
  169. { .id = 0, .name_stem = "tree" },
  170. };
  171. void __init btrfs_init_lockdep(void)
  172. {
  173. int i, j;
  174. /* initialize lockdep class names */
  175. for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
  176. struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
  177. for (j = 0; j < ARRAY_SIZE(ks->names); j++)
  178. snprintf(ks->names[j], sizeof(ks->names[j]),
  179. "btrfs-%s-%02d", ks->name_stem, j);
  180. }
  181. }
  182. void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
  183. int level)
  184. {
  185. struct btrfs_lockdep_keyset *ks;
  186. BUG_ON(level >= ARRAY_SIZE(ks->keys));
  187. /* find the matching keyset, id 0 is the default entry */
  188. for (ks = btrfs_lockdep_keysets; ks->id; ks++)
  189. if (ks->id == objectid)
  190. break;
  191. lockdep_set_class_and_name(&eb->lock,
  192. &ks->keys[level], ks->names[level]);
  193. }
  194. #endif
  195. /*
  196. * extents on the btree inode are pretty simple, there's one extent
  197. * that covers the entire device
  198. */
  199. static struct extent_map *btree_get_extent(struct inode *inode,
  200. struct page *page, size_t pg_offset, u64 start, u64 len,
  201. int create)
  202. {
  203. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  204. struct extent_map *em;
  205. int ret;
  206. read_lock(&em_tree->lock);
  207. em = lookup_extent_mapping(em_tree, start, len);
  208. if (em) {
  209. em->bdev =
  210. BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  211. read_unlock(&em_tree->lock);
  212. goto out;
  213. }
  214. read_unlock(&em_tree->lock);
  215. em = alloc_extent_map();
  216. if (!em) {
  217. em = ERR_PTR(-ENOMEM);
  218. goto out;
  219. }
  220. em->start = 0;
  221. em->len = (u64)-1;
  222. em->block_len = (u64)-1;
  223. em->block_start = 0;
  224. em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  225. write_lock(&em_tree->lock);
  226. ret = add_extent_mapping(em_tree, em, 0);
  227. if (ret == -EEXIST) {
  228. free_extent_map(em);
  229. em = lookup_extent_mapping(em_tree, start, len);
  230. if (!em)
  231. em = ERR_PTR(-EIO);
  232. } else if (ret) {
  233. free_extent_map(em);
  234. em = ERR_PTR(ret);
  235. }
  236. write_unlock(&em_tree->lock);
  237. out:
  238. return em;
  239. }
  240. u32 btrfs_csum_data(char *data, u32 seed, size_t len)
  241. {
  242. return btrfs_crc32c(seed, data, len);
  243. }
  244. void btrfs_csum_final(u32 crc, char *result)
  245. {
  246. put_unaligned_le32(~crc, result);
  247. }
  248. /*
  249. * compute the csum for a btree block, and either verify it or write it
  250. * into the csum field of the block.
  251. */
  252. static int csum_tree_block(struct btrfs_fs_info *fs_info,
  253. struct extent_buffer *buf,
  254. int verify)
  255. {
  256. u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
  257. char *result = NULL;
  258. unsigned long len;
  259. unsigned long cur_len;
  260. unsigned long offset = BTRFS_CSUM_SIZE;
  261. char *kaddr;
  262. unsigned long map_start;
  263. unsigned long map_len;
  264. int err;
  265. u32 crc = ~(u32)0;
  266. unsigned long inline_result;
  267. len = buf->len - offset;
  268. while (len > 0) {
  269. err = map_private_extent_buffer(buf, offset, 32,
  270. &kaddr, &map_start, &map_len);
  271. if (err)
  272. return 1;
  273. cur_len = min(len, map_len - (offset - map_start));
  274. crc = btrfs_csum_data(kaddr + offset - map_start,
  275. crc, cur_len);
  276. len -= cur_len;
  277. offset += cur_len;
  278. }
  279. if (csum_size > sizeof(inline_result)) {
  280. result = kzalloc(csum_size, GFP_NOFS);
  281. if (!result)
  282. return 1;
  283. } else {
  284. result = (char *)&inline_result;
  285. }
  286. btrfs_csum_final(crc, result);
  287. if (verify) {
  288. if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
  289. u32 val;
  290. u32 found = 0;
  291. memcpy(&found, result, csum_size);
  292. read_extent_buffer(buf, &val, 0, csum_size);
  293. btrfs_warn_rl(fs_info,
  294. "%s checksum verify failed on %llu wanted %X found %X "
  295. "level %d",
  296. fs_info->sb->s_id, buf->start,
  297. val, found, btrfs_header_level(buf));
  298. if (result != (char *)&inline_result)
  299. kfree(result);
  300. return 1;
  301. }
  302. } else {
  303. write_extent_buffer(buf, result, 0, csum_size);
  304. }
  305. if (result != (char *)&inline_result)
  306. kfree(result);
  307. return 0;
  308. }
  309. /*
  310. * we can't consider a given block up to date unless the transid of the
  311. * block matches the transid in the parent node's pointer. This is how we
  312. * detect blocks that either didn't get written at all or got written
  313. * in the wrong place.
  314. */
  315. static int verify_parent_transid(struct extent_io_tree *io_tree,
  316. struct extent_buffer *eb, u64 parent_transid,
  317. int atomic)
  318. {
  319. struct extent_state *cached_state = NULL;
  320. int ret;
  321. bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
  322. if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
  323. return 0;
  324. if (atomic)
  325. return -EAGAIN;
  326. if (need_lock) {
  327. btrfs_tree_read_lock(eb);
  328. btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
  329. }
  330. lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
  331. 0, &cached_state);
  332. if (extent_buffer_uptodate(eb) &&
  333. btrfs_header_generation(eb) == parent_transid) {
  334. ret = 0;
  335. goto out;
  336. }
  337. btrfs_err_rl(eb->fs_info,
  338. "parent transid verify failed on %llu wanted %llu found %llu",
  339. eb->start,
  340. parent_transid, btrfs_header_generation(eb));
  341. ret = 1;
  342. /*
  343. * Things reading via commit roots that don't have normal protection,
  344. * like send, can have a really old block in cache that may point at a
  345. * block that has been free'd and re-allocated. So don't clear uptodate
  346. * if we find an eb that is under IO (dirty/writeback) because we could
  347. * end up reading in the stale data and then writing it back out and
  348. * making everybody very sad.
  349. */
  350. if (!extent_buffer_under_io(eb))
  351. clear_extent_buffer_uptodate(eb);
  352. out:
  353. unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
  354. &cached_state, GFP_NOFS);
  355. if (need_lock)
  356. btrfs_tree_read_unlock_blocking(eb);
  357. return ret;
  358. }
  359. /*
  360. * Return 0 if the superblock checksum type matches the checksum value of that
  361. * algorithm. Pass the raw disk superblock data.
  362. */
  363. static int btrfs_check_super_csum(char *raw_disk_sb)
  364. {
  365. struct btrfs_super_block *disk_sb =
  366. (struct btrfs_super_block *)raw_disk_sb;
  367. u16 csum_type = btrfs_super_csum_type(disk_sb);
  368. int ret = 0;
  369. if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
  370. u32 crc = ~(u32)0;
  371. const int csum_size = sizeof(crc);
  372. char result[csum_size];
  373. /*
  374. * The super_block structure does not span the whole
  375. * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
  376. * is filled with zeros and is included in the checkum.
  377. */
  378. crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
  379. crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
  380. btrfs_csum_final(crc, result);
  381. if (memcmp(raw_disk_sb, result, csum_size))
  382. ret = 1;
  383. }
  384. if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
  385. printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
  386. csum_type);
  387. ret = 1;
  388. }
  389. return ret;
  390. }
  391. /*
  392. * helper to read a given tree block, doing retries as required when
  393. * the checksums don't match and we have alternate mirrors to try.
  394. */
  395. static int btree_read_extent_buffer_pages(struct btrfs_root *root,
  396. struct extent_buffer *eb,
  397. u64 start, u64 parent_transid)
  398. {
  399. struct extent_io_tree *io_tree;
  400. int failed = 0;
  401. int ret;
  402. int num_copies = 0;
  403. int mirror_num = 0;
  404. int failed_mirror = 0;
  405. io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
  406. while (1) {
  407. clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  408. ret = read_extent_buffer_pages(io_tree, eb, start,
  409. WAIT_COMPLETE,
  410. btree_get_extent, mirror_num);
  411. if (!ret) {
  412. if (!verify_parent_transid(io_tree, eb,
  413. parent_transid, 0))
  414. break;
  415. else
  416. ret = -EIO;
  417. }
  418. num_copies = btrfs_num_copies(root->fs_info,
  419. eb->start, eb->len);
  420. if (num_copies == 1)
  421. break;
  422. if (!failed_mirror) {
  423. failed = 1;
  424. failed_mirror = eb->read_mirror;
  425. }
  426. mirror_num++;
  427. if (mirror_num == failed_mirror)
  428. mirror_num++;
  429. if (mirror_num > num_copies)
  430. break;
  431. }
  432. if (failed && !ret && failed_mirror)
  433. repair_eb_io_failure(root, eb, failed_mirror);
  434. return ret;
  435. }
  436. /*
  437. * checksum a dirty tree block before IO. This has extra checks to make sure
  438. * we only fill in the checksum field in the first page of a multi-page block
  439. */
  440. static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
  441. {
  442. u64 start = page_offset(page);
  443. u64 found_start;
  444. struct extent_buffer *eb;
  445. eb = (struct extent_buffer *)page->private;
  446. if (page != eb->pages[0])
  447. return 0;
  448. found_start = btrfs_header_bytenr(eb);
  449. if (WARN_ON(found_start != start || !PageUptodate(page)))
  450. return 0;
  451. csum_tree_block(fs_info, eb, 0);
  452. return 0;
  453. }
  454. static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
  455. struct extent_buffer *eb)
  456. {
  457. struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
  458. u8 fsid[BTRFS_UUID_SIZE];
  459. int ret = 1;
  460. read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
  461. while (fs_devices) {
  462. if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
  463. ret = 0;
  464. break;
  465. }
  466. fs_devices = fs_devices->seed;
  467. }
  468. return ret;
  469. }
  470. static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
  471. u64 phy_offset, struct page *page,
  472. u64 start, u64 end, int mirror)
  473. {
  474. u64 found_start;
  475. int found_level;
  476. struct extent_buffer *eb;
  477. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  478. int ret = 0;
  479. int reads_done;
  480. if (!page->private)
  481. goto out;
  482. eb = (struct extent_buffer *)page->private;
  483. /* the pending IO might have been the only thing that kept this buffer
  484. * in memory. Make sure we have a ref for all this other checks
  485. */
  486. extent_buffer_get(eb);
  487. reads_done = atomic_dec_and_test(&eb->io_pages);
  488. if (!reads_done)
  489. goto err;
  490. eb->read_mirror = mirror;
  491. if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
  492. ret = -EIO;
  493. goto err;
  494. }
  495. found_start = btrfs_header_bytenr(eb);
  496. if (found_start != eb->start) {
  497. btrfs_err_rl(eb->fs_info, "bad tree block start %llu %llu",
  498. found_start, eb->start);
  499. ret = -EIO;
  500. goto err;
  501. }
  502. if (check_tree_block_fsid(root->fs_info, eb)) {
  503. btrfs_err_rl(eb->fs_info, "bad fsid on block %llu",
  504. eb->start);
  505. ret = -EIO;
  506. goto err;
  507. }
  508. found_level = btrfs_header_level(eb);
  509. if (found_level >= BTRFS_MAX_LEVEL) {
  510. btrfs_err(root->fs_info, "bad tree block level %d",
  511. (int)btrfs_header_level(eb));
  512. ret = -EIO;
  513. goto err;
  514. }
  515. btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
  516. eb, found_level);
  517. ret = csum_tree_block(root->fs_info, eb, 1);
  518. if (ret) {
  519. ret = -EIO;
  520. goto err;
  521. }
  522. /*
  523. * If this is a leaf block and it is corrupt, set the corrupt bit so
  524. * that we don't try and read the other copies of this block, just
  525. * return -EIO.
  526. */
  527. if (found_level == 0 && btrfs_check_leaf_full(root, eb)) {
  528. set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  529. ret = -EIO;
  530. }
  531. if (found_level > 0 && btrfs_check_node(root, eb))
  532. ret = -EIO;
  533. if (!ret)
  534. set_extent_buffer_uptodate(eb);
  535. err:
  536. if (reads_done &&
  537. test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  538. btree_readahead_hook(root, eb, eb->start, ret);
  539. if (ret) {
  540. /*
  541. * our io error hook is going to dec the io pages
  542. * again, we have to make sure it has something
  543. * to decrement
  544. */
  545. atomic_inc(&eb->io_pages);
  546. clear_extent_buffer_uptodate(eb);
  547. }
  548. free_extent_buffer(eb);
  549. out:
  550. return ret;
  551. }
  552. static int btree_io_failed_hook(struct page *page, int failed_mirror)
  553. {
  554. struct extent_buffer *eb;
  555. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  556. eb = (struct extent_buffer *)page->private;
  557. set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
  558. eb->read_mirror = failed_mirror;
  559. atomic_dec(&eb->io_pages);
  560. if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  561. btree_readahead_hook(root, eb, eb->start, -EIO);
  562. return -EIO; /* we fixed nothing */
  563. }
  564. static void end_workqueue_bio(struct bio *bio)
  565. {
  566. struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
  567. struct btrfs_fs_info *fs_info;
  568. struct btrfs_workqueue *wq;
  569. btrfs_work_func_t func;
  570. fs_info = end_io_wq->info;
  571. end_io_wq->error = bio->bi_error;
  572. if (bio->bi_rw & REQ_WRITE) {
  573. if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
  574. wq = fs_info->endio_meta_write_workers;
  575. func = btrfs_endio_meta_write_helper;
  576. } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
  577. wq = fs_info->endio_freespace_worker;
  578. func = btrfs_freespace_write_helper;
  579. } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
  580. wq = fs_info->endio_raid56_workers;
  581. func = btrfs_endio_raid56_helper;
  582. } else {
  583. wq = fs_info->endio_write_workers;
  584. func = btrfs_endio_write_helper;
  585. }
  586. } else {
  587. if (unlikely(end_io_wq->metadata ==
  588. BTRFS_WQ_ENDIO_DIO_REPAIR)) {
  589. wq = fs_info->endio_repair_workers;
  590. func = btrfs_endio_repair_helper;
  591. } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
  592. wq = fs_info->endio_raid56_workers;
  593. func = btrfs_endio_raid56_helper;
  594. } else if (end_io_wq->metadata) {
  595. wq = fs_info->endio_meta_workers;
  596. func = btrfs_endio_meta_helper;
  597. } else {
  598. wq = fs_info->endio_workers;
  599. func = btrfs_endio_helper;
  600. }
  601. }
  602. btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
  603. btrfs_queue_work(wq, &end_io_wq->work);
  604. }
  605. int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
  606. enum btrfs_wq_endio_type metadata)
  607. {
  608. struct btrfs_end_io_wq *end_io_wq;
  609. end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
  610. if (!end_io_wq)
  611. return -ENOMEM;
  612. end_io_wq->private = bio->bi_private;
  613. end_io_wq->end_io = bio->bi_end_io;
  614. end_io_wq->info = info;
  615. end_io_wq->error = 0;
  616. end_io_wq->bio = bio;
  617. end_io_wq->metadata = metadata;
  618. bio->bi_private = end_io_wq;
  619. bio->bi_end_io = end_workqueue_bio;
  620. return 0;
  621. }
  622. unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
  623. {
  624. unsigned long limit = min_t(unsigned long,
  625. info->thread_pool_size,
  626. info->fs_devices->open_devices);
  627. return 256 * limit;
  628. }
  629. static void run_one_async_start(struct btrfs_work *work)
  630. {
  631. struct async_submit_bio *async;
  632. int ret;
  633. async = container_of(work, struct async_submit_bio, work);
  634. ret = async->submit_bio_start(async->inode, async->rw, async->bio,
  635. async->mirror_num, async->bio_flags,
  636. async->bio_offset);
  637. if (ret)
  638. async->error = ret;
  639. }
  640. static void run_one_async_done(struct btrfs_work *work)
  641. {
  642. struct btrfs_fs_info *fs_info;
  643. struct async_submit_bio *async;
  644. int limit;
  645. async = container_of(work, struct async_submit_bio, work);
  646. fs_info = BTRFS_I(async->inode)->root->fs_info;
  647. limit = btrfs_async_submit_limit(fs_info);
  648. limit = limit * 2 / 3;
  649. /*
  650. * atomic_dec_return implies a barrier for waitqueue_active
  651. */
  652. if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
  653. waitqueue_active(&fs_info->async_submit_wait))
  654. wake_up(&fs_info->async_submit_wait);
  655. /* If an error occured we just want to clean up the bio and move on */
  656. if (async->error) {
  657. async->bio->bi_error = async->error;
  658. bio_endio(async->bio);
  659. return;
  660. }
  661. async->submit_bio_done(async->inode, async->rw, async->bio,
  662. async->mirror_num, async->bio_flags,
  663. async->bio_offset);
  664. }
  665. static void run_one_async_free(struct btrfs_work *work)
  666. {
  667. struct async_submit_bio *async;
  668. async = container_of(work, struct async_submit_bio, work);
  669. kfree(async);
  670. }
  671. int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
  672. int rw, struct bio *bio, int mirror_num,
  673. unsigned long bio_flags,
  674. u64 bio_offset,
  675. extent_submit_bio_hook_t *submit_bio_start,
  676. extent_submit_bio_hook_t *submit_bio_done)
  677. {
  678. struct async_submit_bio *async;
  679. async = kmalloc(sizeof(*async), GFP_NOFS);
  680. if (!async)
  681. return -ENOMEM;
  682. async->inode = inode;
  683. async->rw = rw;
  684. async->bio = bio;
  685. async->mirror_num = mirror_num;
  686. async->submit_bio_start = submit_bio_start;
  687. async->submit_bio_done = submit_bio_done;
  688. btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
  689. run_one_async_done, run_one_async_free);
  690. async->bio_flags = bio_flags;
  691. async->bio_offset = bio_offset;
  692. async->error = 0;
  693. atomic_inc(&fs_info->nr_async_submits);
  694. if (rw & REQ_SYNC)
  695. btrfs_set_work_high_priority(&async->work);
  696. btrfs_queue_work(fs_info->workers, &async->work);
  697. while (atomic_read(&fs_info->async_submit_draining) &&
  698. atomic_read(&fs_info->nr_async_submits)) {
  699. wait_event(fs_info->async_submit_wait,
  700. (atomic_read(&fs_info->nr_async_submits) == 0));
  701. }
  702. return 0;
  703. }
  704. static int btree_csum_one_bio(struct bio *bio)
  705. {
  706. struct bio_vec *bvec;
  707. struct btrfs_root *root;
  708. int i, ret = 0;
  709. bio_for_each_segment_all(bvec, bio, i) {
  710. root = BTRFS_I(bvec->bv_page->mapping->host)->root;
  711. ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
  712. if (ret)
  713. break;
  714. }
  715. return ret;
  716. }
  717. static int __btree_submit_bio_start(struct inode *inode, int rw,
  718. struct bio *bio, int mirror_num,
  719. unsigned long bio_flags,
  720. u64 bio_offset)
  721. {
  722. /*
  723. * when we're called for a write, we're already in the async
  724. * submission context. Just jump into btrfs_map_bio
  725. */
  726. return btree_csum_one_bio(bio);
  727. }
  728. static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
  729. int mirror_num, unsigned long bio_flags,
  730. u64 bio_offset)
  731. {
  732. int ret;
  733. /*
  734. * when we're called for a write, we're already in the async
  735. * submission context. Just jump into btrfs_map_bio
  736. */
  737. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
  738. if (ret) {
  739. bio->bi_error = ret;
  740. bio_endio(bio);
  741. }
  742. return ret;
  743. }
  744. static int check_async_write(struct inode *inode, unsigned long bio_flags)
  745. {
  746. if (bio_flags & EXTENT_BIO_TREE_LOG)
  747. return 0;
  748. #ifdef CONFIG_X86
  749. if (static_cpu_has(X86_FEATURE_XMM4_2))
  750. return 0;
  751. #endif
  752. return 1;
  753. }
  754. static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
  755. int mirror_num, unsigned long bio_flags,
  756. u64 bio_offset)
  757. {
  758. int async = check_async_write(inode, bio_flags);
  759. int ret;
  760. if (!(rw & REQ_WRITE)) {
  761. /*
  762. * called for a read, do the setup so that checksum validation
  763. * can happen in the async kernel threads
  764. */
  765. ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
  766. bio, BTRFS_WQ_ENDIO_METADATA);
  767. if (ret)
  768. goto out_w_error;
  769. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  770. mirror_num, 0);
  771. } else if (!async) {
  772. ret = btree_csum_one_bio(bio);
  773. if (ret)
  774. goto out_w_error;
  775. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  776. mirror_num, 0);
  777. } else {
  778. /*
  779. * kthread helpers are used to submit writes so that
  780. * checksumming can happen in parallel across all CPUs
  781. */
  782. ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
  783. inode, rw, bio, mirror_num, 0,
  784. bio_offset,
  785. __btree_submit_bio_start,
  786. __btree_submit_bio_done);
  787. }
  788. if (ret)
  789. goto out_w_error;
  790. return 0;
  791. out_w_error:
  792. bio->bi_error = ret;
  793. bio_endio(bio);
  794. return ret;
  795. }
  796. #ifdef CONFIG_MIGRATION
  797. static int btree_migratepage(struct address_space *mapping,
  798. struct page *newpage, struct page *page,
  799. enum migrate_mode mode)
  800. {
  801. /*
  802. * we can't safely write a btree page from here,
  803. * we haven't done the locking hook
  804. */
  805. if (PageDirty(page))
  806. return -EAGAIN;
  807. /*
  808. * Buffers may be managed in a filesystem specific way.
  809. * We must have no buffers or drop them.
  810. */
  811. if (page_has_private(page) &&
  812. !try_to_release_page(page, GFP_KERNEL))
  813. return -EAGAIN;
  814. return migrate_page(mapping, newpage, page, mode);
  815. }
  816. #endif
  817. static int btree_writepages(struct address_space *mapping,
  818. struct writeback_control *wbc)
  819. {
  820. struct btrfs_fs_info *fs_info;
  821. int ret;
  822. if (wbc->sync_mode == WB_SYNC_NONE) {
  823. if (wbc->for_kupdate)
  824. return 0;
  825. fs_info = BTRFS_I(mapping->host)->root->fs_info;
  826. /* this is a bit racy, but that's ok */
  827. ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
  828. BTRFS_DIRTY_METADATA_THRESH,
  829. fs_info->dirty_metadata_batch);
  830. if (ret < 0)
  831. return 0;
  832. }
  833. return btree_write_cache_pages(mapping, wbc);
  834. }
  835. static int btree_readpage(struct file *file, struct page *page)
  836. {
  837. struct extent_io_tree *tree;
  838. tree = &BTRFS_I(page->mapping->host)->io_tree;
  839. return extent_read_full_page(tree, page, btree_get_extent, 0);
  840. }
  841. static int btree_releasepage(struct page *page, gfp_t gfp_flags)
  842. {
  843. if (PageWriteback(page) || PageDirty(page))
  844. return 0;
  845. return try_release_extent_buffer(page);
  846. }
  847. static void btree_invalidatepage(struct page *page, unsigned int offset,
  848. unsigned int length)
  849. {
  850. struct extent_io_tree *tree;
  851. tree = &BTRFS_I(page->mapping->host)->io_tree;
  852. extent_invalidatepage(tree, page, offset);
  853. btree_releasepage(page, GFP_NOFS);
  854. if (PagePrivate(page)) {
  855. btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
  856. "page private not zero on page %llu",
  857. (unsigned long long)page_offset(page));
  858. ClearPagePrivate(page);
  859. set_page_private(page, 0);
  860. page_cache_release(page);
  861. }
  862. }
  863. static int btree_set_page_dirty(struct page *page)
  864. {
  865. #ifdef DEBUG
  866. struct extent_buffer *eb;
  867. BUG_ON(!PagePrivate(page));
  868. eb = (struct extent_buffer *)page->private;
  869. BUG_ON(!eb);
  870. BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
  871. BUG_ON(!atomic_read(&eb->refs));
  872. btrfs_assert_tree_locked(eb);
  873. #endif
  874. return __set_page_dirty_nobuffers(page);
  875. }
  876. static const struct address_space_operations btree_aops = {
  877. .readpage = btree_readpage,
  878. .writepages = btree_writepages,
  879. .releasepage = btree_releasepage,
  880. .invalidatepage = btree_invalidatepage,
  881. #ifdef CONFIG_MIGRATION
  882. .migratepage = btree_migratepage,
  883. #endif
  884. .set_page_dirty = btree_set_page_dirty,
  885. };
  886. void readahead_tree_block(struct btrfs_root *root, u64 bytenr)
  887. {
  888. struct extent_buffer *buf = NULL;
  889. struct inode *btree_inode = root->fs_info->btree_inode;
  890. buf = btrfs_find_create_tree_block(root, bytenr);
  891. if (!buf)
  892. return;
  893. read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
  894. buf, 0, WAIT_NONE, btree_get_extent, 0);
  895. free_extent_buffer(buf);
  896. }
  897. int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr,
  898. int mirror_num, struct extent_buffer **eb)
  899. {
  900. struct extent_buffer *buf = NULL;
  901. struct inode *btree_inode = root->fs_info->btree_inode;
  902. struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
  903. int ret;
  904. buf = btrfs_find_create_tree_block(root, bytenr);
  905. if (!buf)
  906. return 0;
  907. set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
  908. ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
  909. btree_get_extent, mirror_num);
  910. if (ret) {
  911. free_extent_buffer(buf);
  912. return ret;
  913. }
  914. if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
  915. free_extent_buffer(buf);
  916. return -EIO;
  917. } else if (extent_buffer_uptodate(buf)) {
  918. *eb = buf;
  919. } else {
  920. free_extent_buffer(buf);
  921. }
  922. return 0;
  923. }
  924. struct extent_buffer *btrfs_find_tree_block(struct btrfs_fs_info *fs_info,
  925. u64 bytenr)
  926. {
  927. return find_extent_buffer(fs_info, bytenr);
  928. }
  929. struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
  930. u64 bytenr)
  931. {
  932. if (btrfs_test_is_dummy_root(root))
  933. return alloc_test_extent_buffer(root->fs_info, bytenr);
  934. return alloc_extent_buffer(root->fs_info, bytenr);
  935. }
  936. int btrfs_write_tree_block(struct extent_buffer *buf)
  937. {
  938. return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
  939. buf->start + buf->len - 1);
  940. }
  941. int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
  942. {
  943. return filemap_fdatawait_range(buf->pages[0]->mapping,
  944. buf->start, buf->start + buf->len - 1);
  945. }
  946. struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
  947. u64 parent_transid)
  948. {
  949. struct extent_buffer *buf = NULL;
  950. int ret;
  951. buf = btrfs_find_create_tree_block(root, bytenr);
  952. if (!buf)
  953. return ERR_PTR(-ENOMEM);
  954. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  955. if (ret) {
  956. free_extent_buffer(buf);
  957. return ERR_PTR(ret);
  958. }
  959. return buf;
  960. }
  961. void clean_tree_block(struct btrfs_trans_handle *trans,
  962. struct btrfs_fs_info *fs_info,
  963. struct extent_buffer *buf)
  964. {
  965. if (btrfs_header_generation(buf) ==
  966. fs_info->running_transaction->transid) {
  967. btrfs_assert_tree_locked(buf);
  968. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
  969. __percpu_counter_add(&fs_info->dirty_metadata_bytes,
  970. -buf->len,
  971. fs_info->dirty_metadata_batch);
  972. /* ugh, clear_extent_buffer_dirty needs to lock the page */
  973. btrfs_set_lock_blocking(buf);
  974. clear_extent_buffer_dirty(buf);
  975. }
  976. }
  977. }
  978. static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
  979. {
  980. struct btrfs_subvolume_writers *writers;
  981. int ret;
  982. writers = kmalloc(sizeof(*writers), GFP_NOFS);
  983. if (!writers)
  984. return ERR_PTR(-ENOMEM);
  985. ret = percpu_counter_init(&writers->counter, 0, GFP_NOFS);
  986. if (ret < 0) {
  987. kfree(writers);
  988. return ERR_PTR(ret);
  989. }
  990. init_waitqueue_head(&writers->wait);
  991. return writers;
  992. }
  993. static void
  994. btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
  995. {
  996. percpu_counter_destroy(&writers->counter);
  997. kfree(writers);
  998. }
  999. static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize,
  1000. struct btrfs_root *root, struct btrfs_fs_info *fs_info,
  1001. u64 objectid)
  1002. {
  1003. root->node = NULL;
  1004. root->commit_root = NULL;
  1005. root->sectorsize = sectorsize;
  1006. root->nodesize = nodesize;
  1007. root->stripesize = stripesize;
  1008. root->state = 0;
  1009. root->orphan_cleanup_state = 0;
  1010. root->objectid = objectid;
  1011. root->last_trans = 0;
  1012. root->highest_objectid = 0;
  1013. root->nr_delalloc_inodes = 0;
  1014. root->nr_ordered_extents = 0;
  1015. root->name = NULL;
  1016. root->inode_tree = RB_ROOT;
  1017. INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
  1018. root->block_rsv = NULL;
  1019. root->orphan_block_rsv = NULL;
  1020. INIT_LIST_HEAD(&root->dirty_list);
  1021. INIT_LIST_HEAD(&root->root_list);
  1022. INIT_LIST_HEAD(&root->delalloc_inodes);
  1023. INIT_LIST_HEAD(&root->delalloc_root);
  1024. INIT_LIST_HEAD(&root->ordered_extents);
  1025. INIT_LIST_HEAD(&root->ordered_root);
  1026. INIT_LIST_HEAD(&root->logged_list[0]);
  1027. INIT_LIST_HEAD(&root->logged_list[1]);
  1028. spin_lock_init(&root->orphan_lock);
  1029. spin_lock_init(&root->inode_lock);
  1030. spin_lock_init(&root->delalloc_lock);
  1031. spin_lock_init(&root->ordered_extent_lock);
  1032. spin_lock_init(&root->accounting_lock);
  1033. spin_lock_init(&root->log_extents_lock[0]);
  1034. spin_lock_init(&root->log_extents_lock[1]);
  1035. mutex_init(&root->objectid_mutex);
  1036. mutex_init(&root->log_mutex);
  1037. mutex_init(&root->ordered_extent_mutex);
  1038. mutex_init(&root->delalloc_mutex);
  1039. init_waitqueue_head(&root->log_writer_wait);
  1040. init_waitqueue_head(&root->log_commit_wait[0]);
  1041. init_waitqueue_head(&root->log_commit_wait[1]);
  1042. INIT_LIST_HEAD(&root->log_ctxs[0]);
  1043. INIT_LIST_HEAD(&root->log_ctxs[1]);
  1044. atomic_set(&root->log_commit[0], 0);
  1045. atomic_set(&root->log_commit[1], 0);
  1046. atomic_set(&root->log_writers, 0);
  1047. atomic_set(&root->log_batch, 0);
  1048. atomic_set(&root->orphan_inodes, 0);
  1049. atomic_set(&root->refs, 1);
  1050. atomic_set(&root->will_be_snapshoted, 0);
  1051. atomic_set(&root->qgroup_meta_rsv, 0);
  1052. root->log_transid = 0;
  1053. root->log_transid_committed = -1;
  1054. root->last_log_commit = 0;
  1055. if (fs_info)
  1056. extent_io_tree_init(&root->dirty_log_pages,
  1057. fs_info->btree_inode->i_mapping);
  1058. memset(&root->root_key, 0, sizeof(root->root_key));
  1059. memset(&root->root_item, 0, sizeof(root->root_item));
  1060. memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
  1061. if (fs_info)
  1062. root->defrag_trans_start = fs_info->generation;
  1063. else
  1064. root->defrag_trans_start = 0;
  1065. root->root_key.objectid = objectid;
  1066. root->anon_dev = 0;
  1067. spin_lock_init(&root->root_item_lock);
  1068. }
  1069. static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
  1070. {
  1071. struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
  1072. if (root)
  1073. root->fs_info = fs_info;
  1074. return root;
  1075. }
  1076. #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
  1077. /* Should only be used by the testing infrastructure */
  1078. struct btrfs_root *btrfs_alloc_dummy_root(void)
  1079. {
  1080. struct btrfs_root *root;
  1081. root = btrfs_alloc_root(NULL);
  1082. if (!root)
  1083. return ERR_PTR(-ENOMEM);
  1084. __setup_root(4096, 4096, 4096, root, NULL, 1);
  1085. set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state);
  1086. root->alloc_bytenr = 0;
  1087. return root;
  1088. }
  1089. #endif
  1090. struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
  1091. struct btrfs_fs_info *fs_info,
  1092. u64 objectid)
  1093. {
  1094. struct extent_buffer *leaf;
  1095. struct btrfs_root *tree_root = fs_info->tree_root;
  1096. struct btrfs_root *root;
  1097. struct btrfs_key key;
  1098. int ret = 0;
  1099. uuid_le uuid;
  1100. root = btrfs_alloc_root(fs_info);
  1101. if (!root)
  1102. return ERR_PTR(-ENOMEM);
  1103. __setup_root(tree_root->nodesize, tree_root->sectorsize,
  1104. tree_root->stripesize, root, fs_info, objectid);
  1105. root->root_key.objectid = objectid;
  1106. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1107. root->root_key.offset = 0;
  1108. leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
  1109. if (IS_ERR(leaf)) {
  1110. ret = PTR_ERR(leaf);
  1111. leaf = NULL;
  1112. goto fail;
  1113. }
  1114. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1115. btrfs_set_header_bytenr(leaf, leaf->start);
  1116. btrfs_set_header_generation(leaf, trans->transid);
  1117. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1118. btrfs_set_header_owner(leaf, objectid);
  1119. root->node = leaf;
  1120. write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
  1121. BTRFS_FSID_SIZE);
  1122. write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
  1123. btrfs_header_chunk_tree_uuid(leaf),
  1124. BTRFS_UUID_SIZE);
  1125. btrfs_mark_buffer_dirty(leaf);
  1126. root->commit_root = btrfs_root_node(root);
  1127. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  1128. root->root_item.flags = 0;
  1129. root->root_item.byte_limit = 0;
  1130. btrfs_set_root_bytenr(&root->root_item, leaf->start);
  1131. btrfs_set_root_generation(&root->root_item, trans->transid);
  1132. btrfs_set_root_level(&root->root_item, 0);
  1133. btrfs_set_root_refs(&root->root_item, 1);
  1134. btrfs_set_root_used(&root->root_item, leaf->len);
  1135. btrfs_set_root_last_snapshot(&root->root_item, 0);
  1136. btrfs_set_root_dirid(&root->root_item, 0);
  1137. uuid_le_gen(&uuid);
  1138. memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
  1139. root->root_item.drop_level = 0;
  1140. key.objectid = objectid;
  1141. key.type = BTRFS_ROOT_ITEM_KEY;
  1142. key.offset = 0;
  1143. ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
  1144. if (ret)
  1145. goto fail;
  1146. btrfs_tree_unlock(leaf);
  1147. return root;
  1148. fail:
  1149. if (leaf) {
  1150. btrfs_tree_unlock(leaf);
  1151. free_extent_buffer(root->commit_root);
  1152. free_extent_buffer(leaf);
  1153. }
  1154. kfree(root);
  1155. return ERR_PTR(ret);
  1156. }
  1157. static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
  1158. struct btrfs_fs_info *fs_info)
  1159. {
  1160. struct btrfs_root *root;
  1161. struct btrfs_root *tree_root = fs_info->tree_root;
  1162. struct extent_buffer *leaf;
  1163. root = btrfs_alloc_root(fs_info);
  1164. if (!root)
  1165. return ERR_PTR(-ENOMEM);
  1166. __setup_root(tree_root->nodesize, tree_root->sectorsize,
  1167. tree_root->stripesize, root, fs_info,
  1168. BTRFS_TREE_LOG_OBJECTID);
  1169. root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
  1170. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1171. root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
  1172. /*
  1173. * DON'T set REF_COWS for log trees
  1174. *
  1175. * log trees do not get reference counted because they go away
  1176. * before a real commit is actually done. They do store pointers
  1177. * to file data extents, and those reference counts still get
  1178. * updated (along with back refs to the log tree).
  1179. */
  1180. leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
  1181. NULL, 0, 0, 0);
  1182. if (IS_ERR(leaf)) {
  1183. kfree(root);
  1184. return ERR_CAST(leaf);
  1185. }
  1186. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1187. btrfs_set_header_bytenr(leaf, leaf->start);
  1188. btrfs_set_header_generation(leaf, trans->transid);
  1189. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1190. btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
  1191. root->node = leaf;
  1192. write_extent_buffer(root->node, root->fs_info->fsid,
  1193. btrfs_header_fsid(), BTRFS_FSID_SIZE);
  1194. btrfs_mark_buffer_dirty(root->node);
  1195. btrfs_tree_unlock(root->node);
  1196. return root;
  1197. }
  1198. int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
  1199. struct btrfs_fs_info *fs_info)
  1200. {
  1201. struct btrfs_root *log_root;
  1202. log_root = alloc_log_tree(trans, fs_info);
  1203. if (IS_ERR(log_root))
  1204. return PTR_ERR(log_root);
  1205. WARN_ON(fs_info->log_root_tree);
  1206. fs_info->log_root_tree = log_root;
  1207. return 0;
  1208. }
  1209. int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
  1210. struct btrfs_root *root)
  1211. {
  1212. struct btrfs_root *log_root;
  1213. struct btrfs_inode_item *inode_item;
  1214. log_root = alloc_log_tree(trans, root->fs_info);
  1215. if (IS_ERR(log_root))
  1216. return PTR_ERR(log_root);
  1217. log_root->last_trans = trans->transid;
  1218. log_root->root_key.offset = root->root_key.objectid;
  1219. inode_item = &log_root->root_item.inode;
  1220. btrfs_set_stack_inode_generation(inode_item, 1);
  1221. btrfs_set_stack_inode_size(inode_item, 3);
  1222. btrfs_set_stack_inode_nlink(inode_item, 1);
  1223. btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
  1224. btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
  1225. btrfs_set_root_node(&log_root->root_item, log_root->node);
  1226. WARN_ON(root->log_root);
  1227. root->log_root = log_root;
  1228. root->log_transid = 0;
  1229. root->log_transid_committed = -1;
  1230. root->last_log_commit = 0;
  1231. return 0;
  1232. }
  1233. static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
  1234. struct btrfs_key *key)
  1235. {
  1236. struct btrfs_root *root;
  1237. struct btrfs_fs_info *fs_info = tree_root->fs_info;
  1238. struct btrfs_path *path;
  1239. u64 generation;
  1240. int ret;
  1241. path = btrfs_alloc_path();
  1242. if (!path)
  1243. return ERR_PTR(-ENOMEM);
  1244. root = btrfs_alloc_root(fs_info);
  1245. if (!root) {
  1246. ret = -ENOMEM;
  1247. goto alloc_fail;
  1248. }
  1249. __setup_root(tree_root->nodesize, tree_root->sectorsize,
  1250. tree_root->stripesize, root, fs_info, key->objectid);
  1251. ret = btrfs_find_root(tree_root, key, path,
  1252. &root->root_item, &root->root_key);
  1253. if (ret) {
  1254. if (ret > 0)
  1255. ret = -ENOENT;
  1256. goto find_fail;
  1257. }
  1258. generation = btrfs_root_generation(&root->root_item);
  1259. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  1260. generation);
  1261. if (IS_ERR(root->node)) {
  1262. ret = PTR_ERR(root->node);
  1263. goto find_fail;
  1264. } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
  1265. ret = -EIO;
  1266. free_extent_buffer(root->node);
  1267. goto find_fail;
  1268. }
  1269. root->commit_root = btrfs_root_node(root);
  1270. out:
  1271. btrfs_free_path(path);
  1272. return root;
  1273. find_fail:
  1274. kfree(root);
  1275. alloc_fail:
  1276. root = ERR_PTR(ret);
  1277. goto out;
  1278. }
  1279. struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
  1280. struct btrfs_key *location)
  1281. {
  1282. struct btrfs_root *root;
  1283. root = btrfs_read_tree_root(tree_root, location);
  1284. if (IS_ERR(root))
  1285. return root;
  1286. if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
  1287. set_bit(BTRFS_ROOT_REF_COWS, &root->state);
  1288. btrfs_check_and_init_root_item(&root->root_item);
  1289. }
  1290. return root;
  1291. }
  1292. int btrfs_init_fs_root(struct btrfs_root *root)
  1293. {
  1294. int ret;
  1295. struct btrfs_subvolume_writers *writers;
  1296. root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
  1297. root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
  1298. GFP_NOFS);
  1299. if (!root->free_ino_pinned || !root->free_ino_ctl) {
  1300. ret = -ENOMEM;
  1301. goto fail;
  1302. }
  1303. writers = btrfs_alloc_subvolume_writers();
  1304. if (IS_ERR(writers)) {
  1305. ret = PTR_ERR(writers);
  1306. goto fail;
  1307. }
  1308. root->subv_writers = writers;
  1309. btrfs_init_free_ino_ctl(root);
  1310. spin_lock_init(&root->ino_cache_lock);
  1311. init_waitqueue_head(&root->ino_cache_wait);
  1312. ret = get_anon_bdev(&root->anon_dev);
  1313. if (ret)
  1314. goto free_writers;
  1315. mutex_lock(&root->objectid_mutex);
  1316. ret = btrfs_find_highest_objectid(root,
  1317. &root->highest_objectid);
  1318. if (ret) {
  1319. mutex_unlock(&root->objectid_mutex);
  1320. goto free_root_dev;
  1321. }
  1322. ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
  1323. mutex_unlock(&root->objectid_mutex);
  1324. return 0;
  1325. free_root_dev:
  1326. free_anon_bdev(root->anon_dev);
  1327. free_writers:
  1328. btrfs_free_subvolume_writers(root->subv_writers);
  1329. fail:
  1330. kfree(root->free_ino_ctl);
  1331. kfree(root->free_ino_pinned);
  1332. return ret;
  1333. }
  1334. struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
  1335. u64 root_id)
  1336. {
  1337. struct btrfs_root *root;
  1338. spin_lock(&fs_info->fs_roots_radix_lock);
  1339. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  1340. (unsigned long)root_id);
  1341. spin_unlock(&fs_info->fs_roots_radix_lock);
  1342. return root;
  1343. }
  1344. int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
  1345. struct btrfs_root *root)
  1346. {
  1347. int ret;
  1348. ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
  1349. if (ret)
  1350. return ret;
  1351. spin_lock(&fs_info->fs_roots_radix_lock);
  1352. ret = radix_tree_insert(&fs_info->fs_roots_radix,
  1353. (unsigned long)root->root_key.objectid,
  1354. root);
  1355. if (ret == 0)
  1356. set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
  1357. spin_unlock(&fs_info->fs_roots_radix_lock);
  1358. radix_tree_preload_end();
  1359. return ret;
  1360. }
  1361. struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
  1362. struct btrfs_key *location,
  1363. bool check_ref)
  1364. {
  1365. struct btrfs_root *root;
  1366. struct btrfs_path *path;
  1367. struct btrfs_key key;
  1368. int ret;
  1369. if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
  1370. return fs_info->tree_root;
  1371. if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
  1372. return fs_info->extent_root;
  1373. if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
  1374. return fs_info->chunk_root;
  1375. if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
  1376. return fs_info->dev_root;
  1377. if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
  1378. return fs_info->csum_root;
  1379. if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
  1380. return fs_info->quota_root ? fs_info->quota_root :
  1381. ERR_PTR(-ENOENT);
  1382. if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
  1383. return fs_info->uuid_root ? fs_info->uuid_root :
  1384. ERR_PTR(-ENOENT);
  1385. again:
  1386. root = btrfs_lookup_fs_root(fs_info, location->objectid);
  1387. if (root) {
  1388. if (check_ref && btrfs_root_refs(&root->root_item) == 0)
  1389. return ERR_PTR(-ENOENT);
  1390. return root;
  1391. }
  1392. root = btrfs_read_fs_root(fs_info->tree_root, location);
  1393. if (IS_ERR(root))
  1394. return root;
  1395. if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
  1396. ret = -ENOENT;
  1397. goto fail;
  1398. }
  1399. ret = btrfs_init_fs_root(root);
  1400. if (ret)
  1401. goto fail;
  1402. path = btrfs_alloc_path();
  1403. if (!path) {
  1404. ret = -ENOMEM;
  1405. goto fail;
  1406. }
  1407. key.objectid = BTRFS_ORPHAN_OBJECTID;
  1408. key.type = BTRFS_ORPHAN_ITEM_KEY;
  1409. key.offset = location->objectid;
  1410. ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
  1411. btrfs_free_path(path);
  1412. if (ret < 0)
  1413. goto fail;
  1414. if (ret == 0)
  1415. set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
  1416. ret = btrfs_insert_fs_root(fs_info, root);
  1417. if (ret) {
  1418. if (ret == -EEXIST) {
  1419. free_fs_root(root);
  1420. goto again;
  1421. }
  1422. goto fail;
  1423. }
  1424. return root;
  1425. fail:
  1426. free_fs_root(root);
  1427. return ERR_PTR(ret);
  1428. }
  1429. static int btrfs_congested_fn(void *congested_data, int bdi_bits)
  1430. {
  1431. struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
  1432. int ret = 0;
  1433. struct btrfs_device *device;
  1434. struct backing_dev_info *bdi;
  1435. rcu_read_lock();
  1436. list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
  1437. if (!device->bdev)
  1438. continue;
  1439. bdi = blk_get_backing_dev_info(device->bdev);
  1440. if (bdi_congested(bdi, bdi_bits)) {
  1441. ret = 1;
  1442. break;
  1443. }
  1444. }
  1445. rcu_read_unlock();
  1446. return ret;
  1447. }
  1448. static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
  1449. {
  1450. int err;
  1451. err = bdi_setup_and_register(bdi, "btrfs");
  1452. if (err)
  1453. return err;
  1454. bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_CACHE_SIZE;
  1455. bdi->congested_fn = btrfs_congested_fn;
  1456. bdi->congested_data = info;
  1457. bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
  1458. return 0;
  1459. }
  1460. /*
  1461. * called by the kthread helper functions to finally call the bio end_io
  1462. * functions. This is where read checksum verification actually happens
  1463. */
  1464. static void end_workqueue_fn(struct btrfs_work *work)
  1465. {
  1466. struct bio *bio;
  1467. struct btrfs_end_io_wq *end_io_wq;
  1468. end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
  1469. bio = end_io_wq->bio;
  1470. bio->bi_error = end_io_wq->error;
  1471. bio->bi_private = end_io_wq->private;
  1472. bio->bi_end_io = end_io_wq->end_io;
  1473. kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
  1474. bio_endio(bio);
  1475. }
  1476. static int cleaner_kthread(void *arg)
  1477. {
  1478. struct btrfs_root *root = arg;
  1479. int again;
  1480. struct btrfs_trans_handle *trans;
  1481. do {
  1482. again = 0;
  1483. /* Make the cleaner go to sleep early. */
  1484. if (btrfs_need_cleaner_sleep(root))
  1485. goto sleep;
  1486. if (!mutex_trylock(&root->fs_info->cleaner_mutex))
  1487. goto sleep;
  1488. /*
  1489. * Avoid the problem that we change the status of the fs
  1490. * during the above check and trylock.
  1491. */
  1492. if (btrfs_need_cleaner_sleep(root)) {
  1493. mutex_unlock(&root->fs_info->cleaner_mutex);
  1494. goto sleep;
  1495. }
  1496. mutex_lock(&root->fs_info->cleaner_delayed_iput_mutex);
  1497. btrfs_run_delayed_iputs(root);
  1498. mutex_unlock(&root->fs_info->cleaner_delayed_iput_mutex);
  1499. again = btrfs_clean_one_deleted_snapshot(root);
  1500. mutex_unlock(&root->fs_info->cleaner_mutex);
  1501. /*
  1502. * The defragger has dealt with the R/O remount and umount,
  1503. * needn't do anything special here.
  1504. */
  1505. btrfs_run_defrag_inodes(root->fs_info);
  1506. /*
  1507. * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
  1508. * with relocation (btrfs_relocate_chunk) and relocation
  1509. * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
  1510. * after acquiring fs_info->delete_unused_bgs_mutex. So we
  1511. * can't hold, nor need to, fs_info->cleaner_mutex when deleting
  1512. * unused block groups.
  1513. */
  1514. btrfs_delete_unused_bgs(root->fs_info);
  1515. sleep:
  1516. if (!try_to_freeze() && !again) {
  1517. set_current_state(TASK_INTERRUPTIBLE);
  1518. if (!kthread_should_stop())
  1519. schedule();
  1520. __set_current_state(TASK_RUNNING);
  1521. }
  1522. } while (!kthread_should_stop());
  1523. /*
  1524. * Transaction kthread is stopped before us and wakes us up.
  1525. * However we might have started a new transaction and COWed some
  1526. * tree blocks when deleting unused block groups for example. So
  1527. * make sure we commit the transaction we started to have a clean
  1528. * shutdown when evicting the btree inode - if it has dirty pages
  1529. * when we do the final iput() on it, eviction will trigger a
  1530. * writeback for it which will fail with null pointer dereferences
  1531. * since work queues and other resources were already released and
  1532. * destroyed by the time the iput/eviction/writeback is made.
  1533. */
  1534. trans = btrfs_attach_transaction(root);
  1535. if (IS_ERR(trans)) {
  1536. if (PTR_ERR(trans) != -ENOENT)
  1537. btrfs_err(root->fs_info,
  1538. "cleaner transaction attach returned %ld",
  1539. PTR_ERR(trans));
  1540. } else {
  1541. int ret;
  1542. ret = btrfs_commit_transaction(trans, root);
  1543. if (ret)
  1544. btrfs_err(root->fs_info,
  1545. "cleaner open transaction commit returned %d",
  1546. ret);
  1547. }
  1548. return 0;
  1549. }
  1550. static int transaction_kthread(void *arg)
  1551. {
  1552. struct btrfs_root *root = arg;
  1553. struct btrfs_trans_handle *trans;
  1554. struct btrfs_transaction *cur;
  1555. u64 transid;
  1556. unsigned long now;
  1557. unsigned long delay;
  1558. bool cannot_commit;
  1559. do {
  1560. cannot_commit = false;
  1561. delay = HZ * root->fs_info->commit_interval;
  1562. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  1563. spin_lock(&root->fs_info->trans_lock);
  1564. cur = root->fs_info->running_transaction;
  1565. if (!cur) {
  1566. spin_unlock(&root->fs_info->trans_lock);
  1567. goto sleep;
  1568. }
  1569. now = get_seconds();
  1570. if (cur->state < TRANS_STATE_BLOCKED &&
  1571. (now < cur->start_time ||
  1572. now - cur->start_time < root->fs_info->commit_interval)) {
  1573. spin_unlock(&root->fs_info->trans_lock);
  1574. delay = HZ * 5;
  1575. goto sleep;
  1576. }
  1577. transid = cur->transid;
  1578. spin_unlock(&root->fs_info->trans_lock);
  1579. /* If the file system is aborted, this will always fail. */
  1580. trans = btrfs_attach_transaction(root);
  1581. if (IS_ERR(trans)) {
  1582. if (PTR_ERR(trans) != -ENOENT)
  1583. cannot_commit = true;
  1584. goto sleep;
  1585. }
  1586. if (transid == trans->transid) {
  1587. btrfs_commit_transaction(trans, root);
  1588. } else {
  1589. btrfs_end_transaction(trans, root);
  1590. }
  1591. sleep:
  1592. wake_up_process(root->fs_info->cleaner_kthread);
  1593. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  1594. if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
  1595. &root->fs_info->fs_state)))
  1596. btrfs_cleanup_transaction(root);
  1597. if (!try_to_freeze()) {
  1598. set_current_state(TASK_INTERRUPTIBLE);
  1599. if (!kthread_should_stop() &&
  1600. (!btrfs_transaction_blocked(root->fs_info) ||
  1601. cannot_commit))
  1602. schedule_timeout(delay);
  1603. __set_current_state(TASK_RUNNING);
  1604. }
  1605. } while (!kthread_should_stop());
  1606. return 0;
  1607. }
  1608. /*
  1609. * this will find the highest generation in the array of
  1610. * root backups. The index of the highest array is returned,
  1611. * or -1 if we can't find anything.
  1612. *
  1613. * We check to make sure the array is valid by comparing the
  1614. * generation of the latest root in the array with the generation
  1615. * in the super block. If they don't match we pitch it.
  1616. */
  1617. static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
  1618. {
  1619. u64 cur;
  1620. int newest_index = -1;
  1621. struct btrfs_root_backup *root_backup;
  1622. int i;
  1623. for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
  1624. root_backup = info->super_copy->super_roots + i;
  1625. cur = btrfs_backup_tree_root_gen(root_backup);
  1626. if (cur == newest_gen)
  1627. newest_index = i;
  1628. }
  1629. /* check to see if we actually wrapped around */
  1630. if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
  1631. root_backup = info->super_copy->super_roots;
  1632. cur = btrfs_backup_tree_root_gen(root_backup);
  1633. if (cur == newest_gen)
  1634. newest_index = 0;
  1635. }
  1636. return newest_index;
  1637. }
  1638. /*
  1639. * find the oldest backup so we know where to store new entries
  1640. * in the backup array. This will set the backup_root_index
  1641. * field in the fs_info struct
  1642. */
  1643. static void find_oldest_super_backup(struct btrfs_fs_info *info,
  1644. u64 newest_gen)
  1645. {
  1646. int newest_index = -1;
  1647. newest_index = find_newest_super_backup(info, newest_gen);
  1648. /* if there was garbage in there, just move along */
  1649. if (newest_index == -1) {
  1650. info->backup_root_index = 0;
  1651. } else {
  1652. info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1653. }
  1654. }
  1655. /*
  1656. * copy all the root pointers into the super backup array.
  1657. * this will bump the backup pointer by one when it is
  1658. * done
  1659. */
  1660. static void backup_super_roots(struct btrfs_fs_info *info)
  1661. {
  1662. int next_backup;
  1663. struct btrfs_root_backup *root_backup;
  1664. int last_backup;
  1665. next_backup = info->backup_root_index;
  1666. last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1667. BTRFS_NUM_BACKUP_ROOTS;
  1668. /*
  1669. * just overwrite the last backup if we're at the same generation
  1670. * this happens only at umount
  1671. */
  1672. root_backup = info->super_for_commit->super_roots + last_backup;
  1673. if (btrfs_backup_tree_root_gen(root_backup) ==
  1674. btrfs_header_generation(info->tree_root->node))
  1675. next_backup = last_backup;
  1676. root_backup = info->super_for_commit->super_roots + next_backup;
  1677. /*
  1678. * make sure all of our padding and empty slots get zero filled
  1679. * regardless of which ones we use today
  1680. */
  1681. memset(root_backup, 0, sizeof(*root_backup));
  1682. info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1683. btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
  1684. btrfs_set_backup_tree_root_gen(root_backup,
  1685. btrfs_header_generation(info->tree_root->node));
  1686. btrfs_set_backup_tree_root_level(root_backup,
  1687. btrfs_header_level(info->tree_root->node));
  1688. btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
  1689. btrfs_set_backup_chunk_root_gen(root_backup,
  1690. btrfs_header_generation(info->chunk_root->node));
  1691. btrfs_set_backup_chunk_root_level(root_backup,
  1692. btrfs_header_level(info->chunk_root->node));
  1693. btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
  1694. btrfs_set_backup_extent_root_gen(root_backup,
  1695. btrfs_header_generation(info->extent_root->node));
  1696. btrfs_set_backup_extent_root_level(root_backup,
  1697. btrfs_header_level(info->extent_root->node));
  1698. /*
  1699. * we might commit during log recovery, which happens before we set
  1700. * the fs_root. Make sure it is valid before we fill it in.
  1701. */
  1702. if (info->fs_root && info->fs_root->node) {
  1703. btrfs_set_backup_fs_root(root_backup,
  1704. info->fs_root->node->start);
  1705. btrfs_set_backup_fs_root_gen(root_backup,
  1706. btrfs_header_generation(info->fs_root->node));
  1707. btrfs_set_backup_fs_root_level(root_backup,
  1708. btrfs_header_level(info->fs_root->node));
  1709. }
  1710. btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
  1711. btrfs_set_backup_dev_root_gen(root_backup,
  1712. btrfs_header_generation(info->dev_root->node));
  1713. btrfs_set_backup_dev_root_level(root_backup,
  1714. btrfs_header_level(info->dev_root->node));
  1715. btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
  1716. btrfs_set_backup_csum_root_gen(root_backup,
  1717. btrfs_header_generation(info->csum_root->node));
  1718. btrfs_set_backup_csum_root_level(root_backup,
  1719. btrfs_header_level(info->csum_root->node));
  1720. btrfs_set_backup_total_bytes(root_backup,
  1721. btrfs_super_total_bytes(info->super_copy));
  1722. btrfs_set_backup_bytes_used(root_backup,
  1723. btrfs_super_bytes_used(info->super_copy));
  1724. btrfs_set_backup_num_devices(root_backup,
  1725. btrfs_super_num_devices(info->super_copy));
  1726. /*
  1727. * if we don't copy this out to the super_copy, it won't get remembered
  1728. * for the next commit
  1729. */
  1730. memcpy(&info->super_copy->super_roots,
  1731. &info->super_for_commit->super_roots,
  1732. sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
  1733. }
  1734. /*
  1735. * this copies info out of the root backup array and back into
  1736. * the in-memory super block. It is meant to help iterate through
  1737. * the array, so you send it the number of backups you've already
  1738. * tried and the last backup index you used.
  1739. *
  1740. * this returns -1 when it has tried all the backups
  1741. */
  1742. static noinline int next_root_backup(struct btrfs_fs_info *info,
  1743. struct btrfs_super_block *super,
  1744. int *num_backups_tried, int *backup_index)
  1745. {
  1746. struct btrfs_root_backup *root_backup;
  1747. int newest = *backup_index;
  1748. if (*num_backups_tried == 0) {
  1749. u64 gen = btrfs_super_generation(super);
  1750. newest = find_newest_super_backup(info, gen);
  1751. if (newest == -1)
  1752. return -1;
  1753. *backup_index = newest;
  1754. *num_backups_tried = 1;
  1755. } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
  1756. /* we've tried all the backups, all done */
  1757. return -1;
  1758. } else {
  1759. /* jump to the next oldest backup */
  1760. newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1761. BTRFS_NUM_BACKUP_ROOTS;
  1762. *backup_index = newest;
  1763. *num_backups_tried += 1;
  1764. }
  1765. root_backup = super->super_roots + newest;
  1766. btrfs_set_super_generation(super,
  1767. btrfs_backup_tree_root_gen(root_backup));
  1768. btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
  1769. btrfs_set_super_root_level(super,
  1770. btrfs_backup_tree_root_level(root_backup));
  1771. btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
  1772. /*
  1773. * fixme: the total bytes and num_devices need to match or we should
  1774. * need a fsck
  1775. */
  1776. btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
  1777. btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
  1778. return 0;
  1779. }
  1780. /* helper to cleanup workers */
  1781. static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
  1782. {
  1783. btrfs_destroy_workqueue(fs_info->fixup_workers);
  1784. btrfs_destroy_workqueue(fs_info->delalloc_workers);
  1785. btrfs_destroy_workqueue(fs_info->workers);
  1786. btrfs_destroy_workqueue(fs_info->endio_workers);
  1787. btrfs_destroy_workqueue(fs_info->endio_meta_workers);
  1788. btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
  1789. btrfs_destroy_workqueue(fs_info->endio_repair_workers);
  1790. btrfs_destroy_workqueue(fs_info->rmw_workers);
  1791. btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
  1792. btrfs_destroy_workqueue(fs_info->endio_write_workers);
  1793. btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
  1794. btrfs_destroy_workqueue(fs_info->submit_workers);
  1795. btrfs_destroy_workqueue(fs_info->delayed_workers);
  1796. btrfs_destroy_workqueue(fs_info->caching_workers);
  1797. btrfs_destroy_workqueue(fs_info->readahead_workers);
  1798. btrfs_destroy_workqueue(fs_info->flush_workers);
  1799. btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
  1800. btrfs_destroy_workqueue(fs_info->extent_workers);
  1801. }
  1802. static void free_root_extent_buffers(struct btrfs_root *root)
  1803. {
  1804. if (root) {
  1805. free_extent_buffer(root->node);
  1806. free_extent_buffer(root->commit_root);
  1807. root->node = NULL;
  1808. root->commit_root = NULL;
  1809. }
  1810. }
  1811. /* helper to cleanup tree roots */
  1812. static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
  1813. {
  1814. free_root_extent_buffers(info->tree_root);
  1815. free_root_extent_buffers(info->dev_root);
  1816. free_root_extent_buffers(info->extent_root);
  1817. free_root_extent_buffers(info->csum_root);
  1818. free_root_extent_buffers(info->quota_root);
  1819. free_root_extent_buffers(info->uuid_root);
  1820. if (chunk_root)
  1821. free_root_extent_buffers(info->chunk_root);
  1822. }
  1823. void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
  1824. {
  1825. int ret;
  1826. struct btrfs_root *gang[8];
  1827. int i;
  1828. while (!list_empty(&fs_info->dead_roots)) {
  1829. gang[0] = list_entry(fs_info->dead_roots.next,
  1830. struct btrfs_root, root_list);
  1831. list_del(&gang[0]->root_list);
  1832. if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
  1833. btrfs_drop_and_free_fs_root(fs_info, gang[0]);
  1834. } else {
  1835. free_extent_buffer(gang[0]->node);
  1836. free_extent_buffer(gang[0]->commit_root);
  1837. btrfs_put_fs_root(gang[0]);
  1838. }
  1839. }
  1840. while (1) {
  1841. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  1842. (void **)gang, 0,
  1843. ARRAY_SIZE(gang));
  1844. if (!ret)
  1845. break;
  1846. for (i = 0; i < ret; i++)
  1847. btrfs_drop_and_free_fs_root(fs_info, gang[i]);
  1848. }
  1849. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
  1850. btrfs_free_log_root_tree(NULL, fs_info);
  1851. btrfs_destroy_pinned_extent(fs_info->tree_root,
  1852. fs_info->pinned_extents);
  1853. }
  1854. }
  1855. static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
  1856. {
  1857. mutex_init(&fs_info->scrub_lock);
  1858. atomic_set(&fs_info->scrubs_running, 0);
  1859. atomic_set(&fs_info->scrub_pause_req, 0);
  1860. atomic_set(&fs_info->scrubs_paused, 0);
  1861. atomic_set(&fs_info->scrub_cancel_req, 0);
  1862. init_waitqueue_head(&fs_info->scrub_pause_wait);
  1863. fs_info->scrub_workers_refcnt = 0;
  1864. }
  1865. static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
  1866. {
  1867. spin_lock_init(&fs_info->balance_lock);
  1868. mutex_init(&fs_info->balance_mutex);
  1869. atomic_set(&fs_info->balance_running, 0);
  1870. atomic_set(&fs_info->balance_pause_req, 0);
  1871. atomic_set(&fs_info->balance_cancel_req, 0);
  1872. fs_info->balance_ctl = NULL;
  1873. init_waitqueue_head(&fs_info->balance_wait_q);
  1874. }
  1875. static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info,
  1876. struct btrfs_root *tree_root)
  1877. {
  1878. fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
  1879. set_nlink(fs_info->btree_inode, 1);
  1880. /*
  1881. * we set the i_size on the btree inode to the max possible int.
  1882. * the real end of the address space is determined by all of
  1883. * the devices in the system
  1884. */
  1885. fs_info->btree_inode->i_size = OFFSET_MAX;
  1886. fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
  1887. RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
  1888. extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
  1889. fs_info->btree_inode->i_mapping);
  1890. BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
  1891. extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
  1892. BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
  1893. BTRFS_I(fs_info->btree_inode)->root = tree_root;
  1894. memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
  1895. sizeof(struct btrfs_key));
  1896. set_bit(BTRFS_INODE_DUMMY,
  1897. &BTRFS_I(fs_info->btree_inode)->runtime_flags);
  1898. btrfs_insert_inode_hash(fs_info->btree_inode);
  1899. }
  1900. static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
  1901. {
  1902. fs_info->dev_replace.lock_owner = 0;
  1903. atomic_set(&fs_info->dev_replace.nesting_level, 0);
  1904. mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
  1905. mutex_init(&fs_info->dev_replace.lock_management_lock);
  1906. mutex_init(&fs_info->dev_replace.lock);
  1907. init_waitqueue_head(&fs_info->replace_wait);
  1908. }
  1909. static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
  1910. {
  1911. spin_lock_init(&fs_info->qgroup_lock);
  1912. mutex_init(&fs_info->qgroup_ioctl_lock);
  1913. fs_info->qgroup_tree = RB_ROOT;
  1914. fs_info->qgroup_op_tree = RB_ROOT;
  1915. INIT_LIST_HEAD(&fs_info->dirty_qgroups);
  1916. fs_info->qgroup_seq = 1;
  1917. fs_info->quota_enabled = 0;
  1918. fs_info->pending_quota_state = 0;
  1919. fs_info->qgroup_ulist = NULL;
  1920. fs_info->qgroup_rescan_running = false;
  1921. mutex_init(&fs_info->qgroup_rescan_lock);
  1922. }
  1923. static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
  1924. struct btrfs_fs_devices *fs_devices)
  1925. {
  1926. int max_active = fs_info->thread_pool_size;
  1927. unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
  1928. fs_info->workers =
  1929. btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
  1930. max_active, 16);
  1931. fs_info->delalloc_workers =
  1932. btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
  1933. fs_info->flush_workers =
  1934. btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
  1935. fs_info->caching_workers =
  1936. btrfs_alloc_workqueue("cache", flags, max_active, 0);
  1937. /*
  1938. * a higher idle thresh on the submit workers makes it much more
  1939. * likely that bios will be send down in a sane order to the
  1940. * devices
  1941. */
  1942. fs_info->submit_workers =
  1943. btrfs_alloc_workqueue("submit", flags,
  1944. min_t(u64, fs_devices->num_devices,
  1945. max_active), 64);
  1946. fs_info->fixup_workers =
  1947. btrfs_alloc_workqueue("fixup", flags, 1, 0);
  1948. /*
  1949. * endios are largely parallel and should have a very
  1950. * low idle thresh
  1951. */
  1952. fs_info->endio_workers =
  1953. btrfs_alloc_workqueue("endio", flags, max_active, 4);
  1954. fs_info->endio_meta_workers =
  1955. btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
  1956. fs_info->endio_meta_write_workers =
  1957. btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
  1958. fs_info->endio_raid56_workers =
  1959. btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
  1960. fs_info->endio_repair_workers =
  1961. btrfs_alloc_workqueue("endio-repair", flags, 1, 0);
  1962. fs_info->rmw_workers =
  1963. btrfs_alloc_workqueue("rmw", flags, max_active, 2);
  1964. fs_info->endio_write_workers =
  1965. btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
  1966. fs_info->endio_freespace_worker =
  1967. btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
  1968. fs_info->delayed_workers =
  1969. btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0);
  1970. fs_info->readahead_workers =
  1971. btrfs_alloc_workqueue("readahead", flags, max_active, 2);
  1972. fs_info->qgroup_rescan_workers =
  1973. btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0);
  1974. fs_info->extent_workers =
  1975. btrfs_alloc_workqueue("extent-refs", flags,
  1976. min_t(u64, fs_devices->num_devices,
  1977. max_active), 8);
  1978. if (!(fs_info->workers && fs_info->delalloc_workers &&
  1979. fs_info->submit_workers && fs_info->flush_workers &&
  1980. fs_info->endio_workers && fs_info->endio_meta_workers &&
  1981. fs_info->endio_meta_write_workers &&
  1982. fs_info->endio_repair_workers &&
  1983. fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
  1984. fs_info->endio_freespace_worker && fs_info->rmw_workers &&
  1985. fs_info->caching_workers && fs_info->readahead_workers &&
  1986. fs_info->fixup_workers && fs_info->delayed_workers &&
  1987. fs_info->extent_workers &&
  1988. fs_info->qgroup_rescan_workers)) {
  1989. return -ENOMEM;
  1990. }
  1991. return 0;
  1992. }
  1993. static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
  1994. struct btrfs_fs_devices *fs_devices)
  1995. {
  1996. int ret;
  1997. struct btrfs_root *tree_root = fs_info->tree_root;
  1998. struct btrfs_root *log_tree_root;
  1999. struct btrfs_super_block *disk_super = fs_info->super_copy;
  2000. u64 bytenr = btrfs_super_log_root(disk_super);
  2001. if (fs_devices->rw_devices == 0) {
  2002. btrfs_warn(fs_info, "log replay required on RO media");
  2003. return -EIO;
  2004. }
  2005. log_tree_root = btrfs_alloc_root(fs_info);
  2006. if (!log_tree_root)
  2007. return -ENOMEM;
  2008. __setup_root(tree_root->nodesize, tree_root->sectorsize,
  2009. tree_root->stripesize, log_tree_root, fs_info,
  2010. BTRFS_TREE_LOG_OBJECTID);
  2011. log_tree_root->node = read_tree_block(tree_root, bytenr,
  2012. fs_info->generation + 1);
  2013. if (IS_ERR(log_tree_root->node)) {
  2014. btrfs_warn(fs_info, "failed to read log tree");
  2015. ret = PTR_ERR(log_tree_root->node);
  2016. kfree(log_tree_root);
  2017. return ret;
  2018. } else if (!extent_buffer_uptodate(log_tree_root->node)) {
  2019. btrfs_err(fs_info, "failed to read log tree");
  2020. free_extent_buffer(log_tree_root->node);
  2021. kfree(log_tree_root);
  2022. return -EIO;
  2023. }
  2024. /* returns with log_tree_root freed on success */
  2025. ret = btrfs_recover_log_trees(log_tree_root);
  2026. if (ret) {
  2027. btrfs_std_error(tree_root->fs_info, ret,
  2028. "Failed to recover log tree");
  2029. free_extent_buffer(log_tree_root->node);
  2030. kfree(log_tree_root);
  2031. return ret;
  2032. }
  2033. if (fs_info->sb->s_flags & MS_RDONLY) {
  2034. ret = btrfs_commit_super(tree_root);
  2035. if (ret)
  2036. return ret;
  2037. }
  2038. return 0;
  2039. }
  2040. static int btrfs_read_roots(struct btrfs_fs_info *fs_info,
  2041. struct btrfs_root *tree_root)
  2042. {
  2043. struct btrfs_root *root;
  2044. struct btrfs_key location;
  2045. int ret;
  2046. location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
  2047. location.type = BTRFS_ROOT_ITEM_KEY;
  2048. location.offset = 0;
  2049. root = btrfs_read_tree_root(tree_root, &location);
  2050. if (IS_ERR(root))
  2051. return PTR_ERR(root);
  2052. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2053. fs_info->extent_root = root;
  2054. location.objectid = BTRFS_DEV_TREE_OBJECTID;
  2055. root = btrfs_read_tree_root(tree_root, &location);
  2056. if (IS_ERR(root))
  2057. return PTR_ERR(root);
  2058. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2059. fs_info->dev_root = root;
  2060. btrfs_init_devices_late(fs_info);
  2061. location.objectid = BTRFS_CSUM_TREE_OBJECTID;
  2062. root = btrfs_read_tree_root(tree_root, &location);
  2063. if (IS_ERR(root))
  2064. return PTR_ERR(root);
  2065. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2066. fs_info->csum_root = root;
  2067. location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
  2068. root = btrfs_read_tree_root(tree_root, &location);
  2069. if (!IS_ERR(root)) {
  2070. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2071. fs_info->quota_enabled = 1;
  2072. fs_info->pending_quota_state = 1;
  2073. fs_info->quota_root = root;
  2074. }
  2075. location.objectid = BTRFS_UUID_TREE_OBJECTID;
  2076. root = btrfs_read_tree_root(tree_root, &location);
  2077. if (IS_ERR(root)) {
  2078. ret = PTR_ERR(root);
  2079. if (ret != -ENOENT)
  2080. return ret;
  2081. } else {
  2082. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2083. fs_info->uuid_root = root;
  2084. }
  2085. return 0;
  2086. }
  2087. int open_ctree(struct super_block *sb,
  2088. struct btrfs_fs_devices *fs_devices,
  2089. char *options)
  2090. {
  2091. u32 sectorsize;
  2092. u32 nodesize;
  2093. u32 stripesize;
  2094. u64 generation;
  2095. u64 features;
  2096. struct btrfs_key location;
  2097. struct buffer_head *bh;
  2098. struct btrfs_super_block *disk_super;
  2099. struct btrfs_fs_info *fs_info = btrfs_sb(sb);
  2100. struct btrfs_root *tree_root;
  2101. struct btrfs_root *chunk_root;
  2102. int ret;
  2103. int err = -EINVAL;
  2104. int num_backups_tried = 0;
  2105. int backup_index = 0;
  2106. int max_active;
  2107. tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
  2108. chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
  2109. if (!tree_root || !chunk_root) {
  2110. err = -ENOMEM;
  2111. goto fail;
  2112. }
  2113. ret = init_srcu_struct(&fs_info->subvol_srcu);
  2114. if (ret) {
  2115. err = ret;
  2116. goto fail;
  2117. }
  2118. ret = setup_bdi(fs_info, &fs_info->bdi);
  2119. if (ret) {
  2120. err = ret;
  2121. goto fail_srcu;
  2122. }
  2123. ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
  2124. if (ret) {
  2125. err = ret;
  2126. goto fail_bdi;
  2127. }
  2128. fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
  2129. (1 + ilog2(nr_cpu_ids));
  2130. ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
  2131. if (ret) {
  2132. err = ret;
  2133. goto fail_dirty_metadata_bytes;
  2134. }
  2135. ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
  2136. if (ret) {
  2137. err = ret;
  2138. goto fail_delalloc_bytes;
  2139. }
  2140. fs_info->btree_inode = new_inode(sb);
  2141. if (!fs_info->btree_inode) {
  2142. err = -ENOMEM;
  2143. goto fail_bio_counter;
  2144. }
  2145. mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
  2146. INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
  2147. INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
  2148. INIT_LIST_HEAD(&fs_info->trans_list);
  2149. INIT_LIST_HEAD(&fs_info->dead_roots);
  2150. INIT_LIST_HEAD(&fs_info->delayed_iputs);
  2151. INIT_LIST_HEAD(&fs_info->delalloc_roots);
  2152. INIT_LIST_HEAD(&fs_info->caching_block_groups);
  2153. spin_lock_init(&fs_info->delalloc_root_lock);
  2154. spin_lock_init(&fs_info->trans_lock);
  2155. spin_lock_init(&fs_info->fs_roots_radix_lock);
  2156. spin_lock_init(&fs_info->delayed_iput_lock);
  2157. spin_lock_init(&fs_info->defrag_inodes_lock);
  2158. spin_lock_init(&fs_info->free_chunk_lock);
  2159. spin_lock_init(&fs_info->tree_mod_seq_lock);
  2160. spin_lock_init(&fs_info->super_lock);
  2161. spin_lock_init(&fs_info->qgroup_op_lock);
  2162. spin_lock_init(&fs_info->buffer_lock);
  2163. spin_lock_init(&fs_info->unused_bgs_lock);
  2164. rwlock_init(&fs_info->tree_mod_log_lock);
  2165. mutex_init(&fs_info->unused_bg_unpin_mutex);
  2166. mutex_init(&fs_info->delete_unused_bgs_mutex);
  2167. mutex_init(&fs_info->reloc_mutex);
  2168. mutex_init(&fs_info->delalloc_root_mutex);
  2169. mutex_init(&fs_info->cleaner_delayed_iput_mutex);
  2170. seqlock_init(&fs_info->profiles_lock);
  2171. INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
  2172. INIT_LIST_HEAD(&fs_info->space_info);
  2173. INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
  2174. INIT_LIST_HEAD(&fs_info->unused_bgs);
  2175. btrfs_mapping_init(&fs_info->mapping_tree);
  2176. btrfs_init_block_rsv(&fs_info->global_block_rsv,
  2177. BTRFS_BLOCK_RSV_GLOBAL);
  2178. btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
  2179. BTRFS_BLOCK_RSV_DELALLOC);
  2180. btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
  2181. btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
  2182. btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
  2183. btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
  2184. BTRFS_BLOCK_RSV_DELOPS);
  2185. atomic_set(&fs_info->nr_async_submits, 0);
  2186. atomic_set(&fs_info->async_delalloc_pages, 0);
  2187. atomic_set(&fs_info->async_submit_draining, 0);
  2188. atomic_set(&fs_info->nr_async_bios, 0);
  2189. atomic_set(&fs_info->defrag_running, 0);
  2190. atomic_set(&fs_info->qgroup_op_seq, 0);
  2191. atomic64_set(&fs_info->tree_mod_seq, 0);
  2192. fs_info->sb = sb;
  2193. fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
  2194. fs_info->metadata_ratio = 0;
  2195. fs_info->defrag_inodes = RB_ROOT;
  2196. fs_info->free_chunk_space = 0;
  2197. fs_info->tree_mod_log = RB_ROOT;
  2198. fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
  2199. fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
  2200. /* readahead state */
  2201. INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
  2202. spin_lock_init(&fs_info->reada_lock);
  2203. fs_info->thread_pool_size = min_t(unsigned long,
  2204. num_online_cpus() + 2, 8);
  2205. INIT_LIST_HEAD(&fs_info->ordered_roots);
  2206. spin_lock_init(&fs_info->ordered_root_lock);
  2207. fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
  2208. GFP_NOFS);
  2209. if (!fs_info->delayed_root) {
  2210. err = -ENOMEM;
  2211. goto fail_iput;
  2212. }
  2213. btrfs_init_delayed_root(fs_info->delayed_root);
  2214. btrfs_init_scrub(fs_info);
  2215. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2216. fs_info->check_integrity_print_mask = 0;
  2217. #endif
  2218. btrfs_init_balance(fs_info);
  2219. btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
  2220. sb->s_blocksize = 4096;
  2221. sb->s_blocksize_bits = blksize_bits(4096);
  2222. sb->s_bdi = &fs_info->bdi;
  2223. btrfs_init_btree_inode(fs_info, tree_root);
  2224. spin_lock_init(&fs_info->block_group_cache_lock);
  2225. fs_info->block_group_cache_tree = RB_ROOT;
  2226. fs_info->first_logical_byte = (u64)-1;
  2227. extent_io_tree_init(&fs_info->freed_extents[0],
  2228. fs_info->btree_inode->i_mapping);
  2229. extent_io_tree_init(&fs_info->freed_extents[1],
  2230. fs_info->btree_inode->i_mapping);
  2231. fs_info->pinned_extents = &fs_info->freed_extents[0];
  2232. fs_info->do_barriers = 1;
  2233. mutex_init(&fs_info->ordered_operations_mutex);
  2234. mutex_init(&fs_info->tree_log_mutex);
  2235. mutex_init(&fs_info->chunk_mutex);
  2236. mutex_init(&fs_info->transaction_kthread_mutex);
  2237. mutex_init(&fs_info->cleaner_mutex);
  2238. mutex_init(&fs_info->volume_mutex);
  2239. mutex_init(&fs_info->ro_block_group_mutex);
  2240. init_rwsem(&fs_info->commit_root_sem);
  2241. init_rwsem(&fs_info->cleanup_work_sem);
  2242. init_rwsem(&fs_info->subvol_sem);
  2243. sema_init(&fs_info->uuid_tree_rescan_sem, 1);
  2244. btrfs_init_dev_replace_locks(fs_info);
  2245. btrfs_init_qgroup(fs_info);
  2246. btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
  2247. btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
  2248. init_waitqueue_head(&fs_info->transaction_throttle);
  2249. init_waitqueue_head(&fs_info->transaction_wait);
  2250. init_waitqueue_head(&fs_info->transaction_blocked_wait);
  2251. init_waitqueue_head(&fs_info->async_submit_wait);
  2252. INIT_LIST_HEAD(&fs_info->pinned_chunks);
  2253. ret = btrfs_alloc_stripe_hash_table(fs_info);
  2254. if (ret) {
  2255. err = ret;
  2256. goto fail_alloc;
  2257. }
  2258. __setup_root(4096, 4096, 4096, tree_root,
  2259. fs_info, BTRFS_ROOT_TREE_OBJECTID);
  2260. invalidate_bdev(fs_devices->latest_bdev);
  2261. /*
  2262. * Read super block and check the signature bytes only
  2263. */
  2264. bh = btrfs_read_dev_super(fs_devices->latest_bdev);
  2265. if (IS_ERR(bh)) {
  2266. err = PTR_ERR(bh);
  2267. goto fail_alloc;
  2268. }
  2269. /*
  2270. * We want to check superblock checksum, the type is stored inside.
  2271. * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
  2272. */
  2273. if (btrfs_check_super_csum(bh->b_data)) {
  2274. printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
  2275. err = -EINVAL;
  2276. brelse(bh);
  2277. goto fail_alloc;
  2278. }
  2279. /*
  2280. * super_copy is zeroed at allocation time and we never touch the
  2281. * following bytes up to INFO_SIZE, the checksum is calculated from
  2282. * the whole block of INFO_SIZE
  2283. */
  2284. memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
  2285. memcpy(fs_info->super_for_commit, fs_info->super_copy,
  2286. sizeof(*fs_info->super_for_commit));
  2287. brelse(bh);
  2288. memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
  2289. ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
  2290. if (ret) {
  2291. printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
  2292. err = -EINVAL;
  2293. goto fail_alloc;
  2294. }
  2295. disk_super = fs_info->super_copy;
  2296. if (!btrfs_super_root(disk_super))
  2297. goto fail_alloc;
  2298. /* check FS state, whether FS is broken. */
  2299. if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
  2300. set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
  2301. /*
  2302. * run through our array of backup supers and setup
  2303. * our ring pointer to the oldest one
  2304. */
  2305. generation = btrfs_super_generation(disk_super);
  2306. find_oldest_super_backup(fs_info, generation);
  2307. /*
  2308. * In the long term, we'll store the compression type in the super
  2309. * block, and it'll be used for per file compression control.
  2310. */
  2311. fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
  2312. ret = btrfs_parse_options(tree_root, options);
  2313. if (ret) {
  2314. err = ret;
  2315. goto fail_alloc;
  2316. }
  2317. features = btrfs_super_incompat_flags(disk_super) &
  2318. ~BTRFS_FEATURE_INCOMPAT_SUPP;
  2319. if (features) {
  2320. printk(KERN_ERR "BTRFS: couldn't mount because of "
  2321. "unsupported optional features (%Lx).\n",
  2322. features);
  2323. err = -EINVAL;
  2324. goto fail_alloc;
  2325. }
  2326. /*
  2327. * Leafsize and nodesize were always equal, this is only a sanity check.
  2328. */
  2329. if (le32_to_cpu(disk_super->__unused_leafsize) !=
  2330. btrfs_super_nodesize(disk_super)) {
  2331. printk(KERN_ERR "BTRFS: couldn't mount because metadata "
  2332. "blocksizes don't match. node %d leaf %d\n",
  2333. btrfs_super_nodesize(disk_super),
  2334. le32_to_cpu(disk_super->__unused_leafsize));
  2335. err = -EINVAL;
  2336. goto fail_alloc;
  2337. }
  2338. if (btrfs_super_nodesize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
  2339. printk(KERN_ERR "BTRFS: couldn't mount because metadata "
  2340. "blocksize (%d) was too large\n",
  2341. btrfs_super_nodesize(disk_super));
  2342. err = -EINVAL;
  2343. goto fail_alloc;
  2344. }
  2345. features = btrfs_super_incompat_flags(disk_super);
  2346. features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
  2347. if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
  2348. features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
  2349. if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
  2350. printk(KERN_INFO "BTRFS: has skinny extents\n");
  2351. /*
  2352. * flag our filesystem as having big metadata blocks if
  2353. * they are bigger than the page size
  2354. */
  2355. if (btrfs_super_nodesize(disk_super) > PAGE_CACHE_SIZE) {
  2356. if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
  2357. printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
  2358. features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
  2359. }
  2360. nodesize = btrfs_super_nodesize(disk_super);
  2361. sectorsize = btrfs_super_sectorsize(disk_super);
  2362. stripesize = btrfs_super_stripesize(disk_super);
  2363. fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
  2364. fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
  2365. /*
  2366. * mixed block groups end up with duplicate but slightly offset
  2367. * extent buffers for the same range. It leads to corruptions
  2368. */
  2369. if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
  2370. (sectorsize != nodesize)) {
  2371. printk(KERN_ERR "BTRFS: unequal leaf/node/sector sizes "
  2372. "are not allowed for mixed block groups on %s\n",
  2373. sb->s_id);
  2374. goto fail_alloc;
  2375. }
  2376. /*
  2377. * Needn't use the lock because there is no other task which will
  2378. * update the flag.
  2379. */
  2380. btrfs_set_super_incompat_flags(disk_super, features);
  2381. features = btrfs_super_compat_ro_flags(disk_super) &
  2382. ~BTRFS_FEATURE_COMPAT_RO_SUPP;
  2383. if (!(sb->s_flags & MS_RDONLY) && features) {
  2384. printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
  2385. "unsupported option features (%Lx).\n",
  2386. features);
  2387. err = -EINVAL;
  2388. goto fail_alloc;
  2389. }
  2390. max_active = fs_info->thread_pool_size;
  2391. ret = btrfs_init_workqueues(fs_info, fs_devices);
  2392. if (ret) {
  2393. err = ret;
  2394. goto fail_sb_buffer;
  2395. }
  2396. fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
  2397. fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
  2398. 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
  2399. tree_root->nodesize = nodesize;
  2400. tree_root->sectorsize = sectorsize;
  2401. tree_root->stripesize = stripesize;
  2402. sb->s_blocksize = sectorsize;
  2403. sb->s_blocksize_bits = blksize_bits(sectorsize);
  2404. if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
  2405. printk(KERN_ERR "BTRFS: valid FS not found on %s\n", sb->s_id);
  2406. goto fail_sb_buffer;
  2407. }
  2408. if (sectorsize != PAGE_SIZE) {
  2409. printk(KERN_ERR "BTRFS: incompatible sector size (%lu) "
  2410. "found on %s\n", (unsigned long)sectorsize, sb->s_id);
  2411. goto fail_sb_buffer;
  2412. }
  2413. mutex_lock(&fs_info->chunk_mutex);
  2414. ret = btrfs_read_sys_array(tree_root);
  2415. mutex_unlock(&fs_info->chunk_mutex);
  2416. if (ret) {
  2417. printk(KERN_ERR "BTRFS: failed to read the system "
  2418. "array on %s\n", sb->s_id);
  2419. goto fail_sb_buffer;
  2420. }
  2421. generation = btrfs_super_chunk_root_generation(disk_super);
  2422. __setup_root(nodesize, sectorsize, stripesize, chunk_root,
  2423. fs_info, BTRFS_CHUNK_TREE_OBJECTID);
  2424. chunk_root->node = read_tree_block(chunk_root,
  2425. btrfs_super_chunk_root(disk_super),
  2426. generation);
  2427. if (IS_ERR(chunk_root->node) ||
  2428. !extent_buffer_uptodate(chunk_root->node)) {
  2429. printk(KERN_ERR "BTRFS: failed to read chunk root on %s\n",
  2430. sb->s_id);
  2431. if (!IS_ERR(chunk_root->node))
  2432. free_extent_buffer(chunk_root->node);
  2433. chunk_root->node = NULL;
  2434. goto fail_tree_roots;
  2435. }
  2436. btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
  2437. chunk_root->commit_root = btrfs_root_node(chunk_root);
  2438. read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
  2439. btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
  2440. ret = btrfs_read_chunk_tree(chunk_root);
  2441. if (ret) {
  2442. printk(KERN_ERR "BTRFS: failed to read chunk tree on %s\n",
  2443. sb->s_id);
  2444. goto fail_tree_roots;
  2445. }
  2446. /*
  2447. * keep the device that is marked to be the target device for the
  2448. * dev_replace procedure
  2449. */
  2450. btrfs_close_extra_devices(fs_devices, 0);
  2451. if (!fs_devices->latest_bdev) {
  2452. printk(KERN_ERR "BTRFS: failed to read devices on %s\n",
  2453. sb->s_id);
  2454. goto fail_tree_roots;
  2455. }
  2456. retry_root_backup:
  2457. generation = btrfs_super_generation(disk_super);
  2458. tree_root->node = read_tree_block(tree_root,
  2459. btrfs_super_root(disk_super),
  2460. generation);
  2461. if (IS_ERR(tree_root->node) ||
  2462. !extent_buffer_uptodate(tree_root->node)) {
  2463. printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
  2464. sb->s_id);
  2465. if (!IS_ERR(tree_root->node))
  2466. free_extent_buffer(tree_root->node);
  2467. tree_root->node = NULL;
  2468. goto recovery_tree_root;
  2469. }
  2470. btrfs_set_root_node(&tree_root->root_item, tree_root->node);
  2471. tree_root->commit_root = btrfs_root_node(tree_root);
  2472. btrfs_set_root_refs(&tree_root->root_item, 1);
  2473. mutex_lock(&tree_root->objectid_mutex);
  2474. ret = btrfs_find_highest_objectid(tree_root,
  2475. &tree_root->highest_objectid);
  2476. if (ret) {
  2477. mutex_unlock(&tree_root->objectid_mutex);
  2478. goto recovery_tree_root;
  2479. }
  2480. ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
  2481. mutex_unlock(&tree_root->objectid_mutex);
  2482. ret = btrfs_read_roots(fs_info, tree_root);
  2483. if (ret)
  2484. goto recovery_tree_root;
  2485. fs_info->generation = generation;
  2486. fs_info->last_trans_committed = generation;
  2487. ret = btrfs_recover_balance(fs_info);
  2488. if (ret) {
  2489. printk(KERN_ERR "BTRFS: failed to recover balance\n");
  2490. goto fail_block_groups;
  2491. }
  2492. ret = btrfs_init_dev_stats(fs_info);
  2493. if (ret) {
  2494. printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
  2495. ret);
  2496. goto fail_block_groups;
  2497. }
  2498. ret = btrfs_init_dev_replace(fs_info);
  2499. if (ret) {
  2500. pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
  2501. goto fail_block_groups;
  2502. }
  2503. btrfs_close_extra_devices(fs_devices, 1);
  2504. ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
  2505. if (ret) {
  2506. pr_err("BTRFS: failed to init sysfs fsid interface: %d\n", ret);
  2507. goto fail_block_groups;
  2508. }
  2509. ret = btrfs_sysfs_add_device(fs_devices);
  2510. if (ret) {
  2511. pr_err("BTRFS: failed to init sysfs device interface: %d\n", ret);
  2512. goto fail_fsdev_sysfs;
  2513. }
  2514. ret = btrfs_sysfs_add_mounted(fs_info);
  2515. if (ret) {
  2516. pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
  2517. goto fail_fsdev_sysfs;
  2518. }
  2519. ret = btrfs_init_space_info(fs_info);
  2520. if (ret) {
  2521. printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
  2522. goto fail_sysfs;
  2523. }
  2524. ret = btrfs_read_block_groups(fs_info->extent_root);
  2525. if (ret) {
  2526. printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
  2527. goto fail_sysfs;
  2528. }
  2529. fs_info->num_tolerated_disk_barrier_failures =
  2530. btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
  2531. if (fs_info->fs_devices->missing_devices >
  2532. fs_info->num_tolerated_disk_barrier_failures &&
  2533. !(sb->s_flags & MS_RDONLY)) {
  2534. pr_warn("BTRFS: missing devices(%llu) exceeds the limit(%d), writeable mount is not allowed\n",
  2535. fs_info->fs_devices->missing_devices,
  2536. fs_info->num_tolerated_disk_barrier_failures);
  2537. goto fail_sysfs;
  2538. }
  2539. fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
  2540. "btrfs-cleaner");
  2541. if (IS_ERR(fs_info->cleaner_kthread))
  2542. goto fail_sysfs;
  2543. fs_info->transaction_kthread = kthread_run(transaction_kthread,
  2544. tree_root,
  2545. "btrfs-transaction");
  2546. if (IS_ERR(fs_info->transaction_kthread))
  2547. goto fail_cleaner;
  2548. if (!btrfs_test_opt(tree_root, SSD) &&
  2549. !btrfs_test_opt(tree_root, NOSSD) &&
  2550. !fs_info->fs_devices->rotating) {
  2551. printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
  2552. "mode\n");
  2553. btrfs_set_opt(fs_info->mount_opt, SSD);
  2554. }
  2555. /*
  2556. * Mount does not set all options immediatelly, we can do it now and do
  2557. * not have to wait for transaction commit
  2558. */
  2559. btrfs_apply_pending_changes(fs_info);
  2560. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2561. if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
  2562. ret = btrfsic_mount(tree_root, fs_devices,
  2563. btrfs_test_opt(tree_root,
  2564. CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
  2565. 1 : 0,
  2566. fs_info->check_integrity_print_mask);
  2567. if (ret)
  2568. printk(KERN_WARNING "BTRFS: failed to initialize"
  2569. " integrity check module %s\n", sb->s_id);
  2570. }
  2571. #endif
  2572. ret = btrfs_read_qgroup_config(fs_info);
  2573. if (ret)
  2574. goto fail_trans_kthread;
  2575. /* do not make disk changes in broken FS */
  2576. if (btrfs_super_log_root(disk_super) != 0) {
  2577. ret = btrfs_replay_log(fs_info, fs_devices);
  2578. if (ret) {
  2579. err = ret;
  2580. goto fail_qgroup;
  2581. }
  2582. }
  2583. ret = btrfs_find_orphan_roots(tree_root);
  2584. if (ret)
  2585. goto fail_qgroup;
  2586. if (!(sb->s_flags & MS_RDONLY)) {
  2587. ret = btrfs_cleanup_fs_roots(fs_info);
  2588. if (ret)
  2589. goto fail_qgroup;
  2590. mutex_lock(&fs_info->cleaner_mutex);
  2591. ret = btrfs_recover_relocation(tree_root);
  2592. mutex_unlock(&fs_info->cleaner_mutex);
  2593. if (ret < 0) {
  2594. printk(KERN_WARNING
  2595. "BTRFS: failed to recover relocation\n");
  2596. err = -EINVAL;
  2597. goto fail_qgroup;
  2598. }
  2599. }
  2600. location.objectid = BTRFS_FS_TREE_OBJECTID;
  2601. location.type = BTRFS_ROOT_ITEM_KEY;
  2602. location.offset = 0;
  2603. fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
  2604. if (IS_ERR(fs_info->fs_root)) {
  2605. err = PTR_ERR(fs_info->fs_root);
  2606. goto fail_qgroup;
  2607. }
  2608. if (sb->s_flags & MS_RDONLY)
  2609. return 0;
  2610. down_read(&fs_info->cleanup_work_sem);
  2611. if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
  2612. (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
  2613. up_read(&fs_info->cleanup_work_sem);
  2614. close_ctree(tree_root);
  2615. return ret;
  2616. }
  2617. up_read(&fs_info->cleanup_work_sem);
  2618. ret = btrfs_resume_balance_async(fs_info);
  2619. if (ret) {
  2620. printk(KERN_WARNING "BTRFS: failed to resume balance\n");
  2621. close_ctree(tree_root);
  2622. return ret;
  2623. }
  2624. ret = btrfs_resume_dev_replace_async(fs_info);
  2625. if (ret) {
  2626. pr_warn("BTRFS: failed to resume dev_replace\n");
  2627. close_ctree(tree_root);
  2628. return ret;
  2629. }
  2630. btrfs_qgroup_rescan_resume(fs_info);
  2631. if (!fs_info->uuid_root) {
  2632. pr_info("BTRFS: creating UUID tree\n");
  2633. ret = btrfs_create_uuid_tree(fs_info);
  2634. if (ret) {
  2635. pr_warn("BTRFS: failed to create the UUID tree %d\n",
  2636. ret);
  2637. close_ctree(tree_root);
  2638. return ret;
  2639. }
  2640. } else if (btrfs_test_opt(tree_root, RESCAN_UUID_TREE) ||
  2641. fs_info->generation !=
  2642. btrfs_super_uuid_tree_generation(disk_super)) {
  2643. pr_info("BTRFS: checking UUID tree\n");
  2644. ret = btrfs_check_uuid_tree(fs_info);
  2645. if (ret) {
  2646. pr_warn("BTRFS: failed to check the UUID tree %d\n",
  2647. ret);
  2648. close_ctree(tree_root);
  2649. return ret;
  2650. }
  2651. } else {
  2652. fs_info->update_uuid_tree_gen = 1;
  2653. }
  2654. fs_info->open = 1;
  2655. return 0;
  2656. fail_qgroup:
  2657. btrfs_free_qgroup_config(fs_info);
  2658. fail_trans_kthread:
  2659. kthread_stop(fs_info->transaction_kthread);
  2660. btrfs_cleanup_transaction(fs_info->tree_root);
  2661. btrfs_free_fs_roots(fs_info);
  2662. fail_cleaner:
  2663. kthread_stop(fs_info->cleaner_kthread);
  2664. /*
  2665. * make sure we're done with the btree inode before we stop our
  2666. * kthreads
  2667. */
  2668. filemap_write_and_wait(fs_info->btree_inode->i_mapping);
  2669. fail_sysfs:
  2670. btrfs_sysfs_remove_mounted(fs_info);
  2671. fail_fsdev_sysfs:
  2672. btrfs_sysfs_remove_fsid(fs_info->fs_devices);
  2673. fail_block_groups:
  2674. btrfs_put_block_group_cache(fs_info);
  2675. btrfs_free_block_groups(fs_info);
  2676. fail_tree_roots:
  2677. free_root_pointers(fs_info, 1);
  2678. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  2679. fail_sb_buffer:
  2680. btrfs_stop_all_workers(fs_info);
  2681. fail_alloc:
  2682. fail_iput:
  2683. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  2684. iput(fs_info->btree_inode);
  2685. fail_bio_counter:
  2686. percpu_counter_destroy(&fs_info->bio_counter);
  2687. fail_delalloc_bytes:
  2688. percpu_counter_destroy(&fs_info->delalloc_bytes);
  2689. fail_dirty_metadata_bytes:
  2690. percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
  2691. fail_bdi:
  2692. bdi_destroy(&fs_info->bdi);
  2693. fail_srcu:
  2694. cleanup_srcu_struct(&fs_info->subvol_srcu);
  2695. fail:
  2696. btrfs_free_stripe_hash_table(fs_info);
  2697. btrfs_close_devices(fs_info->fs_devices);
  2698. return err;
  2699. recovery_tree_root:
  2700. if (!btrfs_test_opt(tree_root, RECOVERY))
  2701. goto fail_tree_roots;
  2702. free_root_pointers(fs_info, 0);
  2703. /* don't use the log in recovery mode, it won't be valid */
  2704. btrfs_set_super_log_root(disk_super, 0);
  2705. /* we can't trust the free space cache either */
  2706. btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
  2707. ret = next_root_backup(fs_info, fs_info->super_copy,
  2708. &num_backups_tried, &backup_index);
  2709. if (ret == -1)
  2710. goto fail_block_groups;
  2711. goto retry_root_backup;
  2712. }
  2713. static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
  2714. {
  2715. if (uptodate) {
  2716. set_buffer_uptodate(bh);
  2717. } else {
  2718. struct btrfs_device *device = (struct btrfs_device *)
  2719. bh->b_private;
  2720. btrfs_warn_rl_in_rcu(device->dev_root->fs_info,
  2721. "lost page write due to IO error on %s",
  2722. rcu_str_deref(device->name));
  2723. /* note, we dont' set_buffer_write_io_error because we have
  2724. * our own ways of dealing with the IO errors
  2725. */
  2726. clear_buffer_uptodate(bh);
  2727. btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
  2728. }
  2729. unlock_buffer(bh);
  2730. put_bh(bh);
  2731. }
  2732. int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
  2733. struct buffer_head **bh_ret)
  2734. {
  2735. struct buffer_head *bh;
  2736. struct btrfs_super_block *super;
  2737. u64 bytenr;
  2738. bytenr = btrfs_sb_offset(copy_num);
  2739. if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
  2740. return -EINVAL;
  2741. bh = __bread(bdev, bytenr / 4096, BTRFS_SUPER_INFO_SIZE);
  2742. /*
  2743. * If we fail to read from the underlying devices, as of now
  2744. * the best option we have is to mark it EIO.
  2745. */
  2746. if (!bh)
  2747. return -EIO;
  2748. super = (struct btrfs_super_block *)bh->b_data;
  2749. if (btrfs_super_bytenr(super) != bytenr ||
  2750. btrfs_super_magic(super) != BTRFS_MAGIC) {
  2751. brelse(bh);
  2752. return -EINVAL;
  2753. }
  2754. *bh_ret = bh;
  2755. return 0;
  2756. }
  2757. struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
  2758. {
  2759. struct buffer_head *bh;
  2760. struct buffer_head *latest = NULL;
  2761. struct btrfs_super_block *super;
  2762. int i;
  2763. u64 transid = 0;
  2764. int ret = -EINVAL;
  2765. /* we would like to check all the supers, but that would make
  2766. * a btrfs mount succeed after a mkfs from a different FS.
  2767. * So, we need to add a special mount option to scan for
  2768. * later supers, using BTRFS_SUPER_MIRROR_MAX instead
  2769. */
  2770. for (i = 0; i < 1; i++) {
  2771. ret = btrfs_read_dev_one_super(bdev, i, &bh);
  2772. if (ret)
  2773. continue;
  2774. super = (struct btrfs_super_block *)bh->b_data;
  2775. if (!latest || btrfs_super_generation(super) > transid) {
  2776. brelse(latest);
  2777. latest = bh;
  2778. transid = btrfs_super_generation(super);
  2779. } else {
  2780. brelse(bh);
  2781. }
  2782. }
  2783. if (!latest)
  2784. return ERR_PTR(ret);
  2785. return latest;
  2786. }
  2787. /*
  2788. * this should be called twice, once with wait == 0 and
  2789. * once with wait == 1. When wait == 0 is done, all the buffer heads
  2790. * we write are pinned.
  2791. *
  2792. * They are released when wait == 1 is done.
  2793. * max_mirrors must be the same for both runs, and it indicates how
  2794. * many supers on this one device should be written.
  2795. *
  2796. * max_mirrors == 0 means to write them all.
  2797. */
  2798. static int write_dev_supers(struct btrfs_device *device,
  2799. struct btrfs_super_block *sb,
  2800. int do_barriers, int wait, int max_mirrors)
  2801. {
  2802. struct buffer_head *bh;
  2803. int i;
  2804. int ret;
  2805. int errors = 0;
  2806. u32 crc;
  2807. u64 bytenr;
  2808. if (max_mirrors == 0)
  2809. max_mirrors = BTRFS_SUPER_MIRROR_MAX;
  2810. for (i = 0; i < max_mirrors; i++) {
  2811. bytenr = btrfs_sb_offset(i);
  2812. if (bytenr + BTRFS_SUPER_INFO_SIZE >=
  2813. device->commit_total_bytes)
  2814. break;
  2815. if (wait) {
  2816. bh = __find_get_block(device->bdev, bytenr / 4096,
  2817. BTRFS_SUPER_INFO_SIZE);
  2818. if (!bh) {
  2819. errors++;
  2820. continue;
  2821. }
  2822. wait_on_buffer(bh);
  2823. if (!buffer_uptodate(bh))
  2824. errors++;
  2825. /* drop our reference */
  2826. brelse(bh);
  2827. /* drop the reference from the wait == 0 run */
  2828. brelse(bh);
  2829. continue;
  2830. } else {
  2831. btrfs_set_super_bytenr(sb, bytenr);
  2832. crc = ~(u32)0;
  2833. crc = btrfs_csum_data((char *)sb +
  2834. BTRFS_CSUM_SIZE, crc,
  2835. BTRFS_SUPER_INFO_SIZE -
  2836. BTRFS_CSUM_SIZE);
  2837. btrfs_csum_final(crc, sb->csum);
  2838. /*
  2839. * one reference for us, and we leave it for the
  2840. * caller
  2841. */
  2842. bh = __getblk(device->bdev, bytenr / 4096,
  2843. BTRFS_SUPER_INFO_SIZE);
  2844. if (!bh) {
  2845. btrfs_err(device->dev_root->fs_info,
  2846. "couldn't get super buffer head for bytenr %llu",
  2847. bytenr);
  2848. errors++;
  2849. continue;
  2850. }
  2851. memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
  2852. /* one reference for submit_bh */
  2853. get_bh(bh);
  2854. set_buffer_uptodate(bh);
  2855. lock_buffer(bh);
  2856. bh->b_end_io = btrfs_end_buffer_write_sync;
  2857. bh->b_private = device;
  2858. }
  2859. /*
  2860. * we fua the first super. The others we allow
  2861. * to go down lazy.
  2862. */
  2863. if (i == 0)
  2864. ret = btrfsic_submit_bh(WRITE_FUA, bh);
  2865. else
  2866. ret = btrfsic_submit_bh(WRITE_SYNC, bh);
  2867. if (ret)
  2868. errors++;
  2869. }
  2870. return errors < i ? 0 : -1;
  2871. }
  2872. /*
  2873. * endio for the write_dev_flush, this will wake anyone waiting
  2874. * for the barrier when it is done
  2875. */
  2876. static void btrfs_end_empty_barrier(struct bio *bio)
  2877. {
  2878. if (bio->bi_private)
  2879. complete(bio->bi_private);
  2880. bio_put(bio);
  2881. }
  2882. /*
  2883. * trigger flushes for one the devices. If you pass wait == 0, the flushes are
  2884. * sent down. With wait == 1, it waits for the previous flush.
  2885. *
  2886. * any device where the flush fails with eopnotsupp are flagged as not-barrier
  2887. * capable
  2888. */
  2889. static int write_dev_flush(struct btrfs_device *device, int wait)
  2890. {
  2891. struct bio *bio;
  2892. int ret = 0;
  2893. if (device->nobarriers)
  2894. return 0;
  2895. if (wait) {
  2896. bio = device->flush_bio;
  2897. if (!bio)
  2898. return 0;
  2899. wait_for_completion(&device->flush_wait);
  2900. if (bio->bi_error) {
  2901. ret = bio->bi_error;
  2902. btrfs_dev_stat_inc_and_print(device,
  2903. BTRFS_DEV_STAT_FLUSH_ERRS);
  2904. }
  2905. /* drop the reference from the wait == 0 run */
  2906. bio_put(bio);
  2907. device->flush_bio = NULL;
  2908. return ret;
  2909. }
  2910. /*
  2911. * one reference for us, and we leave it for the
  2912. * caller
  2913. */
  2914. device->flush_bio = NULL;
  2915. bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
  2916. if (!bio)
  2917. return -ENOMEM;
  2918. bio->bi_end_io = btrfs_end_empty_barrier;
  2919. bio->bi_bdev = device->bdev;
  2920. init_completion(&device->flush_wait);
  2921. bio->bi_private = &device->flush_wait;
  2922. device->flush_bio = bio;
  2923. bio_get(bio);
  2924. btrfsic_submit_bio(WRITE_FLUSH, bio);
  2925. return 0;
  2926. }
  2927. /*
  2928. * send an empty flush down to each device in parallel,
  2929. * then wait for them
  2930. */
  2931. static int barrier_all_devices(struct btrfs_fs_info *info)
  2932. {
  2933. struct list_head *head;
  2934. struct btrfs_device *dev;
  2935. int errors_send = 0;
  2936. int errors_wait = 0;
  2937. int ret;
  2938. /* send down all the barriers */
  2939. head = &info->fs_devices->devices;
  2940. list_for_each_entry_rcu(dev, head, dev_list) {
  2941. if (dev->missing)
  2942. continue;
  2943. if (!dev->bdev) {
  2944. errors_send++;
  2945. continue;
  2946. }
  2947. if (!dev->in_fs_metadata || !dev->writeable)
  2948. continue;
  2949. ret = write_dev_flush(dev, 0);
  2950. if (ret)
  2951. errors_send++;
  2952. }
  2953. /* wait for all the barriers */
  2954. list_for_each_entry_rcu(dev, head, dev_list) {
  2955. if (dev->missing)
  2956. continue;
  2957. if (!dev->bdev) {
  2958. errors_wait++;
  2959. continue;
  2960. }
  2961. if (!dev->in_fs_metadata || !dev->writeable)
  2962. continue;
  2963. ret = write_dev_flush(dev, 1);
  2964. if (ret)
  2965. errors_wait++;
  2966. }
  2967. if (errors_send > info->num_tolerated_disk_barrier_failures ||
  2968. errors_wait > info->num_tolerated_disk_barrier_failures)
  2969. return -EIO;
  2970. return 0;
  2971. }
  2972. int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
  2973. {
  2974. int raid_type;
  2975. int min_tolerated = INT_MAX;
  2976. if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
  2977. (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
  2978. min_tolerated = min(min_tolerated,
  2979. btrfs_raid_array[BTRFS_RAID_SINGLE].
  2980. tolerated_failures);
  2981. for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
  2982. if (raid_type == BTRFS_RAID_SINGLE)
  2983. continue;
  2984. if (!(flags & btrfs_raid_group[raid_type]))
  2985. continue;
  2986. min_tolerated = min(min_tolerated,
  2987. btrfs_raid_array[raid_type].
  2988. tolerated_failures);
  2989. }
  2990. if (min_tolerated == INT_MAX) {
  2991. pr_warn("BTRFS: unknown raid flag: %llu\n", flags);
  2992. min_tolerated = 0;
  2993. }
  2994. return min_tolerated;
  2995. }
  2996. int btrfs_calc_num_tolerated_disk_barrier_failures(
  2997. struct btrfs_fs_info *fs_info)
  2998. {
  2999. struct btrfs_ioctl_space_info space;
  3000. struct btrfs_space_info *sinfo;
  3001. u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
  3002. BTRFS_BLOCK_GROUP_SYSTEM,
  3003. BTRFS_BLOCK_GROUP_METADATA,
  3004. BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
  3005. int i;
  3006. int c;
  3007. int num_tolerated_disk_barrier_failures =
  3008. (int)fs_info->fs_devices->num_devices;
  3009. for (i = 0; i < ARRAY_SIZE(types); i++) {
  3010. struct btrfs_space_info *tmp;
  3011. sinfo = NULL;
  3012. rcu_read_lock();
  3013. list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
  3014. if (tmp->flags == types[i]) {
  3015. sinfo = tmp;
  3016. break;
  3017. }
  3018. }
  3019. rcu_read_unlock();
  3020. if (!sinfo)
  3021. continue;
  3022. down_read(&sinfo->groups_sem);
  3023. for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
  3024. u64 flags;
  3025. if (list_empty(&sinfo->block_groups[c]))
  3026. continue;
  3027. btrfs_get_block_group_info(&sinfo->block_groups[c],
  3028. &space);
  3029. if (space.total_bytes == 0 || space.used_bytes == 0)
  3030. continue;
  3031. flags = space.flags;
  3032. num_tolerated_disk_barrier_failures = min(
  3033. num_tolerated_disk_barrier_failures,
  3034. btrfs_get_num_tolerated_disk_barrier_failures(
  3035. flags));
  3036. }
  3037. up_read(&sinfo->groups_sem);
  3038. }
  3039. return num_tolerated_disk_barrier_failures;
  3040. }
  3041. static int write_all_supers(struct btrfs_root *root, int max_mirrors)
  3042. {
  3043. struct list_head *head;
  3044. struct btrfs_device *dev;
  3045. struct btrfs_super_block *sb;
  3046. struct btrfs_dev_item *dev_item;
  3047. int ret;
  3048. int do_barriers;
  3049. int max_errors;
  3050. int total_errors = 0;
  3051. u64 flags;
  3052. do_barriers = !btrfs_test_opt(root, NOBARRIER);
  3053. backup_super_roots(root->fs_info);
  3054. sb = root->fs_info->super_for_commit;
  3055. dev_item = &sb->dev_item;
  3056. mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
  3057. head = &root->fs_info->fs_devices->devices;
  3058. max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
  3059. if (do_barriers) {
  3060. ret = barrier_all_devices(root->fs_info);
  3061. if (ret) {
  3062. mutex_unlock(
  3063. &root->fs_info->fs_devices->device_list_mutex);
  3064. btrfs_std_error(root->fs_info, ret,
  3065. "errors while submitting device barriers.");
  3066. return ret;
  3067. }
  3068. }
  3069. list_for_each_entry_rcu(dev, head, dev_list) {
  3070. if (!dev->bdev) {
  3071. total_errors++;
  3072. continue;
  3073. }
  3074. if (!dev->in_fs_metadata || !dev->writeable)
  3075. continue;
  3076. btrfs_set_stack_device_generation(dev_item, 0);
  3077. btrfs_set_stack_device_type(dev_item, dev->type);
  3078. btrfs_set_stack_device_id(dev_item, dev->devid);
  3079. btrfs_set_stack_device_total_bytes(dev_item,
  3080. dev->commit_total_bytes);
  3081. btrfs_set_stack_device_bytes_used(dev_item,
  3082. dev->commit_bytes_used);
  3083. btrfs_set_stack_device_io_align(dev_item, dev->io_align);
  3084. btrfs_set_stack_device_io_width(dev_item, dev->io_width);
  3085. btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
  3086. memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
  3087. memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
  3088. flags = btrfs_super_flags(sb);
  3089. btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
  3090. ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
  3091. if (ret)
  3092. total_errors++;
  3093. }
  3094. if (total_errors > max_errors) {
  3095. btrfs_err(root->fs_info, "%d errors while writing supers",
  3096. total_errors);
  3097. mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
  3098. /* FUA is masked off if unsupported and can't be the reason */
  3099. btrfs_std_error(root->fs_info, -EIO,
  3100. "%d errors while writing supers", total_errors);
  3101. return -EIO;
  3102. }
  3103. total_errors = 0;
  3104. list_for_each_entry_rcu(dev, head, dev_list) {
  3105. if (!dev->bdev)
  3106. continue;
  3107. if (!dev->in_fs_metadata || !dev->writeable)
  3108. continue;
  3109. ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
  3110. if (ret)
  3111. total_errors++;
  3112. }
  3113. mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
  3114. if (total_errors > max_errors) {
  3115. btrfs_std_error(root->fs_info, -EIO,
  3116. "%d errors while writing supers", total_errors);
  3117. return -EIO;
  3118. }
  3119. return 0;
  3120. }
  3121. int write_ctree_super(struct btrfs_trans_handle *trans,
  3122. struct btrfs_root *root, int max_mirrors)
  3123. {
  3124. return write_all_supers(root, max_mirrors);
  3125. }
  3126. /* Drop a fs root from the radix tree and free it. */
  3127. void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
  3128. struct btrfs_root *root)
  3129. {
  3130. spin_lock(&fs_info->fs_roots_radix_lock);
  3131. radix_tree_delete(&fs_info->fs_roots_radix,
  3132. (unsigned long)root->root_key.objectid);
  3133. spin_unlock(&fs_info->fs_roots_radix_lock);
  3134. if (btrfs_root_refs(&root->root_item) == 0)
  3135. synchronize_srcu(&fs_info->subvol_srcu);
  3136. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
  3137. btrfs_free_log(NULL, root);
  3138. if (root->free_ino_pinned)
  3139. __btrfs_remove_free_space_cache(root->free_ino_pinned);
  3140. if (root->free_ino_ctl)
  3141. __btrfs_remove_free_space_cache(root->free_ino_ctl);
  3142. free_fs_root(root);
  3143. }
  3144. static void free_fs_root(struct btrfs_root *root)
  3145. {
  3146. iput(root->ino_cache_inode);
  3147. WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
  3148. btrfs_free_block_rsv(root, root->orphan_block_rsv);
  3149. root->orphan_block_rsv = NULL;
  3150. if (root->anon_dev)
  3151. free_anon_bdev(root->anon_dev);
  3152. if (root->subv_writers)
  3153. btrfs_free_subvolume_writers(root->subv_writers);
  3154. free_extent_buffer(root->node);
  3155. free_extent_buffer(root->commit_root);
  3156. kfree(root->free_ino_ctl);
  3157. kfree(root->free_ino_pinned);
  3158. kfree(root->name);
  3159. btrfs_put_fs_root(root);
  3160. }
  3161. void btrfs_free_fs_root(struct btrfs_root *root)
  3162. {
  3163. free_fs_root(root);
  3164. }
  3165. int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
  3166. {
  3167. u64 root_objectid = 0;
  3168. struct btrfs_root *gang[8];
  3169. int i = 0;
  3170. int err = 0;
  3171. unsigned int ret = 0;
  3172. int index;
  3173. while (1) {
  3174. index = srcu_read_lock(&fs_info->subvol_srcu);
  3175. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  3176. (void **)gang, root_objectid,
  3177. ARRAY_SIZE(gang));
  3178. if (!ret) {
  3179. srcu_read_unlock(&fs_info->subvol_srcu, index);
  3180. break;
  3181. }
  3182. root_objectid = gang[ret - 1]->root_key.objectid + 1;
  3183. for (i = 0; i < ret; i++) {
  3184. /* Avoid to grab roots in dead_roots */
  3185. if (btrfs_root_refs(&gang[i]->root_item) == 0) {
  3186. gang[i] = NULL;
  3187. continue;
  3188. }
  3189. /* grab all the search result for later use */
  3190. gang[i] = btrfs_grab_fs_root(gang[i]);
  3191. }
  3192. srcu_read_unlock(&fs_info->subvol_srcu, index);
  3193. for (i = 0; i < ret; i++) {
  3194. if (!gang[i])
  3195. continue;
  3196. root_objectid = gang[i]->root_key.objectid;
  3197. err = btrfs_orphan_cleanup(gang[i]);
  3198. if (err)
  3199. break;
  3200. btrfs_put_fs_root(gang[i]);
  3201. }
  3202. root_objectid++;
  3203. }
  3204. /* release the uncleaned roots due to error */
  3205. for (; i < ret; i++) {
  3206. if (gang[i])
  3207. btrfs_put_fs_root(gang[i]);
  3208. }
  3209. return err;
  3210. }
  3211. int btrfs_commit_super(struct btrfs_root *root)
  3212. {
  3213. struct btrfs_trans_handle *trans;
  3214. mutex_lock(&root->fs_info->cleaner_mutex);
  3215. btrfs_run_delayed_iputs(root);
  3216. mutex_unlock(&root->fs_info->cleaner_mutex);
  3217. wake_up_process(root->fs_info->cleaner_kthread);
  3218. /* wait until ongoing cleanup work done */
  3219. down_write(&root->fs_info->cleanup_work_sem);
  3220. up_write(&root->fs_info->cleanup_work_sem);
  3221. trans = btrfs_join_transaction(root);
  3222. if (IS_ERR(trans))
  3223. return PTR_ERR(trans);
  3224. return btrfs_commit_transaction(trans, root);
  3225. }
  3226. void close_ctree(struct btrfs_root *root)
  3227. {
  3228. struct btrfs_fs_info *fs_info = root->fs_info;
  3229. int ret;
  3230. fs_info->closing = 1;
  3231. smp_mb();
  3232. /* wait for the qgroup rescan worker to stop */
  3233. btrfs_qgroup_wait_for_completion(fs_info, false);
  3234. /* wait for the uuid_scan task to finish */
  3235. down(&fs_info->uuid_tree_rescan_sem);
  3236. /* avoid complains from lockdep et al., set sem back to initial state */
  3237. up(&fs_info->uuid_tree_rescan_sem);
  3238. /* pause restriper - we want to resume on mount */
  3239. btrfs_pause_balance(fs_info);
  3240. btrfs_dev_replace_suspend_for_unmount(fs_info);
  3241. btrfs_scrub_cancel(fs_info);
  3242. /* wait for any defraggers to finish */
  3243. wait_event(fs_info->transaction_wait,
  3244. (atomic_read(&fs_info->defrag_running) == 0));
  3245. /* clear out the rbtree of defraggable inodes */
  3246. btrfs_cleanup_defrag_inodes(fs_info);
  3247. cancel_work_sync(&fs_info->async_reclaim_work);
  3248. if (!(fs_info->sb->s_flags & MS_RDONLY)) {
  3249. /*
  3250. * If the cleaner thread is stopped and there are
  3251. * block groups queued for removal, the deletion will be
  3252. * skipped when we quit the cleaner thread.
  3253. */
  3254. btrfs_delete_unused_bgs(root->fs_info);
  3255. ret = btrfs_commit_super(root);
  3256. if (ret)
  3257. btrfs_err(fs_info, "commit super ret %d", ret);
  3258. }
  3259. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
  3260. btrfs_error_commit_super(root);
  3261. kthread_stop(fs_info->transaction_kthread);
  3262. kthread_stop(fs_info->cleaner_kthread);
  3263. fs_info->closing = 2;
  3264. smp_mb();
  3265. btrfs_free_qgroup_config(fs_info);
  3266. if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
  3267. btrfs_info(fs_info, "at unmount delalloc count %lld",
  3268. percpu_counter_sum(&fs_info->delalloc_bytes));
  3269. }
  3270. btrfs_sysfs_remove_mounted(fs_info);
  3271. btrfs_sysfs_remove_fsid(fs_info->fs_devices);
  3272. btrfs_free_fs_roots(fs_info);
  3273. btrfs_put_block_group_cache(fs_info);
  3274. btrfs_free_block_groups(fs_info);
  3275. /*
  3276. * we must make sure there is not any read request to
  3277. * submit after we stopping all workers.
  3278. */
  3279. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  3280. btrfs_stop_all_workers(fs_info);
  3281. fs_info->open = 0;
  3282. free_root_pointers(fs_info, 1);
  3283. iput(fs_info->btree_inode);
  3284. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  3285. if (btrfs_test_opt(root, CHECK_INTEGRITY))
  3286. btrfsic_unmount(root, fs_info->fs_devices);
  3287. #endif
  3288. btrfs_close_devices(fs_info->fs_devices);
  3289. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  3290. percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
  3291. percpu_counter_destroy(&fs_info->delalloc_bytes);
  3292. percpu_counter_destroy(&fs_info->bio_counter);
  3293. bdi_destroy(&fs_info->bdi);
  3294. cleanup_srcu_struct(&fs_info->subvol_srcu);
  3295. btrfs_free_stripe_hash_table(fs_info);
  3296. __btrfs_free_block_rsv(root->orphan_block_rsv);
  3297. root->orphan_block_rsv = NULL;
  3298. lock_chunks(root);
  3299. while (!list_empty(&fs_info->pinned_chunks)) {
  3300. struct extent_map *em;
  3301. em = list_first_entry(&fs_info->pinned_chunks,
  3302. struct extent_map, list);
  3303. list_del_init(&em->list);
  3304. free_extent_map(em);
  3305. }
  3306. unlock_chunks(root);
  3307. }
  3308. int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
  3309. int atomic)
  3310. {
  3311. int ret;
  3312. struct inode *btree_inode = buf->pages[0]->mapping->host;
  3313. ret = extent_buffer_uptodate(buf);
  3314. if (!ret)
  3315. return ret;
  3316. ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
  3317. parent_transid, atomic);
  3318. if (ret == -EAGAIN)
  3319. return ret;
  3320. return !ret;
  3321. }
  3322. int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
  3323. {
  3324. return set_extent_buffer_uptodate(buf);
  3325. }
  3326. void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
  3327. {
  3328. struct btrfs_root *root;
  3329. u64 transid = btrfs_header_generation(buf);
  3330. int was_dirty;
  3331. #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
  3332. /*
  3333. * This is a fast path so only do this check if we have sanity tests
  3334. * enabled. Normal people shouldn't be marking dummy buffers as dirty
  3335. * outside of the sanity tests.
  3336. */
  3337. if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
  3338. return;
  3339. #endif
  3340. root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3341. btrfs_assert_tree_locked(buf);
  3342. if (transid != root->fs_info->generation)
  3343. WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
  3344. "found %llu running %llu\n",
  3345. buf->start, transid, root->fs_info->generation);
  3346. was_dirty = set_extent_buffer_dirty(buf);
  3347. if (!was_dirty)
  3348. __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
  3349. buf->len,
  3350. root->fs_info->dirty_metadata_batch);
  3351. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  3352. /*
  3353. * Since btrfs_mark_buffer_dirty() can be called with item pointer set
  3354. * but item data not updated.
  3355. * So here we should only check item pointers, not item data.
  3356. */
  3357. if (btrfs_header_level(buf) == 0 &&
  3358. btrfs_check_leaf_relaxed(root, buf)) {
  3359. btrfs_print_leaf(root, buf);
  3360. ASSERT(0);
  3361. }
  3362. #endif
  3363. }
  3364. static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
  3365. int flush_delayed)
  3366. {
  3367. /*
  3368. * looks as though older kernels can get into trouble with
  3369. * this code, they end up stuck in balance_dirty_pages forever
  3370. */
  3371. int ret;
  3372. if (current->flags & PF_MEMALLOC)
  3373. return;
  3374. if (flush_delayed)
  3375. btrfs_balance_delayed_items(root);
  3376. ret = __percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
  3377. BTRFS_DIRTY_METADATA_THRESH,
  3378. root->fs_info->dirty_metadata_batch);
  3379. if (ret > 0) {
  3380. balance_dirty_pages_ratelimited(
  3381. root->fs_info->btree_inode->i_mapping);
  3382. }
  3383. return;
  3384. }
  3385. void btrfs_btree_balance_dirty(struct btrfs_root *root)
  3386. {
  3387. __btrfs_btree_balance_dirty(root, 1);
  3388. }
  3389. void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
  3390. {
  3391. __btrfs_btree_balance_dirty(root, 0);
  3392. }
  3393. int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
  3394. {
  3395. struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3396. return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  3397. }
  3398. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  3399. int read_only)
  3400. {
  3401. struct btrfs_super_block *sb = fs_info->super_copy;
  3402. int ret = 0;
  3403. if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
  3404. printk(KERN_ERR "BTRFS: tree_root level too big: %d >= %d\n",
  3405. btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
  3406. ret = -EINVAL;
  3407. }
  3408. if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
  3409. printk(KERN_ERR "BTRFS: chunk_root level too big: %d >= %d\n",
  3410. btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
  3411. ret = -EINVAL;
  3412. }
  3413. if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
  3414. printk(KERN_ERR "BTRFS: log_root level too big: %d >= %d\n",
  3415. btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
  3416. ret = -EINVAL;
  3417. }
  3418. /*
  3419. * The common minimum, we don't know if we can trust the nodesize/sectorsize
  3420. * items yet, they'll be verified later. Issue just a warning.
  3421. */
  3422. if (!IS_ALIGNED(btrfs_super_root(sb), 4096))
  3423. printk(KERN_WARNING "BTRFS: tree_root block unaligned: %llu\n",
  3424. btrfs_super_root(sb));
  3425. if (!IS_ALIGNED(btrfs_super_chunk_root(sb), 4096))
  3426. printk(KERN_WARNING "BTRFS: chunk_root block unaligned: %llu\n",
  3427. btrfs_super_chunk_root(sb));
  3428. if (!IS_ALIGNED(btrfs_super_log_root(sb), 4096))
  3429. printk(KERN_WARNING "BTRFS: log_root block unaligned: %llu\n",
  3430. btrfs_super_log_root(sb));
  3431. /*
  3432. * Check the lower bound, the alignment and other constraints are
  3433. * checked later.
  3434. */
  3435. if (btrfs_super_nodesize(sb) < 4096) {
  3436. printk(KERN_ERR "BTRFS: nodesize too small: %u < 4096\n",
  3437. btrfs_super_nodesize(sb));
  3438. ret = -EINVAL;
  3439. }
  3440. if (btrfs_super_sectorsize(sb) < 4096) {
  3441. printk(KERN_ERR "BTRFS: sectorsize too small: %u < 4096\n",
  3442. btrfs_super_sectorsize(sb));
  3443. ret = -EINVAL;
  3444. }
  3445. if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
  3446. printk(KERN_ERR "BTRFS: dev_item UUID does not match fsid: %pU != %pU\n",
  3447. fs_info->fsid, sb->dev_item.fsid);
  3448. ret = -EINVAL;
  3449. }
  3450. /*
  3451. * Hint to catch really bogus numbers, bitflips or so, more exact checks are
  3452. * done later
  3453. */
  3454. if (btrfs_super_num_devices(sb) > (1UL << 31))
  3455. printk(KERN_WARNING "BTRFS: suspicious number of devices: %llu\n",
  3456. btrfs_super_num_devices(sb));
  3457. if (btrfs_super_num_devices(sb) == 0) {
  3458. printk(KERN_ERR "BTRFS: number of devices is 0\n");
  3459. ret = -EINVAL;
  3460. }
  3461. if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
  3462. printk(KERN_ERR "BTRFS: super offset mismatch %llu != %u\n",
  3463. btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
  3464. ret = -EINVAL;
  3465. }
  3466. /*
  3467. * Obvious sys_chunk_array corruptions, it must hold at least one key
  3468. * and one chunk
  3469. */
  3470. if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
  3471. printk(KERN_ERR "BTRFS: system chunk array too big %u > %u\n",
  3472. btrfs_super_sys_array_size(sb),
  3473. BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
  3474. ret = -EINVAL;
  3475. }
  3476. if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
  3477. + sizeof(struct btrfs_chunk)) {
  3478. printk(KERN_ERR "BTRFS: system chunk array too small %u < %zu\n",
  3479. btrfs_super_sys_array_size(sb),
  3480. sizeof(struct btrfs_disk_key)
  3481. + sizeof(struct btrfs_chunk));
  3482. ret = -EINVAL;
  3483. }
  3484. /*
  3485. * The generation is a global counter, we'll trust it more than the others
  3486. * but it's still possible that it's the one that's wrong.
  3487. */
  3488. if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
  3489. printk(KERN_WARNING
  3490. "BTRFS: suspicious: generation < chunk_root_generation: %llu < %llu\n",
  3491. btrfs_super_generation(sb), btrfs_super_chunk_root_generation(sb));
  3492. if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
  3493. && btrfs_super_cache_generation(sb) != (u64)-1)
  3494. printk(KERN_WARNING
  3495. "BTRFS: suspicious: generation < cache_generation: %llu < %llu\n",
  3496. btrfs_super_generation(sb), btrfs_super_cache_generation(sb));
  3497. return ret;
  3498. }
  3499. static void btrfs_error_commit_super(struct btrfs_root *root)
  3500. {
  3501. mutex_lock(&root->fs_info->cleaner_mutex);
  3502. btrfs_run_delayed_iputs(root);
  3503. mutex_unlock(&root->fs_info->cleaner_mutex);
  3504. down_write(&root->fs_info->cleanup_work_sem);
  3505. up_write(&root->fs_info->cleanup_work_sem);
  3506. /* cleanup FS via transaction */
  3507. btrfs_cleanup_transaction(root);
  3508. }
  3509. static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
  3510. {
  3511. struct btrfs_ordered_extent *ordered;
  3512. spin_lock(&root->ordered_extent_lock);
  3513. /*
  3514. * This will just short circuit the ordered completion stuff which will
  3515. * make sure the ordered extent gets properly cleaned up.
  3516. */
  3517. list_for_each_entry(ordered, &root->ordered_extents,
  3518. root_extent_list)
  3519. set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
  3520. spin_unlock(&root->ordered_extent_lock);
  3521. }
  3522. static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
  3523. {
  3524. struct btrfs_root *root;
  3525. struct list_head splice;
  3526. INIT_LIST_HEAD(&splice);
  3527. spin_lock(&fs_info->ordered_root_lock);
  3528. list_splice_init(&fs_info->ordered_roots, &splice);
  3529. while (!list_empty(&splice)) {
  3530. root = list_first_entry(&splice, struct btrfs_root,
  3531. ordered_root);
  3532. list_move_tail(&root->ordered_root,
  3533. &fs_info->ordered_roots);
  3534. spin_unlock(&fs_info->ordered_root_lock);
  3535. btrfs_destroy_ordered_extents(root);
  3536. cond_resched();
  3537. spin_lock(&fs_info->ordered_root_lock);
  3538. }
  3539. spin_unlock(&fs_info->ordered_root_lock);
  3540. /*
  3541. * We need this here because if we've been flipped read-only we won't
  3542. * get sync() from the umount, so we need to make sure any ordered
  3543. * extents that haven't had their dirty pages IO start writeout yet
  3544. * actually get run and error out properly.
  3545. */
  3546. btrfs_wait_ordered_roots(fs_info, -1);
  3547. }
  3548. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  3549. struct btrfs_root *root)
  3550. {
  3551. struct rb_node *node;
  3552. struct btrfs_delayed_ref_root *delayed_refs;
  3553. struct btrfs_delayed_ref_node *ref;
  3554. int ret = 0;
  3555. delayed_refs = &trans->delayed_refs;
  3556. spin_lock(&delayed_refs->lock);
  3557. if (atomic_read(&delayed_refs->num_entries) == 0) {
  3558. spin_unlock(&delayed_refs->lock);
  3559. btrfs_info(root->fs_info, "delayed_refs has NO entry");
  3560. return ret;
  3561. }
  3562. while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
  3563. struct btrfs_delayed_ref_head *head;
  3564. struct btrfs_delayed_ref_node *tmp;
  3565. bool pin_bytes = false;
  3566. head = rb_entry(node, struct btrfs_delayed_ref_head,
  3567. href_node);
  3568. if (!mutex_trylock(&head->mutex)) {
  3569. atomic_inc(&head->node.refs);
  3570. spin_unlock(&delayed_refs->lock);
  3571. mutex_lock(&head->mutex);
  3572. mutex_unlock(&head->mutex);
  3573. btrfs_put_delayed_ref(&head->node);
  3574. spin_lock(&delayed_refs->lock);
  3575. continue;
  3576. }
  3577. spin_lock(&head->lock);
  3578. list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list,
  3579. list) {
  3580. ref->in_tree = 0;
  3581. list_del(&ref->list);
  3582. atomic_dec(&delayed_refs->num_entries);
  3583. btrfs_put_delayed_ref(ref);
  3584. }
  3585. if (head->must_insert_reserved)
  3586. pin_bytes = true;
  3587. btrfs_free_delayed_extent_op(head->extent_op);
  3588. delayed_refs->num_heads--;
  3589. if (head->processing == 0)
  3590. delayed_refs->num_heads_ready--;
  3591. atomic_dec(&delayed_refs->num_entries);
  3592. head->node.in_tree = 0;
  3593. rb_erase(&head->href_node, &delayed_refs->href_root);
  3594. spin_unlock(&head->lock);
  3595. spin_unlock(&delayed_refs->lock);
  3596. mutex_unlock(&head->mutex);
  3597. if (pin_bytes)
  3598. btrfs_pin_extent(root, head->node.bytenr,
  3599. head->node.num_bytes, 1);
  3600. btrfs_put_delayed_ref(&head->node);
  3601. cond_resched();
  3602. spin_lock(&delayed_refs->lock);
  3603. }
  3604. spin_unlock(&delayed_refs->lock);
  3605. return ret;
  3606. }
  3607. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
  3608. {
  3609. struct btrfs_inode *btrfs_inode;
  3610. struct list_head splice;
  3611. INIT_LIST_HEAD(&splice);
  3612. spin_lock(&root->delalloc_lock);
  3613. list_splice_init(&root->delalloc_inodes, &splice);
  3614. while (!list_empty(&splice)) {
  3615. btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
  3616. delalloc_inodes);
  3617. list_del_init(&btrfs_inode->delalloc_inodes);
  3618. clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
  3619. &btrfs_inode->runtime_flags);
  3620. spin_unlock(&root->delalloc_lock);
  3621. btrfs_invalidate_inodes(btrfs_inode->root);
  3622. spin_lock(&root->delalloc_lock);
  3623. }
  3624. spin_unlock(&root->delalloc_lock);
  3625. }
  3626. static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
  3627. {
  3628. struct btrfs_root *root;
  3629. struct list_head splice;
  3630. INIT_LIST_HEAD(&splice);
  3631. spin_lock(&fs_info->delalloc_root_lock);
  3632. list_splice_init(&fs_info->delalloc_roots, &splice);
  3633. while (!list_empty(&splice)) {
  3634. root = list_first_entry(&splice, struct btrfs_root,
  3635. delalloc_root);
  3636. list_del_init(&root->delalloc_root);
  3637. root = btrfs_grab_fs_root(root);
  3638. BUG_ON(!root);
  3639. spin_unlock(&fs_info->delalloc_root_lock);
  3640. btrfs_destroy_delalloc_inodes(root);
  3641. btrfs_put_fs_root(root);
  3642. spin_lock(&fs_info->delalloc_root_lock);
  3643. }
  3644. spin_unlock(&fs_info->delalloc_root_lock);
  3645. }
  3646. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  3647. struct extent_io_tree *dirty_pages,
  3648. int mark)
  3649. {
  3650. int ret;
  3651. struct extent_buffer *eb;
  3652. u64 start = 0;
  3653. u64 end;
  3654. while (1) {
  3655. ret = find_first_extent_bit(dirty_pages, start, &start, &end,
  3656. mark, NULL);
  3657. if (ret)
  3658. break;
  3659. clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
  3660. while (start <= end) {
  3661. eb = btrfs_find_tree_block(root->fs_info, start);
  3662. start += root->nodesize;
  3663. if (!eb)
  3664. continue;
  3665. wait_on_extent_buffer_writeback(eb);
  3666. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
  3667. &eb->bflags))
  3668. clear_extent_buffer_dirty(eb);
  3669. free_extent_buffer_stale(eb);
  3670. }
  3671. }
  3672. return ret;
  3673. }
  3674. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  3675. struct extent_io_tree *pinned_extents)
  3676. {
  3677. struct btrfs_fs_info *fs_info = root->fs_info;
  3678. struct extent_io_tree *unpin;
  3679. u64 start;
  3680. u64 end;
  3681. int ret;
  3682. bool loop = true;
  3683. unpin = pinned_extents;
  3684. again:
  3685. while (1) {
  3686. /*
  3687. * The btrfs_finish_extent_commit() may get the same range as
  3688. * ours between find_first_extent_bit and clear_extent_dirty.
  3689. * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
  3690. * the same extent range.
  3691. */
  3692. mutex_lock(&fs_info->unused_bg_unpin_mutex);
  3693. ret = find_first_extent_bit(unpin, 0, &start, &end,
  3694. EXTENT_DIRTY, NULL);
  3695. if (ret) {
  3696. mutex_unlock(&fs_info->unused_bg_unpin_mutex);
  3697. break;
  3698. }
  3699. clear_extent_dirty(unpin, start, end, GFP_NOFS);
  3700. btrfs_error_unpin_extent_range(root, start, end);
  3701. mutex_unlock(&fs_info->unused_bg_unpin_mutex);
  3702. cond_resched();
  3703. }
  3704. if (loop) {
  3705. if (unpin == &fs_info->freed_extents[0])
  3706. unpin = &fs_info->freed_extents[1];
  3707. else
  3708. unpin = &fs_info->freed_extents[0];
  3709. loop = false;
  3710. goto again;
  3711. }
  3712. return 0;
  3713. }
  3714. void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
  3715. struct btrfs_root *root)
  3716. {
  3717. btrfs_destroy_delayed_refs(cur_trans, root);
  3718. cur_trans->state = TRANS_STATE_COMMIT_START;
  3719. wake_up(&root->fs_info->transaction_blocked_wait);
  3720. cur_trans->state = TRANS_STATE_UNBLOCKED;
  3721. wake_up(&root->fs_info->transaction_wait);
  3722. btrfs_destroy_delayed_inodes(root);
  3723. btrfs_assert_delayed_root_empty(root);
  3724. btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
  3725. EXTENT_DIRTY);
  3726. btrfs_destroy_pinned_extent(root,
  3727. root->fs_info->pinned_extents);
  3728. cur_trans->state =TRANS_STATE_COMPLETED;
  3729. wake_up(&cur_trans->commit_wait);
  3730. /*
  3731. memset(cur_trans, 0, sizeof(*cur_trans));
  3732. kmem_cache_free(btrfs_transaction_cachep, cur_trans);
  3733. */
  3734. }
  3735. static int btrfs_cleanup_transaction(struct btrfs_root *root)
  3736. {
  3737. struct btrfs_transaction *t;
  3738. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  3739. spin_lock(&root->fs_info->trans_lock);
  3740. while (!list_empty(&root->fs_info->trans_list)) {
  3741. t = list_first_entry(&root->fs_info->trans_list,
  3742. struct btrfs_transaction, list);
  3743. if (t->state >= TRANS_STATE_COMMIT_START) {
  3744. atomic_inc(&t->use_count);
  3745. spin_unlock(&root->fs_info->trans_lock);
  3746. btrfs_wait_for_commit(root, t->transid);
  3747. btrfs_put_transaction(t);
  3748. spin_lock(&root->fs_info->trans_lock);
  3749. continue;
  3750. }
  3751. if (t == root->fs_info->running_transaction) {
  3752. t->state = TRANS_STATE_COMMIT_DOING;
  3753. spin_unlock(&root->fs_info->trans_lock);
  3754. /*
  3755. * We wait for 0 num_writers since we don't hold a trans
  3756. * handle open currently for this transaction.
  3757. */
  3758. wait_event(t->writer_wait,
  3759. atomic_read(&t->num_writers) == 0);
  3760. } else {
  3761. spin_unlock(&root->fs_info->trans_lock);
  3762. }
  3763. btrfs_cleanup_one_transaction(t, root);
  3764. spin_lock(&root->fs_info->trans_lock);
  3765. if (t == root->fs_info->running_transaction)
  3766. root->fs_info->running_transaction = NULL;
  3767. list_del_init(&t->list);
  3768. spin_unlock(&root->fs_info->trans_lock);
  3769. btrfs_put_transaction(t);
  3770. trace_btrfs_transaction_commit(root);
  3771. spin_lock(&root->fs_info->trans_lock);
  3772. }
  3773. spin_unlock(&root->fs_info->trans_lock);
  3774. btrfs_destroy_all_ordered_extents(root->fs_info);
  3775. btrfs_destroy_delayed_inodes(root);
  3776. btrfs_assert_delayed_root_empty(root);
  3777. btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
  3778. btrfs_destroy_all_delalloc_inodes(root->fs_info);
  3779. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  3780. return 0;
  3781. }
  3782. static const struct extent_io_ops btree_extent_io_ops = {
  3783. .readpage_end_io_hook = btree_readpage_end_io_hook,
  3784. .readpage_io_failed_hook = btree_io_failed_hook,
  3785. .submit_bio_hook = btree_submit_bio_hook,
  3786. /* note we're sharing with inode.c for the merge bio hook */
  3787. .merge_bio_hook = btrfs_merge_bio_hook,
  3788. };