reada.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996
  1. /*
  2. * Copyright (C) 2011 STRATO. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/sched.h>
  19. #include <linux/pagemap.h>
  20. #include <linux/writeback.h>
  21. #include <linux/blkdev.h>
  22. #include <linux/rbtree.h>
  23. #include <linux/slab.h>
  24. #include <linux/workqueue.h>
  25. #include "ctree.h"
  26. #include "volumes.h"
  27. #include "disk-io.h"
  28. #include "transaction.h"
  29. #include "dev-replace.h"
  30. #undef DEBUG
  31. /*
  32. * This is the implementation for the generic read ahead framework.
  33. *
  34. * To trigger a readahead, btrfs_reada_add must be called. It will start
  35. * a read ahead for the given range [start, end) on tree root. The returned
  36. * handle can either be used to wait on the readahead to finish
  37. * (btrfs_reada_wait), or to send it to the background (btrfs_reada_detach).
  38. *
  39. * The read ahead works as follows:
  40. * On btrfs_reada_add, the root of the tree is inserted into a radix_tree.
  41. * reada_start_machine will then search for extents to prefetch and trigger
  42. * some reads. When a read finishes for a node, all contained node/leaf
  43. * pointers that lie in the given range will also be enqueued. The reads will
  44. * be triggered in sequential order, thus giving a big win over a naive
  45. * enumeration. It will also make use of multi-device layouts. Each disk
  46. * will have its on read pointer and all disks will by utilized in parallel.
  47. * Also will no two disks read both sides of a mirror simultaneously, as this
  48. * would waste seeking capacity. Instead both disks will read different parts
  49. * of the filesystem.
  50. * Any number of readaheads can be started in parallel. The read order will be
  51. * determined globally, i.e. 2 parallel readaheads will normally finish faster
  52. * than the 2 started one after another.
  53. */
  54. #define MAX_IN_FLIGHT 6
  55. struct reada_extctl {
  56. struct list_head list;
  57. struct reada_control *rc;
  58. u64 generation;
  59. };
  60. struct reada_extent {
  61. u64 logical;
  62. struct btrfs_key top;
  63. int err;
  64. struct list_head extctl;
  65. int refcnt;
  66. spinlock_t lock;
  67. struct reada_zone *zones[BTRFS_MAX_MIRRORS];
  68. int nzones;
  69. struct btrfs_device *scheduled_for;
  70. };
  71. struct reada_zone {
  72. u64 start;
  73. u64 end;
  74. u64 elems;
  75. struct list_head list;
  76. spinlock_t lock;
  77. int locked;
  78. struct btrfs_device *device;
  79. struct btrfs_device *devs[BTRFS_MAX_MIRRORS]; /* full list, incl
  80. * self */
  81. int ndevs;
  82. struct kref refcnt;
  83. };
  84. struct reada_machine_work {
  85. struct btrfs_work work;
  86. struct btrfs_fs_info *fs_info;
  87. };
  88. static void reada_extent_put(struct btrfs_fs_info *, struct reada_extent *);
  89. static void reada_control_release(struct kref *kref);
  90. static void reada_zone_release(struct kref *kref);
  91. static void reada_start_machine(struct btrfs_fs_info *fs_info);
  92. static void __reada_start_machine(struct btrfs_fs_info *fs_info);
  93. static int reada_add_block(struct reada_control *rc, u64 logical,
  94. struct btrfs_key *top, int level, u64 generation);
  95. /* recurses */
  96. /* in case of err, eb might be NULL */
  97. static int __readahead_hook(struct btrfs_root *root, struct extent_buffer *eb,
  98. u64 start, int err)
  99. {
  100. int level = 0;
  101. int nritems;
  102. int i;
  103. u64 bytenr;
  104. u64 generation;
  105. struct reada_extent *re;
  106. struct btrfs_fs_info *fs_info = root->fs_info;
  107. struct list_head list;
  108. unsigned long index = start >> PAGE_CACHE_SHIFT;
  109. struct btrfs_device *for_dev;
  110. if (eb)
  111. level = btrfs_header_level(eb);
  112. /* find extent */
  113. spin_lock(&fs_info->reada_lock);
  114. re = radix_tree_lookup(&fs_info->reada_tree, index);
  115. if (re)
  116. re->refcnt++;
  117. spin_unlock(&fs_info->reada_lock);
  118. if (!re)
  119. return -1;
  120. spin_lock(&re->lock);
  121. /*
  122. * just take the full list from the extent. afterwards we
  123. * don't need the lock anymore
  124. */
  125. list_replace_init(&re->extctl, &list);
  126. for_dev = re->scheduled_for;
  127. re->scheduled_for = NULL;
  128. spin_unlock(&re->lock);
  129. if (err == 0) {
  130. nritems = level ? btrfs_header_nritems(eb) : 0;
  131. generation = btrfs_header_generation(eb);
  132. /*
  133. * FIXME: currently we just set nritems to 0 if this is a leaf,
  134. * effectively ignoring the content. In a next step we could
  135. * trigger more readahead depending from the content, e.g.
  136. * fetch the checksums for the extents in the leaf.
  137. */
  138. } else {
  139. /*
  140. * this is the error case, the extent buffer has not been
  141. * read correctly. We won't access anything from it and
  142. * just cleanup our data structures. Effectively this will
  143. * cut the branch below this node from read ahead.
  144. */
  145. nritems = 0;
  146. generation = 0;
  147. }
  148. for (i = 0; i < nritems; i++) {
  149. struct reada_extctl *rec;
  150. u64 n_gen;
  151. struct btrfs_key key;
  152. struct btrfs_key next_key;
  153. btrfs_node_key_to_cpu(eb, &key, i);
  154. if (i + 1 < nritems)
  155. btrfs_node_key_to_cpu(eb, &next_key, i + 1);
  156. else
  157. next_key = re->top;
  158. bytenr = btrfs_node_blockptr(eb, i);
  159. n_gen = btrfs_node_ptr_generation(eb, i);
  160. list_for_each_entry(rec, &list, list) {
  161. struct reada_control *rc = rec->rc;
  162. /*
  163. * if the generation doesn't match, just ignore this
  164. * extctl. This will probably cut off a branch from
  165. * prefetch. Alternatively one could start a new (sub-)
  166. * prefetch for this branch, starting again from root.
  167. * FIXME: move the generation check out of this loop
  168. */
  169. #ifdef DEBUG
  170. if (rec->generation != generation) {
  171. btrfs_debug(root->fs_info,
  172. "generation mismatch for (%llu,%d,%llu) %llu != %llu",
  173. key.objectid, key.type, key.offset,
  174. rec->generation, generation);
  175. }
  176. #endif
  177. if (rec->generation == generation &&
  178. btrfs_comp_cpu_keys(&key, &rc->key_end) < 0 &&
  179. btrfs_comp_cpu_keys(&next_key, &rc->key_start) > 0)
  180. reada_add_block(rc, bytenr, &next_key,
  181. level - 1, n_gen);
  182. }
  183. }
  184. /*
  185. * free extctl records
  186. */
  187. while (!list_empty(&list)) {
  188. struct reada_control *rc;
  189. struct reada_extctl *rec;
  190. rec = list_first_entry(&list, struct reada_extctl, list);
  191. list_del(&rec->list);
  192. rc = rec->rc;
  193. kfree(rec);
  194. kref_get(&rc->refcnt);
  195. if (atomic_dec_and_test(&rc->elems)) {
  196. kref_put(&rc->refcnt, reada_control_release);
  197. wake_up(&rc->wait);
  198. }
  199. kref_put(&rc->refcnt, reada_control_release);
  200. reada_extent_put(fs_info, re); /* one ref for each entry */
  201. }
  202. reada_extent_put(fs_info, re); /* our ref */
  203. if (for_dev)
  204. atomic_dec(&for_dev->reada_in_flight);
  205. return 0;
  206. }
  207. /*
  208. * start is passed separately in case eb in NULL, which may be the case with
  209. * failed I/O
  210. */
  211. int btree_readahead_hook(struct btrfs_root *root, struct extent_buffer *eb,
  212. u64 start, int err)
  213. {
  214. int ret;
  215. ret = __readahead_hook(root, eb, start, err);
  216. reada_start_machine(root->fs_info);
  217. return ret;
  218. }
  219. static struct reada_zone *reada_find_zone(struct btrfs_fs_info *fs_info,
  220. struct btrfs_device *dev, u64 logical,
  221. struct btrfs_bio *bbio)
  222. {
  223. int ret;
  224. struct reada_zone *zone;
  225. struct btrfs_block_group_cache *cache = NULL;
  226. u64 start;
  227. u64 end;
  228. int i;
  229. zone = NULL;
  230. spin_lock(&fs_info->reada_lock);
  231. ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone,
  232. logical >> PAGE_CACHE_SHIFT, 1);
  233. if (ret == 1)
  234. kref_get(&zone->refcnt);
  235. spin_unlock(&fs_info->reada_lock);
  236. if (ret == 1) {
  237. if (logical >= zone->start && logical < zone->end)
  238. return zone;
  239. spin_lock(&fs_info->reada_lock);
  240. kref_put(&zone->refcnt, reada_zone_release);
  241. spin_unlock(&fs_info->reada_lock);
  242. }
  243. cache = btrfs_lookup_block_group(fs_info, logical);
  244. if (!cache)
  245. return NULL;
  246. start = cache->key.objectid;
  247. end = start + cache->key.offset - 1;
  248. btrfs_put_block_group(cache);
  249. zone = kzalloc(sizeof(*zone), GFP_NOFS);
  250. if (!zone)
  251. return NULL;
  252. zone->start = start;
  253. zone->end = end;
  254. INIT_LIST_HEAD(&zone->list);
  255. spin_lock_init(&zone->lock);
  256. zone->locked = 0;
  257. kref_init(&zone->refcnt);
  258. zone->elems = 0;
  259. zone->device = dev; /* our device always sits at index 0 */
  260. for (i = 0; i < bbio->num_stripes; ++i) {
  261. /* bounds have already been checked */
  262. zone->devs[i] = bbio->stripes[i].dev;
  263. }
  264. zone->ndevs = bbio->num_stripes;
  265. spin_lock(&fs_info->reada_lock);
  266. ret = radix_tree_insert(&dev->reada_zones,
  267. (unsigned long)(zone->end >> PAGE_CACHE_SHIFT),
  268. zone);
  269. if (ret == -EEXIST) {
  270. kfree(zone);
  271. ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone,
  272. logical >> PAGE_CACHE_SHIFT, 1);
  273. if (ret == 1)
  274. kref_get(&zone->refcnt);
  275. }
  276. spin_unlock(&fs_info->reada_lock);
  277. return zone;
  278. }
  279. static struct reada_extent *reada_find_extent(struct btrfs_root *root,
  280. u64 logical,
  281. struct btrfs_key *top, int level)
  282. {
  283. int ret;
  284. struct reada_extent *re = NULL;
  285. struct reada_extent *re_exist = NULL;
  286. struct btrfs_fs_info *fs_info = root->fs_info;
  287. struct btrfs_bio *bbio = NULL;
  288. struct btrfs_device *dev;
  289. struct btrfs_device *prev_dev;
  290. u32 blocksize;
  291. u64 length;
  292. int real_stripes;
  293. int nzones = 0;
  294. int i;
  295. unsigned long index = logical >> PAGE_CACHE_SHIFT;
  296. int dev_replace_is_ongoing;
  297. spin_lock(&fs_info->reada_lock);
  298. re = radix_tree_lookup(&fs_info->reada_tree, index);
  299. if (re)
  300. re->refcnt++;
  301. spin_unlock(&fs_info->reada_lock);
  302. if (re)
  303. return re;
  304. re = kzalloc(sizeof(*re), GFP_NOFS);
  305. if (!re)
  306. return NULL;
  307. blocksize = root->nodesize;
  308. re->logical = logical;
  309. re->top = *top;
  310. INIT_LIST_HEAD(&re->extctl);
  311. spin_lock_init(&re->lock);
  312. re->refcnt = 1;
  313. /*
  314. * map block
  315. */
  316. length = blocksize;
  317. ret = btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS, logical, &length,
  318. &bbio, 0);
  319. if (ret || !bbio || length < blocksize)
  320. goto error;
  321. if (bbio->num_stripes > BTRFS_MAX_MIRRORS) {
  322. btrfs_err(root->fs_info,
  323. "readahead: more than %d copies not supported",
  324. BTRFS_MAX_MIRRORS);
  325. goto error;
  326. }
  327. real_stripes = bbio->num_stripes - bbio->num_tgtdevs;
  328. for (nzones = 0; nzones < real_stripes; ++nzones) {
  329. struct reada_zone *zone;
  330. dev = bbio->stripes[nzones].dev;
  331. zone = reada_find_zone(fs_info, dev, logical, bbio);
  332. if (!zone)
  333. break;
  334. re->zones[nzones] = zone;
  335. spin_lock(&zone->lock);
  336. if (!zone->elems)
  337. kref_get(&zone->refcnt);
  338. ++zone->elems;
  339. spin_unlock(&zone->lock);
  340. spin_lock(&fs_info->reada_lock);
  341. kref_put(&zone->refcnt, reada_zone_release);
  342. spin_unlock(&fs_info->reada_lock);
  343. }
  344. re->nzones = nzones;
  345. if (nzones == 0) {
  346. /* not a single zone found, error and out */
  347. goto error;
  348. }
  349. /* insert extent in reada_tree + all per-device trees, all or nothing */
  350. btrfs_dev_replace_lock(&fs_info->dev_replace);
  351. spin_lock(&fs_info->reada_lock);
  352. ret = radix_tree_insert(&fs_info->reada_tree, index, re);
  353. if (ret == -EEXIST) {
  354. re_exist = radix_tree_lookup(&fs_info->reada_tree, index);
  355. BUG_ON(!re_exist);
  356. re_exist->refcnt++;
  357. spin_unlock(&fs_info->reada_lock);
  358. btrfs_dev_replace_unlock(&fs_info->dev_replace);
  359. goto error;
  360. }
  361. if (ret) {
  362. spin_unlock(&fs_info->reada_lock);
  363. btrfs_dev_replace_unlock(&fs_info->dev_replace);
  364. goto error;
  365. }
  366. prev_dev = NULL;
  367. dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(
  368. &fs_info->dev_replace);
  369. for (i = 0; i < nzones; ++i) {
  370. dev = bbio->stripes[i].dev;
  371. if (dev == prev_dev) {
  372. /*
  373. * in case of DUP, just add the first zone. As both
  374. * are on the same device, there's nothing to gain
  375. * from adding both.
  376. * Also, it wouldn't work, as the tree is per device
  377. * and adding would fail with EEXIST
  378. */
  379. continue;
  380. }
  381. if (!dev->bdev) {
  382. /*
  383. * cannot read ahead on missing device, but for RAID5/6,
  384. * REQ_GET_READ_MIRRORS return 1. So don't skip missing
  385. * device for such case.
  386. */
  387. if (nzones > 1)
  388. continue;
  389. }
  390. if (dev_replace_is_ongoing &&
  391. dev == fs_info->dev_replace.tgtdev) {
  392. /*
  393. * as this device is selected for reading only as
  394. * a last resort, skip it for read ahead.
  395. */
  396. continue;
  397. }
  398. prev_dev = dev;
  399. ret = radix_tree_insert(&dev->reada_extents, index, re);
  400. if (ret) {
  401. while (--i >= 0) {
  402. dev = bbio->stripes[i].dev;
  403. BUG_ON(dev == NULL);
  404. /* ignore whether the entry was inserted */
  405. radix_tree_delete(&dev->reada_extents, index);
  406. }
  407. BUG_ON(fs_info == NULL);
  408. radix_tree_delete(&fs_info->reada_tree, index);
  409. spin_unlock(&fs_info->reada_lock);
  410. btrfs_dev_replace_unlock(&fs_info->dev_replace);
  411. goto error;
  412. }
  413. }
  414. spin_unlock(&fs_info->reada_lock);
  415. btrfs_dev_replace_unlock(&fs_info->dev_replace);
  416. btrfs_put_bbio(bbio);
  417. return re;
  418. error:
  419. while (nzones) {
  420. struct reada_zone *zone;
  421. --nzones;
  422. zone = re->zones[nzones];
  423. kref_get(&zone->refcnt);
  424. spin_lock(&zone->lock);
  425. --zone->elems;
  426. if (zone->elems == 0) {
  427. /*
  428. * no fs_info->reada_lock needed, as this can't be
  429. * the last ref
  430. */
  431. kref_put(&zone->refcnt, reada_zone_release);
  432. }
  433. spin_unlock(&zone->lock);
  434. spin_lock(&fs_info->reada_lock);
  435. kref_put(&zone->refcnt, reada_zone_release);
  436. spin_unlock(&fs_info->reada_lock);
  437. }
  438. btrfs_put_bbio(bbio);
  439. kfree(re);
  440. return re_exist;
  441. }
  442. static void reada_extent_put(struct btrfs_fs_info *fs_info,
  443. struct reada_extent *re)
  444. {
  445. int i;
  446. unsigned long index = re->logical >> PAGE_CACHE_SHIFT;
  447. spin_lock(&fs_info->reada_lock);
  448. if (--re->refcnt) {
  449. spin_unlock(&fs_info->reada_lock);
  450. return;
  451. }
  452. radix_tree_delete(&fs_info->reada_tree, index);
  453. for (i = 0; i < re->nzones; ++i) {
  454. struct reada_zone *zone = re->zones[i];
  455. radix_tree_delete(&zone->device->reada_extents, index);
  456. }
  457. spin_unlock(&fs_info->reada_lock);
  458. for (i = 0; i < re->nzones; ++i) {
  459. struct reada_zone *zone = re->zones[i];
  460. kref_get(&zone->refcnt);
  461. spin_lock(&zone->lock);
  462. --zone->elems;
  463. if (zone->elems == 0) {
  464. /* no fs_info->reada_lock needed, as this can't be
  465. * the last ref */
  466. kref_put(&zone->refcnt, reada_zone_release);
  467. }
  468. spin_unlock(&zone->lock);
  469. spin_lock(&fs_info->reada_lock);
  470. kref_put(&zone->refcnt, reada_zone_release);
  471. spin_unlock(&fs_info->reada_lock);
  472. }
  473. if (re->scheduled_for)
  474. atomic_dec(&re->scheduled_for->reada_in_flight);
  475. kfree(re);
  476. }
  477. static void reada_zone_release(struct kref *kref)
  478. {
  479. struct reada_zone *zone = container_of(kref, struct reada_zone, refcnt);
  480. radix_tree_delete(&zone->device->reada_zones,
  481. zone->end >> PAGE_CACHE_SHIFT);
  482. kfree(zone);
  483. }
  484. static void reada_control_release(struct kref *kref)
  485. {
  486. struct reada_control *rc = container_of(kref, struct reada_control,
  487. refcnt);
  488. kfree(rc);
  489. }
  490. static int reada_add_block(struct reada_control *rc, u64 logical,
  491. struct btrfs_key *top, int level, u64 generation)
  492. {
  493. struct btrfs_root *root = rc->root;
  494. struct reada_extent *re;
  495. struct reada_extctl *rec;
  496. re = reada_find_extent(root, logical, top, level); /* takes one ref */
  497. if (!re)
  498. return -1;
  499. rec = kzalloc(sizeof(*rec), GFP_NOFS);
  500. if (!rec) {
  501. reada_extent_put(root->fs_info, re);
  502. return -ENOMEM;
  503. }
  504. rec->rc = rc;
  505. rec->generation = generation;
  506. atomic_inc(&rc->elems);
  507. spin_lock(&re->lock);
  508. list_add_tail(&rec->list, &re->extctl);
  509. spin_unlock(&re->lock);
  510. /* leave the ref on the extent */
  511. return 0;
  512. }
  513. /*
  514. * called with fs_info->reada_lock held
  515. */
  516. static void reada_peer_zones_set_lock(struct reada_zone *zone, int lock)
  517. {
  518. int i;
  519. unsigned long index = zone->end >> PAGE_CACHE_SHIFT;
  520. for (i = 0; i < zone->ndevs; ++i) {
  521. struct reada_zone *peer;
  522. peer = radix_tree_lookup(&zone->devs[i]->reada_zones, index);
  523. if (peer && peer->device != zone->device)
  524. peer->locked = lock;
  525. }
  526. }
  527. /*
  528. * called with fs_info->reada_lock held
  529. */
  530. static int reada_pick_zone(struct btrfs_device *dev)
  531. {
  532. struct reada_zone *top_zone = NULL;
  533. struct reada_zone *top_locked_zone = NULL;
  534. u64 top_elems = 0;
  535. u64 top_locked_elems = 0;
  536. unsigned long index = 0;
  537. int ret;
  538. if (dev->reada_curr_zone) {
  539. reada_peer_zones_set_lock(dev->reada_curr_zone, 0);
  540. kref_put(&dev->reada_curr_zone->refcnt, reada_zone_release);
  541. dev->reada_curr_zone = NULL;
  542. }
  543. /* pick the zone with the most elements */
  544. while (1) {
  545. struct reada_zone *zone;
  546. ret = radix_tree_gang_lookup(&dev->reada_zones,
  547. (void **)&zone, index, 1);
  548. if (ret == 0)
  549. break;
  550. index = (zone->end >> PAGE_CACHE_SHIFT) + 1;
  551. if (zone->locked) {
  552. if (zone->elems > top_locked_elems) {
  553. top_locked_elems = zone->elems;
  554. top_locked_zone = zone;
  555. }
  556. } else {
  557. if (zone->elems > top_elems) {
  558. top_elems = zone->elems;
  559. top_zone = zone;
  560. }
  561. }
  562. }
  563. if (top_zone)
  564. dev->reada_curr_zone = top_zone;
  565. else if (top_locked_zone)
  566. dev->reada_curr_zone = top_locked_zone;
  567. else
  568. return 0;
  569. dev->reada_next = dev->reada_curr_zone->start;
  570. kref_get(&dev->reada_curr_zone->refcnt);
  571. reada_peer_zones_set_lock(dev->reada_curr_zone, 1);
  572. return 1;
  573. }
  574. static int reada_start_machine_dev(struct btrfs_fs_info *fs_info,
  575. struct btrfs_device *dev)
  576. {
  577. struct reada_extent *re = NULL;
  578. int mirror_num = 0;
  579. struct extent_buffer *eb = NULL;
  580. u64 logical;
  581. int ret;
  582. int i;
  583. int need_kick = 0;
  584. spin_lock(&fs_info->reada_lock);
  585. if (dev->reada_curr_zone == NULL) {
  586. ret = reada_pick_zone(dev);
  587. if (!ret) {
  588. spin_unlock(&fs_info->reada_lock);
  589. return 0;
  590. }
  591. }
  592. /*
  593. * FIXME currently we issue the reads one extent at a time. If we have
  594. * a contiguous block of extents, we could also coagulate them or use
  595. * plugging to speed things up
  596. */
  597. ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re,
  598. dev->reada_next >> PAGE_CACHE_SHIFT, 1);
  599. if (ret == 0 || re->logical >= dev->reada_curr_zone->end) {
  600. ret = reada_pick_zone(dev);
  601. if (!ret) {
  602. spin_unlock(&fs_info->reada_lock);
  603. return 0;
  604. }
  605. re = NULL;
  606. ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re,
  607. dev->reada_next >> PAGE_CACHE_SHIFT, 1);
  608. }
  609. if (ret == 0) {
  610. spin_unlock(&fs_info->reada_lock);
  611. return 0;
  612. }
  613. dev->reada_next = re->logical + fs_info->tree_root->nodesize;
  614. re->refcnt++;
  615. spin_unlock(&fs_info->reada_lock);
  616. /*
  617. * find mirror num
  618. */
  619. for (i = 0; i < re->nzones; ++i) {
  620. if (re->zones[i]->device == dev) {
  621. mirror_num = i + 1;
  622. break;
  623. }
  624. }
  625. logical = re->logical;
  626. spin_lock(&re->lock);
  627. if (re->scheduled_for == NULL) {
  628. re->scheduled_for = dev;
  629. need_kick = 1;
  630. }
  631. spin_unlock(&re->lock);
  632. reada_extent_put(fs_info, re);
  633. if (!need_kick)
  634. return 0;
  635. atomic_inc(&dev->reada_in_flight);
  636. ret = reada_tree_block_flagged(fs_info->extent_root, logical,
  637. mirror_num, &eb);
  638. if (ret)
  639. __readahead_hook(fs_info->extent_root, NULL, logical, ret);
  640. else if (eb)
  641. __readahead_hook(fs_info->extent_root, eb, eb->start, ret);
  642. if (eb)
  643. free_extent_buffer(eb);
  644. return 1;
  645. }
  646. static void reada_start_machine_worker(struct btrfs_work *work)
  647. {
  648. struct reada_machine_work *rmw;
  649. struct btrfs_fs_info *fs_info;
  650. int old_ioprio;
  651. rmw = container_of(work, struct reada_machine_work, work);
  652. fs_info = rmw->fs_info;
  653. kfree(rmw);
  654. old_ioprio = IOPRIO_PRIO_VALUE(task_nice_ioclass(current),
  655. task_nice_ioprio(current));
  656. set_task_ioprio(current, BTRFS_IOPRIO_READA);
  657. __reada_start_machine(fs_info);
  658. set_task_ioprio(current, old_ioprio);
  659. }
  660. static void __reada_start_machine(struct btrfs_fs_info *fs_info)
  661. {
  662. struct btrfs_device *device;
  663. struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
  664. u64 enqueued;
  665. u64 total = 0;
  666. int i;
  667. do {
  668. enqueued = 0;
  669. list_for_each_entry(device, &fs_devices->devices, dev_list) {
  670. if (atomic_read(&device->reada_in_flight) <
  671. MAX_IN_FLIGHT)
  672. enqueued += reada_start_machine_dev(fs_info,
  673. device);
  674. }
  675. total += enqueued;
  676. } while (enqueued && total < 10000);
  677. if (enqueued == 0)
  678. return;
  679. /*
  680. * If everything is already in the cache, this is effectively single
  681. * threaded. To a) not hold the caller for too long and b) to utilize
  682. * more cores, we broke the loop above after 10000 iterations and now
  683. * enqueue to workers to finish it. This will distribute the load to
  684. * the cores.
  685. */
  686. for (i = 0; i < 2; ++i)
  687. reada_start_machine(fs_info);
  688. }
  689. static void reada_start_machine(struct btrfs_fs_info *fs_info)
  690. {
  691. struct reada_machine_work *rmw;
  692. rmw = kzalloc(sizeof(*rmw), GFP_NOFS);
  693. if (!rmw) {
  694. /* FIXME we cannot handle this properly right now */
  695. BUG();
  696. }
  697. btrfs_init_work(&rmw->work, btrfs_readahead_helper,
  698. reada_start_machine_worker, NULL, NULL);
  699. rmw->fs_info = fs_info;
  700. btrfs_queue_work(fs_info->readahead_workers, &rmw->work);
  701. }
  702. #ifdef DEBUG
  703. static void dump_devs(struct btrfs_fs_info *fs_info, int all)
  704. {
  705. struct btrfs_device *device;
  706. struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
  707. unsigned long index;
  708. int ret;
  709. int i;
  710. int j;
  711. int cnt;
  712. spin_lock(&fs_info->reada_lock);
  713. list_for_each_entry(device, &fs_devices->devices, dev_list) {
  714. printk(KERN_DEBUG "dev %lld has %d in flight\n", device->devid,
  715. atomic_read(&device->reada_in_flight));
  716. index = 0;
  717. while (1) {
  718. struct reada_zone *zone;
  719. ret = radix_tree_gang_lookup(&device->reada_zones,
  720. (void **)&zone, index, 1);
  721. if (ret == 0)
  722. break;
  723. printk(KERN_DEBUG " zone %llu-%llu elems %llu locked "
  724. "%d devs", zone->start, zone->end, zone->elems,
  725. zone->locked);
  726. for (j = 0; j < zone->ndevs; ++j) {
  727. printk(KERN_CONT " %lld",
  728. zone->devs[j]->devid);
  729. }
  730. if (device->reada_curr_zone == zone)
  731. printk(KERN_CONT " curr off %llu",
  732. device->reada_next - zone->start);
  733. printk(KERN_CONT "\n");
  734. index = (zone->end >> PAGE_CACHE_SHIFT) + 1;
  735. }
  736. cnt = 0;
  737. index = 0;
  738. while (all) {
  739. struct reada_extent *re = NULL;
  740. ret = radix_tree_gang_lookup(&device->reada_extents,
  741. (void **)&re, index, 1);
  742. if (ret == 0)
  743. break;
  744. printk(KERN_DEBUG
  745. " re: logical %llu size %u empty %d for %lld",
  746. re->logical, fs_info->tree_root->nodesize,
  747. list_empty(&re->extctl), re->scheduled_for ?
  748. re->scheduled_for->devid : -1);
  749. for (i = 0; i < re->nzones; ++i) {
  750. printk(KERN_CONT " zone %llu-%llu devs",
  751. re->zones[i]->start,
  752. re->zones[i]->end);
  753. for (j = 0; j < re->zones[i]->ndevs; ++j) {
  754. printk(KERN_CONT " %lld",
  755. re->zones[i]->devs[j]->devid);
  756. }
  757. }
  758. printk(KERN_CONT "\n");
  759. index = (re->logical >> PAGE_CACHE_SHIFT) + 1;
  760. if (++cnt > 15)
  761. break;
  762. }
  763. }
  764. index = 0;
  765. cnt = 0;
  766. while (all) {
  767. struct reada_extent *re = NULL;
  768. ret = radix_tree_gang_lookup(&fs_info->reada_tree, (void **)&re,
  769. index, 1);
  770. if (ret == 0)
  771. break;
  772. if (!re->scheduled_for) {
  773. index = (re->logical >> PAGE_CACHE_SHIFT) + 1;
  774. continue;
  775. }
  776. printk(KERN_DEBUG
  777. "re: logical %llu size %u list empty %d for %lld",
  778. re->logical, fs_info->tree_root->nodesize,
  779. list_empty(&re->extctl),
  780. re->scheduled_for ? re->scheduled_for->devid : -1);
  781. for (i = 0; i < re->nzones; ++i) {
  782. printk(KERN_CONT " zone %llu-%llu devs",
  783. re->zones[i]->start,
  784. re->zones[i]->end);
  785. for (i = 0; i < re->nzones; ++i) {
  786. printk(KERN_CONT " zone %llu-%llu devs",
  787. re->zones[i]->start,
  788. re->zones[i]->end);
  789. for (j = 0; j < re->zones[i]->ndevs; ++j) {
  790. printk(KERN_CONT " %lld",
  791. re->zones[i]->devs[j]->devid);
  792. }
  793. }
  794. }
  795. printk(KERN_CONT "\n");
  796. index = (re->logical >> PAGE_CACHE_SHIFT) + 1;
  797. }
  798. spin_unlock(&fs_info->reada_lock);
  799. }
  800. #endif
  801. /*
  802. * interface
  803. */
  804. struct reada_control *btrfs_reada_add(struct btrfs_root *root,
  805. struct btrfs_key *key_start, struct btrfs_key *key_end)
  806. {
  807. struct reada_control *rc;
  808. u64 start;
  809. u64 generation;
  810. int level;
  811. int ret;
  812. struct extent_buffer *node;
  813. static struct btrfs_key max_key = {
  814. .objectid = (u64)-1,
  815. .type = (u8)-1,
  816. .offset = (u64)-1
  817. };
  818. rc = kzalloc(sizeof(*rc), GFP_NOFS);
  819. if (!rc)
  820. return ERR_PTR(-ENOMEM);
  821. rc->root = root;
  822. rc->key_start = *key_start;
  823. rc->key_end = *key_end;
  824. atomic_set(&rc->elems, 0);
  825. init_waitqueue_head(&rc->wait);
  826. kref_init(&rc->refcnt);
  827. kref_get(&rc->refcnt); /* one ref for having elements */
  828. node = btrfs_root_node(root);
  829. start = node->start;
  830. level = btrfs_header_level(node);
  831. generation = btrfs_header_generation(node);
  832. free_extent_buffer(node);
  833. ret = reada_add_block(rc, start, &max_key, level, generation);
  834. if (ret) {
  835. kfree(rc);
  836. return ERR_PTR(ret);
  837. }
  838. reada_start_machine(root->fs_info);
  839. return rc;
  840. }
  841. #ifdef DEBUG
  842. int btrfs_reada_wait(void *handle)
  843. {
  844. struct reada_control *rc = handle;
  845. while (atomic_read(&rc->elems)) {
  846. wait_event_timeout(rc->wait, atomic_read(&rc->elems) == 0,
  847. 5 * HZ);
  848. dump_devs(rc->root->fs_info,
  849. atomic_read(&rc->elems) < 10 ? 1 : 0);
  850. }
  851. dump_devs(rc->root->fs_info, atomic_read(&rc->elems) < 10 ? 1 : 0);
  852. kref_put(&rc->refcnt, reada_control_release);
  853. return 0;
  854. }
  855. #else
  856. int btrfs_reada_wait(void *handle)
  857. {
  858. struct reada_control *rc = handle;
  859. while (atomic_read(&rc->elems)) {
  860. wait_event(rc->wait, atomic_read(&rc->elems) == 0);
  861. }
  862. kref_put(&rc->refcnt, reada_control_release);
  863. return 0;
  864. }
  865. #endif
  866. void btrfs_reada_detach(void *handle)
  867. {
  868. struct reada_control *rc = handle;
  869. kref_put(&rc->refcnt, reada_control_release);
  870. }