node.h 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417
  1. /*
  2. * fs/f2fs/node.h
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. /* start node id of a node block dedicated to the given node id */
  12. #define START_NID(nid) ((nid / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK)
  13. /* node block offset on the NAT area dedicated to the given start node id */
  14. #define NAT_BLOCK_OFFSET(start_nid) (start_nid / NAT_ENTRY_PER_BLOCK)
  15. /* # of pages to perform synchronous readahead before building free nids */
  16. #define FREE_NID_PAGES 4
  17. #define DEF_RA_NID_PAGES 4 /* # of nid pages to be readaheaded */
  18. /* maximum readahead size for node during getting data blocks */
  19. #define MAX_RA_NODE 128
  20. /* control the memory footprint threshold (10MB per 1GB ram) */
  21. #define DEF_RAM_THRESHOLD 10
  22. /* vector size for gang look-up from nat cache that consists of radix tree */
  23. #define NATVEC_SIZE 64
  24. #define SETVEC_SIZE 32
  25. /* return value for read_node_page */
  26. #define LOCKED_PAGE 1
  27. /* For flag in struct node_info */
  28. enum {
  29. IS_CHECKPOINTED, /* is it checkpointed before? */
  30. HAS_FSYNCED_INODE, /* is the inode fsynced before? */
  31. HAS_LAST_FSYNC, /* has the latest node fsync mark? */
  32. IS_DIRTY, /* this nat entry is dirty? */
  33. };
  34. /*
  35. * For node information
  36. */
  37. struct node_info {
  38. nid_t nid; /* node id */
  39. nid_t ino; /* inode number of the node's owner */
  40. block_t blk_addr; /* block address of the node */
  41. unsigned char version; /* version of the node */
  42. unsigned char flag; /* for node information bits */
  43. };
  44. struct nat_entry {
  45. struct list_head list; /* for clean or dirty nat list */
  46. struct node_info ni; /* in-memory node information */
  47. };
  48. #define nat_get_nid(nat) (nat->ni.nid)
  49. #define nat_set_nid(nat, n) (nat->ni.nid = n)
  50. #define nat_get_blkaddr(nat) (nat->ni.blk_addr)
  51. #define nat_set_blkaddr(nat, b) (nat->ni.blk_addr = b)
  52. #define nat_get_ino(nat) (nat->ni.ino)
  53. #define nat_set_ino(nat, i) (nat->ni.ino = i)
  54. #define nat_get_version(nat) (nat->ni.version)
  55. #define nat_set_version(nat, v) (nat->ni.version = v)
  56. #define inc_node_version(version) (++version)
  57. static inline void copy_node_info(struct node_info *dst,
  58. struct node_info *src)
  59. {
  60. dst->nid = src->nid;
  61. dst->ino = src->ino;
  62. dst->blk_addr = src->blk_addr;
  63. dst->version = src->version;
  64. /* should not copy flag here */
  65. }
  66. static inline void set_nat_flag(struct nat_entry *ne,
  67. unsigned int type, bool set)
  68. {
  69. unsigned char mask = 0x01 << type;
  70. if (set)
  71. ne->ni.flag |= mask;
  72. else
  73. ne->ni.flag &= ~mask;
  74. }
  75. static inline bool get_nat_flag(struct nat_entry *ne, unsigned int type)
  76. {
  77. unsigned char mask = 0x01 << type;
  78. return ne->ni.flag & mask;
  79. }
  80. static inline void nat_reset_flag(struct nat_entry *ne)
  81. {
  82. /* these states can be set only after checkpoint was done */
  83. set_nat_flag(ne, IS_CHECKPOINTED, true);
  84. set_nat_flag(ne, HAS_FSYNCED_INODE, false);
  85. set_nat_flag(ne, HAS_LAST_FSYNC, true);
  86. }
  87. static inline void node_info_from_raw_nat(struct node_info *ni,
  88. struct f2fs_nat_entry *raw_ne)
  89. {
  90. ni->ino = le32_to_cpu(raw_ne->ino);
  91. ni->blk_addr = le32_to_cpu(raw_ne->block_addr);
  92. ni->version = raw_ne->version;
  93. }
  94. static inline void raw_nat_from_node_info(struct f2fs_nat_entry *raw_ne,
  95. struct node_info *ni)
  96. {
  97. raw_ne->ino = cpu_to_le32(ni->ino);
  98. raw_ne->block_addr = cpu_to_le32(ni->blk_addr);
  99. raw_ne->version = ni->version;
  100. }
  101. enum mem_type {
  102. FREE_NIDS, /* indicates the free nid list */
  103. NAT_ENTRIES, /* indicates the cached nat entry */
  104. DIRTY_DENTS, /* indicates dirty dentry pages */
  105. INO_ENTRIES, /* indicates inode entries */
  106. EXTENT_CACHE, /* indicates extent cache */
  107. BASE_CHECK, /* check kernel status */
  108. };
  109. struct nat_entry_set {
  110. struct list_head set_list; /* link with other nat sets */
  111. struct list_head entry_list; /* link with dirty nat entries */
  112. nid_t set; /* set number*/
  113. unsigned int entry_cnt; /* the # of nat entries in set */
  114. };
  115. /*
  116. * For free nid mangement
  117. */
  118. enum nid_state {
  119. NID_NEW, /* newly added to free nid list */
  120. NID_ALLOC /* it is allocated */
  121. };
  122. struct free_nid {
  123. struct list_head list; /* for free node id list */
  124. nid_t nid; /* node id */
  125. int state; /* in use or not: NID_NEW or NID_ALLOC */
  126. };
  127. static inline void next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid)
  128. {
  129. struct f2fs_nm_info *nm_i = NM_I(sbi);
  130. struct free_nid *fnid;
  131. spin_lock(&nm_i->free_nid_list_lock);
  132. if (nm_i->fcnt <= 0) {
  133. spin_unlock(&nm_i->free_nid_list_lock);
  134. return;
  135. }
  136. fnid = list_entry(nm_i->free_nid_list.next, struct free_nid, list);
  137. *nid = fnid->nid;
  138. spin_unlock(&nm_i->free_nid_list_lock);
  139. }
  140. /*
  141. * inline functions
  142. */
  143. static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr)
  144. {
  145. struct f2fs_nm_info *nm_i = NM_I(sbi);
  146. memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size);
  147. }
  148. static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start)
  149. {
  150. struct f2fs_nm_info *nm_i = NM_I(sbi);
  151. pgoff_t block_off;
  152. pgoff_t block_addr;
  153. int seg_off;
  154. block_off = NAT_BLOCK_OFFSET(start);
  155. seg_off = block_off >> sbi->log_blocks_per_seg;
  156. block_addr = (pgoff_t)(nm_i->nat_blkaddr +
  157. (seg_off << sbi->log_blocks_per_seg << 1) +
  158. (block_off & ((1 << sbi->log_blocks_per_seg) - 1)));
  159. if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
  160. block_addr += sbi->blocks_per_seg;
  161. return block_addr;
  162. }
  163. static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi,
  164. pgoff_t block_addr)
  165. {
  166. struct f2fs_nm_info *nm_i = NM_I(sbi);
  167. block_addr -= nm_i->nat_blkaddr;
  168. if ((block_addr >> sbi->log_blocks_per_seg) % 2)
  169. block_addr -= sbi->blocks_per_seg;
  170. else
  171. block_addr += sbi->blocks_per_seg;
  172. return block_addr + nm_i->nat_blkaddr;
  173. }
  174. static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid)
  175. {
  176. unsigned int block_off = NAT_BLOCK_OFFSET(start_nid);
  177. f2fs_change_bit(block_off, nm_i->nat_bitmap);
  178. }
  179. static inline nid_t ino_of_node(struct page *node_page)
  180. {
  181. struct f2fs_node *rn = F2FS_NODE(node_page);
  182. return le32_to_cpu(rn->footer.ino);
  183. }
  184. static inline nid_t nid_of_node(struct page *node_page)
  185. {
  186. struct f2fs_node *rn = F2FS_NODE(node_page);
  187. return le32_to_cpu(rn->footer.nid);
  188. }
  189. static inline unsigned int ofs_of_node(struct page *node_page)
  190. {
  191. struct f2fs_node *rn = F2FS_NODE(node_page);
  192. unsigned flag = le32_to_cpu(rn->footer.flag);
  193. return flag >> OFFSET_BIT_SHIFT;
  194. }
  195. static inline __u64 cpver_of_node(struct page *node_page)
  196. {
  197. struct f2fs_node *rn = F2FS_NODE(node_page);
  198. return le64_to_cpu(rn->footer.cp_ver);
  199. }
  200. static inline block_t next_blkaddr_of_node(struct page *node_page)
  201. {
  202. struct f2fs_node *rn = F2FS_NODE(node_page);
  203. return le32_to_cpu(rn->footer.next_blkaddr);
  204. }
  205. static inline void fill_node_footer(struct page *page, nid_t nid,
  206. nid_t ino, unsigned int ofs, bool reset)
  207. {
  208. struct f2fs_node *rn = F2FS_NODE(page);
  209. unsigned int old_flag = 0;
  210. if (reset)
  211. memset(rn, 0, sizeof(*rn));
  212. else
  213. old_flag = le32_to_cpu(rn->footer.flag);
  214. rn->footer.nid = cpu_to_le32(nid);
  215. rn->footer.ino = cpu_to_le32(ino);
  216. /* should remain old flag bits such as COLD_BIT_SHIFT */
  217. rn->footer.flag = cpu_to_le32((ofs << OFFSET_BIT_SHIFT) |
  218. (old_flag & OFFSET_BIT_MASK));
  219. }
  220. static inline void copy_node_footer(struct page *dst, struct page *src)
  221. {
  222. struct f2fs_node *src_rn = F2FS_NODE(src);
  223. struct f2fs_node *dst_rn = F2FS_NODE(dst);
  224. memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer));
  225. }
  226. static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr)
  227. {
  228. struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
  229. struct f2fs_node *rn = F2FS_NODE(page);
  230. size_t crc_offset = le32_to_cpu(ckpt->checksum_offset);
  231. __u64 cp_ver = le64_to_cpu(ckpt->checkpoint_ver);
  232. if (is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG)) {
  233. __u64 crc = le32_to_cpu(*((__le32 *)
  234. ((unsigned char *)ckpt + crc_offset)));
  235. cp_ver |= (crc << 32);
  236. }
  237. rn->footer.cp_ver = cpu_to_le64(cp_ver);
  238. rn->footer.next_blkaddr = cpu_to_le32(blkaddr);
  239. }
  240. static inline bool is_recoverable_dnode(struct page *page)
  241. {
  242. struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
  243. size_t crc_offset = le32_to_cpu(ckpt->checksum_offset);
  244. __u64 cp_ver = cur_cp_version(ckpt);
  245. if (is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG)) {
  246. __u64 crc = le32_to_cpu(*((__le32 *)
  247. ((unsigned char *)ckpt + crc_offset)));
  248. cp_ver |= (crc << 32);
  249. }
  250. return cpu_to_le64(cp_ver) == cpver_of_node(page);
  251. }
  252. /*
  253. * f2fs assigns the following node offsets described as (num).
  254. * N = NIDS_PER_BLOCK
  255. *
  256. * Inode block (0)
  257. * |- direct node (1)
  258. * |- direct node (2)
  259. * |- indirect node (3)
  260. * | `- direct node (4 => 4 + N - 1)
  261. * |- indirect node (4 + N)
  262. * | `- direct node (5 + N => 5 + 2N - 1)
  263. * `- double indirect node (5 + 2N)
  264. * `- indirect node (6 + 2N)
  265. * `- direct node
  266. * ......
  267. * `- indirect node ((6 + 2N) + x(N + 1))
  268. * `- direct node
  269. * ......
  270. * `- indirect node ((6 + 2N) + (N - 1)(N + 1))
  271. * `- direct node
  272. */
  273. static inline bool IS_DNODE(struct page *node_page)
  274. {
  275. unsigned int ofs = ofs_of_node(node_page);
  276. if (f2fs_has_xattr_block(ofs))
  277. return false;
  278. if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK ||
  279. ofs == 5 + 2 * NIDS_PER_BLOCK)
  280. return false;
  281. if (ofs >= 6 + 2 * NIDS_PER_BLOCK) {
  282. ofs -= 6 + 2 * NIDS_PER_BLOCK;
  283. if (!((long int)ofs % (NIDS_PER_BLOCK + 1)))
  284. return false;
  285. }
  286. return true;
  287. }
  288. static inline void set_nid(struct page *p, int off, nid_t nid, bool i)
  289. {
  290. struct f2fs_node *rn = F2FS_NODE(p);
  291. f2fs_wait_on_page_writeback(p, NODE);
  292. if (i)
  293. rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid);
  294. else
  295. rn->in.nid[off] = cpu_to_le32(nid);
  296. set_page_dirty(p);
  297. }
  298. static inline nid_t get_nid(struct page *p, int off, bool i)
  299. {
  300. struct f2fs_node *rn = F2FS_NODE(p);
  301. if (i)
  302. return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]);
  303. return le32_to_cpu(rn->in.nid[off]);
  304. }
  305. /*
  306. * Coldness identification:
  307. * - Mark cold files in f2fs_inode_info
  308. * - Mark cold node blocks in their node footer
  309. * - Mark cold data pages in page cache
  310. */
  311. static inline int is_cold_data(struct page *page)
  312. {
  313. return PageChecked(page);
  314. }
  315. static inline void set_cold_data(struct page *page)
  316. {
  317. SetPageChecked(page);
  318. }
  319. static inline void clear_cold_data(struct page *page)
  320. {
  321. ClearPageChecked(page);
  322. }
  323. static inline int is_node(struct page *page, int type)
  324. {
  325. struct f2fs_node *rn = F2FS_NODE(page);
  326. return le32_to_cpu(rn->footer.flag) & (1 << type);
  327. }
  328. #define is_cold_node(page) is_node(page, COLD_BIT_SHIFT)
  329. #define is_fsync_dnode(page) is_node(page, FSYNC_BIT_SHIFT)
  330. #define is_dent_dnode(page) is_node(page, DENT_BIT_SHIFT)
  331. static inline void set_cold_node(struct inode *inode, struct page *page)
  332. {
  333. struct f2fs_node *rn = F2FS_NODE(page);
  334. unsigned int flag = le32_to_cpu(rn->footer.flag);
  335. if (S_ISDIR(inode->i_mode))
  336. flag &= ~(0x1 << COLD_BIT_SHIFT);
  337. else
  338. flag |= (0x1 << COLD_BIT_SHIFT);
  339. rn->footer.flag = cpu_to_le32(flag);
  340. }
  341. static inline void set_mark(struct page *page, int mark, int type)
  342. {
  343. struct f2fs_node *rn = F2FS_NODE(page);
  344. unsigned int flag = le32_to_cpu(rn->footer.flag);
  345. if (mark)
  346. flag |= (0x1 << type);
  347. else
  348. flag &= ~(0x1 << type);
  349. rn->footer.flag = cpu_to_le32(flag);
  350. }
  351. #define set_dentry_mark(page, mark) set_mark(page, mark, DENT_BIT_SHIFT)
  352. #define set_fsync_mark(page, mark) set_mark(page, mark, FSYNC_BIT_SHIFT)