file.c 9.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334
  1. /*
  2. * JFFS2 -- Journalling Flash File System, Version 2.
  3. *
  4. * Copyright © 2001-2007 Red Hat, Inc.
  5. * Copyright © 2004-2010 David Woodhouse <dwmw2@infradead.org>
  6. *
  7. * Created by David Woodhouse <dwmw2@infradead.org>
  8. *
  9. * For licensing information, see the file 'LICENCE' in this directory.
  10. *
  11. */
  12. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  13. #include <linux/kernel.h>
  14. #include <linux/fs.h>
  15. #include <linux/time.h>
  16. #include <linux/pagemap.h>
  17. #include <linux/highmem.h>
  18. #include <linux/crc32.h>
  19. #include <linux/jffs2.h>
  20. #include "nodelist.h"
  21. static int jffs2_write_end(struct file *filp, struct address_space *mapping,
  22. loff_t pos, unsigned len, unsigned copied,
  23. struct page *pg, void *fsdata);
  24. static int jffs2_write_begin(struct file *filp, struct address_space *mapping,
  25. loff_t pos, unsigned len, unsigned flags,
  26. struct page **pagep, void **fsdata);
  27. static int jffs2_readpage (struct file *filp, struct page *pg);
  28. int jffs2_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
  29. {
  30. struct inode *inode = filp->f_mapping->host;
  31. struct jffs2_sb_info *c = JFFS2_SB_INFO(inode->i_sb);
  32. int ret;
  33. ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
  34. if (ret)
  35. return ret;
  36. mutex_lock(&inode->i_mutex);
  37. /* Trigger GC to flush any pending writes for this inode */
  38. jffs2_flush_wbuf_gc(c, inode->i_ino);
  39. mutex_unlock(&inode->i_mutex);
  40. return 0;
  41. }
  42. const struct file_operations jffs2_file_operations =
  43. {
  44. .llseek = generic_file_llseek,
  45. .open = generic_file_open,
  46. .read_iter = generic_file_read_iter,
  47. .write_iter = generic_file_write_iter,
  48. .unlocked_ioctl=jffs2_ioctl,
  49. .mmap = generic_file_readonly_mmap,
  50. .fsync = jffs2_fsync,
  51. .splice_read = generic_file_splice_read,
  52. };
  53. /* jffs2_file_inode_operations */
  54. const struct inode_operations jffs2_file_inode_operations =
  55. {
  56. .get_acl = jffs2_get_acl,
  57. .set_acl = jffs2_set_acl,
  58. .setattr = jffs2_setattr,
  59. .setxattr = jffs2_setxattr,
  60. .getxattr = jffs2_getxattr,
  61. .listxattr = jffs2_listxattr,
  62. .removexattr = jffs2_removexattr
  63. };
  64. const struct address_space_operations jffs2_file_address_operations =
  65. {
  66. .readpage = jffs2_readpage,
  67. .write_begin = jffs2_write_begin,
  68. .write_end = jffs2_write_end,
  69. };
  70. static int jffs2_do_readpage_nolock (struct inode *inode, struct page *pg)
  71. {
  72. struct jffs2_inode_info *f = JFFS2_INODE_INFO(inode);
  73. struct jffs2_sb_info *c = JFFS2_SB_INFO(inode->i_sb);
  74. unsigned char *pg_buf;
  75. int ret;
  76. jffs2_dbg(2, "%s(): ino #%lu, page at offset 0x%lx\n",
  77. __func__, inode->i_ino, pg->index << PAGE_CACHE_SHIFT);
  78. BUG_ON(!PageLocked(pg));
  79. pg_buf = kmap(pg);
  80. /* FIXME: Can kmap fail? */
  81. ret = jffs2_read_inode_range(c, f, pg_buf, pg->index << PAGE_CACHE_SHIFT, PAGE_CACHE_SIZE);
  82. if (ret) {
  83. ClearPageUptodate(pg);
  84. SetPageError(pg);
  85. } else {
  86. SetPageUptodate(pg);
  87. ClearPageError(pg);
  88. }
  89. flush_dcache_page(pg);
  90. kunmap(pg);
  91. jffs2_dbg(2, "readpage finished\n");
  92. return ret;
  93. }
  94. int jffs2_do_readpage_unlock(struct inode *inode, struct page *pg)
  95. {
  96. int ret = jffs2_do_readpage_nolock(inode, pg);
  97. unlock_page(pg);
  98. return ret;
  99. }
  100. static int jffs2_readpage (struct file *filp, struct page *pg)
  101. {
  102. struct jffs2_inode_info *f = JFFS2_INODE_INFO(pg->mapping->host);
  103. int ret;
  104. mutex_lock(&f->sem);
  105. ret = jffs2_do_readpage_unlock(pg->mapping->host, pg);
  106. mutex_unlock(&f->sem);
  107. return ret;
  108. }
  109. static int jffs2_write_begin(struct file *filp, struct address_space *mapping,
  110. loff_t pos, unsigned len, unsigned flags,
  111. struct page **pagep, void **fsdata)
  112. {
  113. struct page *pg;
  114. struct inode *inode = mapping->host;
  115. struct jffs2_inode_info *f = JFFS2_INODE_INFO(inode);
  116. pgoff_t index = pos >> PAGE_CACHE_SHIFT;
  117. uint32_t pageofs = index << PAGE_CACHE_SHIFT;
  118. int ret = 0;
  119. pg = grab_cache_page_write_begin(mapping, index, flags);
  120. if (!pg)
  121. return -ENOMEM;
  122. *pagep = pg;
  123. jffs2_dbg(1, "%s()\n", __func__);
  124. if (pageofs > inode->i_size) {
  125. /* Make new hole frag from old EOF to new page */
  126. struct jffs2_sb_info *c = JFFS2_SB_INFO(inode->i_sb);
  127. struct jffs2_raw_inode ri;
  128. struct jffs2_full_dnode *fn;
  129. uint32_t alloc_len;
  130. jffs2_dbg(1, "Writing new hole frag 0x%x-0x%x between current EOF and new page\n",
  131. (unsigned int)inode->i_size, pageofs);
  132. ret = jffs2_reserve_space(c, sizeof(ri), &alloc_len,
  133. ALLOC_NORMAL, JFFS2_SUMMARY_INODE_SIZE);
  134. if (ret)
  135. goto out_page;
  136. mutex_lock(&f->sem);
  137. memset(&ri, 0, sizeof(ri));
  138. ri.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
  139. ri.nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE);
  140. ri.totlen = cpu_to_je32(sizeof(ri));
  141. ri.hdr_crc = cpu_to_je32(crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4));
  142. ri.ino = cpu_to_je32(f->inocache->ino);
  143. ri.version = cpu_to_je32(++f->highest_version);
  144. ri.mode = cpu_to_jemode(inode->i_mode);
  145. ri.uid = cpu_to_je16(i_uid_read(inode));
  146. ri.gid = cpu_to_je16(i_gid_read(inode));
  147. ri.isize = cpu_to_je32(max((uint32_t)inode->i_size, pageofs));
  148. ri.atime = ri.ctime = ri.mtime = cpu_to_je32(get_seconds());
  149. ri.offset = cpu_to_je32(inode->i_size);
  150. ri.dsize = cpu_to_je32(pageofs - inode->i_size);
  151. ri.csize = cpu_to_je32(0);
  152. ri.compr = JFFS2_COMPR_ZERO;
  153. ri.node_crc = cpu_to_je32(crc32(0, &ri, sizeof(ri)-8));
  154. ri.data_crc = cpu_to_je32(0);
  155. fn = jffs2_write_dnode(c, f, &ri, NULL, 0, ALLOC_NORMAL);
  156. if (IS_ERR(fn)) {
  157. ret = PTR_ERR(fn);
  158. jffs2_complete_reservation(c);
  159. mutex_unlock(&f->sem);
  160. goto out_page;
  161. }
  162. ret = jffs2_add_full_dnode_to_inode(c, f, fn);
  163. if (f->metadata) {
  164. jffs2_mark_node_obsolete(c, f->metadata->raw);
  165. jffs2_free_full_dnode(f->metadata);
  166. f->metadata = NULL;
  167. }
  168. if (ret) {
  169. jffs2_dbg(1, "Eep. add_full_dnode_to_inode() failed in write_begin, returned %d\n",
  170. ret);
  171. jffs2_mark_node_obsolete(c, fn->raw);
  172. jffs2_free_full_dnode(fn);
  173. jffs2_complete_reservation(c);
  174. mutex_unlock(&f->sem);
  175. goto out_page;
  176. }
  177. jffs2_complete_reservation(c);
  178. inode->i_size = pageofs;
  179. mutex_unlock(&f->sem);
  180. }
  181. /*
  182. * Read in the page if it wasn't already present. Cannot optimize away
  183. * the whole page write case until jffs2_write_end can handle the
  184. * case of a short-copy.
  185. */
  186. if (!PageUptodate(pg)) {
  187. mutex_lock(&f->sem);
  188. ret = jffs2_do_readpage_nolock(inode, pg);
  189. mutex_unlock(&f->sem);
  190. if (ret)
  191. goto out_page;
  192. }
  193. jffs2_dbg(1, "end write_begin(). pg->flags %lx\n", pg->flags);
  194. return ret;
  195. out_page:
  196. unlock_page(pg);
  197. page_cache_release(pg);
  198. return ret;
  199. }
  200. static int jffs2_write_end(struct file *filp, struct address_space *mapping,
  201. loff_t pos, unsigned len, unsigned copied,
  202. struct page *pg, void *fsdata)
  203. {
  204. /* Actually commit the write from the page cache page we're looking at.
  205. * For now, we write the full page out each time. It sucks, but it's simple
  206. */
  207. struct inode *inode = mapping->host;
  208. struct jffs2_inode_info *f = JFFS2_INODE_INFO(inode);
  209. struct jffs2_sb_info *c = JFFS2_SB_INFO(inode->i_sb);
  210. struct jffs2_raw_inode *ri;
  211. unsigned start = pos & (PAGE_CACHE_SIZE - 1);
  212. unsigned end = start + copied;
  213. unsigned aligned_start = start & ~3;
  214. int ret = 0;
  215. uint32_t writtenlen = 0;
  216. jffs2_dbg(1, "%s(): ino #%lu, page at 0x%lx, range %d-%d, flags %lx\n",
  217. __func__, inode->i_ino, pg->index << PAGE_CACHE_SHIFT,
  218. start, end, pg->flags);
  219. /* We need to avoid deadlock with page_cache_read() in
  220. jffs2_garbage_collect_pass(). So the page must be
  221. up to date to prevent page_cache_read() from trying
  222. to re-lock it. */
  223. BUG_ON(!PageUptodate(pg));
  224. if (end == PAGE_CACHE_SIZE) {
  225. /* When writing out the end of a page, write out the
  226. _whole_ page. This helps to reduce the number of
  227. nodes in files which have many short writes, like
  228. syslog files. */
  229. aligned_start = 0;
  230. }
  231. ri = jffs2_alloc_raw_inode();
  232. if (!ri) {
  233. jffs2_dbg(1, "%s(): Allocation of raw inode failed\n",
  234. __func__);
  235. unlock_page(pg);
  236. page_cache_release(pg);
  237. return -ENOMEM;
  238. }
  239. /* Set the fields that the generic jffs2_write_inode_range() code can't find */
  240. ri->ino = cpu_to_je32(inode->i_ino);
  241. ri->mode = cpu_to_jemode(inode->i_mode);
  242. ri->uid = cpu_to_je16(i_uid_read(inode));
  243. ri->gid = cpu_to_je16(i_gid_read(inode));
  244. ri->isize = cpu_to_je32((uint32_t)inode->i_size);
  245. ri->atime = ri->ctime = ri->mtime = cpu_to_je32(get_seconds());
  246. /* In 2.4, it was already kmapped by generic_file_write(). Doesn't
  247. hurt to do it again. The alternative is ifdefs, which are ugly. */
  248. kmap(pg);
  249. ret = jffs2_write_inode_range(c, f, ri, page_address(pg) + aligned_start,
  250. (pg->index << PAGE_CACHE_SHIFT) + aligned_start,
  251. end - aligned_start, &writtenlen);
  252. kunmap(pg);
  253. if (ret) {
  254. /* There was an error writing. */
  255. SetPageError(pg);
  256. }
  257. /* Adjust writtenlen for the padding we did, so we don't confuse our caller */
  258. writtenlen -= min(writtenlen, (start - aligned_start));
  259. if (writtenlen) {
  260. if (inode->i_size < pos + writtenlen) {
  261. inode->i_size = pos + writtenlen;
  262. inode->i_blocks = (inode->i_size + 511) >> 9;
  263. inode->i_ctime = inode->i_mtime = ITIME(je32_to_cpu(ri->ctime));
  264. }
  265. }
  266. jffs2_free_raw_inode(ri);
  267. if (start+writtenlen < end) {
  268. /* generic_file_write has written more to the page cache than we've
  269. actually written to the medium. Mark the page !Uptodate so that
  270. it gets reread */
  271. jffs2_dbg(1, "%s(): Not all bytes written. Marking page !uptodate\n",
  272. __func__);
  273. SetPageError(pg);
  274. ClearPageUptodate(pg);
  275. }
  276. jffs2_dbg(1, "%s() returning %d\n",
  277. __func__, writtenlen > 0 ? writtenlen : ret);
  278. unlock_page(pg);
  279. page_cache_release(pg);
  280. return writtenlen > 0 ? writtenlen : ret;
  281. }