direct.c 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080
  1. /*
  2. * linux/fs/nfs/direct.c
  3. *
  4. * Copyright (C) 2003 by Chuck Lever <cel@netapp.com>
  5. *
  6. * High-performance uncached I/O for the Linux NFS client
  7. *
  8. * There are important applications whose performance or correctness
  9. * depends on uncached access to file data. Database clusters
  10. * (multiple copies of the same instance running on separate hosts)
  11. * implement their own cache coherency protocol that subsumes file
  12. * system cache protocols. Applications that process datasets
  13. * considerably larger than the client's memory do not always benefit
  14. * from a local cache. A streaming video server, for instance, has no
  15. * need to cache the contents of a file.
  16. *
  17. * When an application requests uncached I/O, all read and write requests
  18. * are made directly to the server; data stored or fetched via these
  19. * requests is not cached in the Linux page cache. The client does not
  20. * correct unaligned requests from applications. All requested bytes are
  21. * held on permanent storage before a direct write system call returns to
  22. * an application.
  23. *
  24. * Solaris implements an uncached I/O facility called directio() that
  25. * is used for backups and sequential I/O to very large files. Solaris
  26. * also supports uncaching whole NFS partitions with "-o forcedirectio,"
  27. * an undocumented mount option.
  28. *
  29. * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with
  30. * help from Andrew Morton.
  31. *
  32. * 18 Dec 2001 Initial implementation for 2.4 --cel
  33. * 08 Jul 2002 Version for 2.4.19, with bug fixes --trondmy
  34. * 08 Jun 2003 Port to 2.5 APIs --cel
  35. * 31 Mar 2004 Handle direct I/O without VFS support --cel
  36. * 15 Sep 2004 Parallel async reads --cel
  37. * 04 May 2005 support O_DIRECT with aio --cel
  38. *
  39. */
  40. #include <linux/errno.h>
  41. #include <linux/sched.h>
  42. #include <linux/kernel.h>
  43. #include <linux/file.h>
  44. #include <linux/pagemap.h>
  45. #include <linux/kref.h>
  46. #include <linux/slab.h>
  47. #include <linux/task_io_accounting_ops.h>
  48. #include <linux/module.h>
  49. #include <linux/nfs_fs.h>
  50. #include <linux/nfs_page.h>
  51. #include <linux/sunrpc/clnt.h>
  52. #include <asm/uaccess.h>
  53. #include <linux/atomic.h>
  54. #include "internal.h"
  55. #include "iostat.h"
  56. #include "pnfs.h"
  57. #define NFSDBG_FACILITY NFSDBG_VFS
  58. static struct kmem_cache *nfs_direct_cachep;
  59. /*
  60. * This represents a set of asynchronous requests that we're waiting on
  61. */
  62. struct nfs_direct_mirror {
  63. ssize_t count;
  64. };
  65. struct nfs_direct_req {
  66. struct kref kref; /* release manager */
  67. /* I/O parameters */
  68. struct nfs_open_context *ctx; /* file open context info */
  69. struct nfs_lock_context *l_ctx; /* Lock context info */
  70. struct kiocb * iocb; /* controlling i/o request */
  71. struct inode * inode; /* target file of i/o */
  72. /* completion state */
  73. atomic_t io_count; /* i/os we're waiting for */
  74. spinlock_t lock; /* protect completion state */
  75. struct nfs_direct_mirror mirrors[NFS_PAGEIO_DESCRIPTOR_MIRROR_MAX];
  76. int mirror_count;
  77. loff_t io_start; /* Start offset for I/O */
  78. ssize_t count, /* bytes actually processed */
  79. bytes_left, /* bytes left to be sent */
  80. error; /* any reported error */
  81. struct completion completion; /* wait for i/o completion */
  82. /* commit state */
  83. struct nfs_mds_commit_info mds_cinfo; /* Storage for cinfo */
  84. struct pnfs_ds_commit_info ds_cinfo; /* Storage for cinfo */
  85. struct work_struct work;
  86. int flags;
  87. #define NFS_ODIRECT_DO_COMMIT (1) /* an unstable reply was received */
  88. #define NFS_ODIRECT_RESCHED_WRITES (2) /* write verification failed */
  89. struct nfs_writeverf verf; /* unstable write verifier */
  90. };
  91. static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops;
  92. static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops;
  93. static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode);
  94. static void nfs_direct_write_schedule_work(struct work_struct *work);
  95. static inline void get_dreq(struct nfs_direct_req *dreq)
  96. {
  97. atomic_inc(&dreq->io_count);
  98. }
  99. static inline int put_dreq(struct nfs_direct_req *dreq)
  100. {
  101. return atomic_dec_and_test(&dreq->io_count);
  102. }
  103. void nfs_direct_set_resched_writes(struct nfs_direct_req *dreq)
  104. {
  105. dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
  106. }
  107. EXPORT_SYMBOL_GPL(nfs_direct_set_resched_writes);
  108. static void
  109. nfs_direct_good_bytes(struct nfs_direct_req *dreq, struct nfs_pgio_header *hdr)
  110. {
  111. int i;
  112. ssize_t count;
  113. if (dreq->mirror_count == 1) {
  114. dreq->mirrors[hdr->pgio_mirror_idx].count += hdr->good_bytes;
  115. dreq->count += hdr->good_bytes;
  116. } else {
  117. /* mirrored writes */
  118. count = dreq->mirrors[hdr->pgio_mirror_idx].count;
  119. if (count + dreq->io_start < hdr->io_start + hdr->good_bytes) {
  120. count = hdr->io_start + hdr->good_bytes - dreq->io_start;
  121. dreq->mirrors[hdr->pgio_mirror_idx].count = count;
  122. }
  123. /* update the dreq->count by finding the minimum agreed count from all
  124. * mirrors */
  125. count = dreq->mirrors[0].count;
  126. for (i = 1; i < dreq->mirror_count; i++)
  127. count = min(count, dreq->mirrors[i].count);
  128. dreq->count = count;
  129. }
  130. }
  131. /*
  132. * nfs_direct_select_verf - select the right verifier
  133. * @dreq - direct request possibly spanning multiple servers
  134. * @ds_clp - nfs_client of data server or NULL if MDS / non-pnfs
  135. * @commit_idx - commit bucket index for the DS
  136. *
  137. * returns the correct verifier to use given the role of the server
  138. */
  139. static struct nfs_writeverf *
  140. nfs_direct_select_verf(struct nfs_direct_req *dreq,
  141. struct nfs_client *ds_clp,
  142. int commit_idx)
  143. {
  144. struct nfs_writeverf *verfp = &dreq->verf;
  145. #ifdef CONFIG_NFS_V4_1
  146. /*
  147. * pNFS is in use, use the DS verf except commit_through_mds is set
  148. * for layout segment where nbuckets is zero.
  149. */
  150. if (ds_clp && dreq->ds_cinfo.nbuckets > 0) {
  151. if (commit_idx >= 0 && commit_idx < dreq->ds_cinfo.nbuckets)
  152. verfp = &dreq->ds_cinfo.buckets[commit_idx].direct_verf;
  153. else
  154. WARN_ON_ONCE(1);
  155. }
  156. #endif
  157. return verfp;
  158. }
  159. /*
  160. * nfs_direct_set_hdr_verf - set the write/commit verifier
  161. * @dreq - direct request possibly spanning multiple servers
  162. * @hdr - pageio header to validate against previously seen verfs
  163. *
  164. * Set the server's (MDS or DS) "seen" verifier
  165. */
  166. static void nfs_direct_set_hdr_verf(struct nfs_direct_req *dreq,
  167. struct nfs_pgio_header *hdr)
  168. {
  169. struct nfs_writeverf *verfp;
  170. verfp = nfs_direct_select_verf(dreq, hdr->ds_clp, hdr->ds_commit_idx);
  171. WARN_ON_ONCE(verfp->committed >= 0);
  172. memcpy(verfp, &hdr->verf, sizeof(struct nfs_writeverf));
  173. WARN_ON_ONCE(verfp->committed < 0);
  174. }
  175. /*
  176. * nfs_direct_cmp_hdr_verf - compare verifier for pgio header
  177. * @dreq - direct request possibly spanning multiple servers
  178. * @hdr - pageio header to validate against previously seen verf
  179. *
  180. * set the server's "seen" verf if not initialized.
  181. * returns result of comparison between @hdr->verf and the "seen"
  182. * verf of the server used by @hdr (DS or MDS)
  183. */
  184. static int nfs_direct_set_or_cmp_hdr_verf(struct nfs_direct_req *dreq,
  185. struct nfs_pgio_header *hdr)
  186. {
  187. struct nfs_writeverf *verfp;
  188. verfp = nfs_direct_select_verf(dreq, hdr->ds_clp, hdr->ds_commit_idx);
  189. if (verfp->committed < 0) {
  190. nfs_direct_set_hdr_verf(dreq, hdr);
  191. return 0;
  192. }
  193. return memcmp(verfp, &hdr->verf, sizeof(struct nfs_writeverf));
  194. }
  195. /*
  196. * nfs_direct_cmp_commit_data_verf - compare verifier for commit data
  197. * @dreq - direct request possibly spanning multiple servers
  198. * @data - commit data to validate against previously seen verf
  199. *
  200. * returns result of comparison between @data->verf and the verf of
  201. * the server used by @data (DS or MDS)
  202. */
  203. static int nfs_direct_cmp_commit_data_verf(struct nfs_direct_req *dreq,
  204. struct nfs_commit_data *data)
  205. {
  206. struct nfs_writeverf *verfp;
  207. verfp = nfs_direct_select_verf(dreq, data->ds_clp,
  208. data->ds_commit_index);
  209. /* verifier not set so always fail */
  210. if (verfp->committed < 0)
  211. return 1;
  212. return memcmp(verfp, &data->verf, sizeof(struct nfs_writeverf));
  213. }
  214. /**
  215. * nfs_direct_IO - NFS address space operation for direct I/O
  216. * @iocb: target I/O control block
  217. * @iov: array of vectors that define I/O buffer
  218. * @pos: offset in file to begin the operation
  219. * @nr_segs: size of iovec array
  220. *
  221. * The presence of this routine in the address space ops vector means
  222. * the NFS client supports direct I/O. However, for most direct IO, we
  223. * shunt off direct read and write requests before the VFS gets them,
  224. * so this method is only ever called for swap.
  225. */
  226. ssize_t nfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter, loff_t pos)
  227. {
  228. struct inode *inode = iocb->ki_filp->f_mapping->host;
  229. /* we only support swap file calling nfs_direct_IO */
  230. if (!IS_SWAPFILE(inode))
  231. return 0;
  232. VM_BUG_ON(iov_iter_count(iter) != PAGE_SIZE);
  233. if (iov_iter_rw(iter) == READ)
  234. return nfs_file_direct_read(iocb, iter, pos);
  235. return nfs_file_direct_write(iocb, iter);
  236. }
  237. static void nfs_direct_release_pages(struct page **pages, unsigned int npages)
  238. {
  239. unsigned int i;
  240. for (i = 0; i < npages; i++)
  241. page_cache_release(pages[i]);
  242. }
  243. void nfs_init_cinfo_from_dreq(struct nfs_commit_info *cinfo,
  244. struct nfs_direct_req *dreq)
  245. {
  246. cinfo->lock = &dreq->inode->i_lock;
  247. cinfo->mds = &dreq->mds_cinfo;
  248. cinfo->ds = &dreq->ds_cinfo;
  249. cinfo->dreq = dreq;
  250. cinfo->completion_ops = &nfs_direct_commit_completion_ops;
  251. }
  252. static inline void nfs_direct_setup_mirroring(struct nfs_direct_req *dreq,
  253. struct nfs_pageio_descriptor *pgio,
  254. struct nfs_page *req)
  255. {
  256. int mirror_count = 1;
  257. if (pgio->pg_ops->pg_get_mirror_count)
  258. mirror_count = pgio->pg_ops->pg_get_mirror_count(pgio, req);
  259. dreq->mirror_count = mirror_count;
  260. }
  261. static inline struct nfs_direct_req *nfs_direct_req_alloc(void)
  262. {
  263. struct nfs_direct_req *dreq;
  264. dreq = kmem_cache_zalloc(nfs_direct_cachep, GFP_KERNEL);
  265. if (!dreq)
  266. return NULL;
  267. kref_init(&dreq->kref);
  268. kref_get(&dreq->kref);
  269. init_completion(&dreq->completion);
  270. INIT_LIST_HEAD(&dreq->mds_cinfo.list);
  271. dreq->verf.committed = NFS_INVALID_STABLE_HOW; /* not set yet */
  272. INIT_WORK(&dreq->work, nfs_direct_write_schedule_work);
  273. dreq->mirror_count = 1;
  274. spin_lock_init(&dreq->lock);
  275. return dreq;
  276. }
  277. static void nfs_direct_req_free(struct kref *kref)
  278. {
  279. struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref);
  280. nfs_free_pnfs_ds_cinfo(&dreq->ds_cinfo);
  281. if (dreq->l_ctx != NULL)
  282. nfs_put_lock_context(dreq->l_ctx);
  283. if (dreq->ctx != NULL)
  284. put_nfs_open_context(dreq->ctx);
  285. kmem_cache_free(nfs_direct_cachep, dreq);
  286. }
  287. static void nfs_direct_req_release(struct nfs_direct_req *dreq)
  288. {
  289. kref_put(&dreq->kref, nfs_direct_req_free);
  290. }
  291. ssize_t nfs_dreq_bytes_left(struct nfs_direct_req *dreq)
  292. {
  293. return dreq->bytes_left;
  294. }
  295. EXPORT_SYMBOL_GPL(nfs_dreq_bytes_left);
  296. /*
  297. * Collects and returns the final error value/byte-count.
  298. */
  299. static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq)
  300. {
  301. ssize_t result = -EIOCBQUEUED;
  302. /* Async requests don't wait here */
  303. if (dreq->iocb)
  304. goto out;
  305. result = wait_for_completion_killable(&dreq->completion);
  306. if (!result)
  307. result = dreq->error;
  308. if (!result)
  309. result = dreq->count;
  310. out:
  311. return (ssize_t) result;
  312. }
  313. /*
  314. * Synchronous I/O uses a stack-allocated iocb. Thus we can't trust
  315. * the iocb is still valid here if this is a synchronous request.
  316. */
  317. static void nfs_direct_complete(struct nfs_direct_req *dreq, bool write)
  318. {
  319. struct inode *inode = dreq->inode;
  320. if (dreq->iocb && write) {
  321. loff_t pos = dreq->iocb->ki_pos + dreq->count;
  322. spin_lock(&inode->i_lock);
  323. if (i_size_read(inode) < pos)
  324. i_size_write(inode, pos);
  325. spin_unlock(&inode->i_lock);
  326. }
  327. if (write)
  328. nfs_zap_mapping(inode, inode->i_mapping);
  329. inode_dio_end(inode);
  330. if (dreq->iocb) {
  331. long res = (long) dreq->error;
  332. if (!res)
  333. res = (long) dreq->count;
  334. dreq->iocb->ki_complete(dreq->iocb, res, 0);
  335. }
  336. complete_all(&dreq->completion);
  337. nfs_direct_req_release(dreq);
  338. }
  339. static void nfs_direct_readpage_release(struct nfs_page *req)
  340. {
  341. dprintk("NFS: direct read done (%s/%llu %d@%lld)\n",
  342. d_inode(req->wb_context->dentry)->i_sb->s_id,
  343. (unsigned long long)NFS_FILEID(d_inode(req->wb_context->dentry)),
  344. req->wb_bytes,
  345. (long long)req_offset(req));
  346. nfs_release_request(req);
  347. }
  348. static void nfs_direct_read_completion(struct nfs_pgio_header *hdr)
  349. {
  350. unsigned long bytes = 0;
  351. struct nfs_direct_req *dreq = hdr->dreq;
  352. if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
  353. goto out_put;
  354. spin_lock(&dreq->lock);
  355. if (test_bit(NFS_IOHDR_ERROR, &hdr->flags) && (hdr->good_bytes == 0))
  356. dreq->error = hdr->error;
  357. else
  358. nfs_direct_good_bytes(dreq, hdr);
  359. spin_unlock(&dreq->lock);
  360. while (!list_empty(&hdr->pages)) {
  361. struct nfs_page *req = nfs_list_entry(hdr->pages.next);
  362. struct page *page = req->wb_page;
  363. if (!PageCompound(page) && bytes < hdr->good_bytes)
  364. set_page_dirty(page);
  365. bytes += req->wb_bytes;
  366. nfs_list_remove_request(req);
  367. nfs_direct_readpage_release(req);
  368. }
  369. out_put:
  370. if (put_dreq(dreq))
  371. nfs_direct_complete(dreq, false);
  372. hdr->release(hdr);
  373. }
  374. static void nfs_read_sync_pgio_error(struct list_head *head)
  375. {
  376. struct nfs_page *req;
  377. while (!list_empty(head)) {
  378. req = nfs_list_entry(head->next);
  379. nfs_list_remove_request(req);
  380. nfs_release_request(req);
  381. }
  382. }
  383. static void nfs_direct_pgio_init(struct nfs_pgio_header *hdr)
  384. {
  385. get_dreq(hdr->dreq);
  386. }
  387. static const struct nfs_pgio_completion_ops nfs_direct_read_completion_ops = {
  388. .error_cleanup = nfs_read_sync_pgio_error,
  389. .init_hdr = nfs_direct_pgio_init,
  390. .completion = nfs_direct_read_completion,
  391. };
  392. /*
  393. * For each rsize'd chunk of the user's buffer, dispatch an NFS READ
  394. * operation. If nfs_readdata_alloc() or get_user_pages() fails,
  395. * bail and stop sending more reads. Read length accounting is
  396. * handled automatically by nfs_direct_read_result(). Otherwise, if
  397. * no requests have been sent, just return an error.
  398. */
  399. static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq,
  400. struct iov_iter *iter,
  401. loff_t pos)
  402. {
  403. struct nfs_pageio_descriptor desc;
  404. struct inode *inode = dreq->inode;
  405. ssize_t result = -EINVAL;
  406. size_t requested_bytes = 0;
  407. size_t rsize = max_t(size_t, NFS_SERVER(inode)->rsize, PAGE_SIZE);
  408. nfs_pageio_init_read(&desc, dreq->inode, false,
  409. &nfs_direct_read_completion_ops);
  410. get_dreq(dreq);
  411. desc.pg_dreq = dreq;
  412. inode_dio_begin(inode);
  413. while (iov_iter_count(iter)) {
  414. struct page **pagevec;
  415. size_t bytes;
  416. size_t pgbase;
  417. unsigned npages, i;
  418. result = iov_iter_get_pages_alloc(iter, &pagevec,
  419. rsize, &pgbase);
  420. if (result < 0)
  421. break;
  422. bytes = result;
  423. iov_iter_advance(iter, bytes);
  424. npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE;
  425. for (i = 0; i < npages; i++) {
  426. struct nfs_page *req;
  427. unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
  428. /* XXX do we need to do the eof zeroing found in async_filler? */
  429. req = nfs_create_request(dreq->ctx, pagevec[i], NULL,
  430. pgbase, req_len);
  431. if (IS_ERR(req)) {
  432. result = PTR_ERR(req);
  433. break;
  434. }
  435. req->wb_index = pos >> PAGE_SHIFT;
  436. req->wb_offset = pos & ~PAGE_MASK;
  437. if (!nfs_pageio_add_request(&desc, req)) {
  438. result = desc.pg_error;
  439. nfs_release_request(req);
  440. break;
  441. }
  442. pgbase = 0;
  443. bytes -= req_len;
  444. requested_bytes += req_len;
  445. pos += req_len;
  446. dreq->bytes_left -= req_len;
  447. }
  448. nfs_direct_release_pages(pagevec, npages);
  449. kvfree(pagevec);
  450. if (result < 0)
  451. break;
  452. }
  453. nfs_pageio_complete(&desc);
  454. /*
  455. * If no bytes were started, return the error, and let the
  456. * generic layer handle the completion.
  457. */
  458. if (requested_bytes == 0) {
  459. inode_dio_end(inode);
  460. nfs_direct_req_release(dreq);
  461. return result < 0 ? result : -EIO;
  462. }
  463. if (put_dreq(dreq))
  464. nfs_direct_complete(dreq, false);
  465. return 0;
  466. }
  467. /**
  468. * nfs_file_direct_read - file direct read operation for NFS files
  469. * @iocb: target I/O control block
  470. * @iter: vector of user buffers into which to read data
  471. * @pos: byte offset in file where reading starts
  472. *
  473. * We use this function for direct reads instead of calling
  474. * generic_file_aio_read() in order to avoid gfar's check to see if
  475. * the request starts before the end of the file. For that check
  476. * to work, we must generate a GETATTR before each direct read, and
  477. * even then there is a window between the GETATTR and the subsequent
  478. * READ where the file size could change. Our preference is simply
  479. * to do all reads the application wants, and the server will take
  480. * care of managing the end of file boundary.
  481. *
  482. * This function also eliminates unnecessarily updating the file's
  483. * atime locally, as the NFS server sets the file's atime, and this
  484. * client must read the updated atime from the server back into its
  485. * cache.
  486. */
  487. ssize_t nfs_file_direct_read(struct kiocb *iocb, struct iov_iter *iter,
  488. loff_t pos)
  489. {
  490. struct file *file = iocb->ki_filp;
  491. struct address_space *mapping = file->f_mapping;
  492. struct inode *inode = mapping->host;
  493. struct nfs_direct_req *dreq;
  494. struct nfs_lock_context *l_ctx;
  495. ssize_t result = -EINVAL;
  496. size_t count = iov_iter_count(iter);
  497. nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count);
  498. dfprintk(FILE, "NFS: direct read(%pD2, %zd@%Ld)\n",
  499. file, count, (long long) pos);
  500. result = 0;
  501. if (!count)
  502. goto out;
  503. mutex_lock(&inode->i_mutex);
  504. result = nfs_sync_mapping(mapping);
  505. if (result)
  506. goto out_unlock;
  507. task_io_account_read(count);
  508. result = -ENOMEM;
  509. dreq = nfs_direct_req_alloc();
  510. if (dreq == NULL)
  511. goto out_unlock;
  512. dreq->inode = inode;
  513. dreq->bytes_left = count;
  514. dreq->io_start = pos;
  515. dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
  516. l_ctx = nfs_get_lock_context(dreq->ctx);
  517. if (IS_ERR(l_ctx)) {
  518. result = PTR_ERR(l_ctx);
  519. goto out_release;
  520. }
  521. dreq->l_ctx = l_ctx;
  522. if (!is_sync_kiocb(iocb))
  523. dreq->iocb = iocb;
  524. NFS_I(inode)->read_io += count;
  525. result = nfs_direct_read_schedule_iovec(dreq, iter, pos);
  526. mutex_unlock(&inode->i_mutex);
  527. if (!result) {
  528. result = nfs_direct_wait(dreq);
  529. if (result > 0)
  530. iocb->ki_pos = pos + result;
  531. }
  532. nfs_direct_req_release(dreq);
  533. return result;
  534. out_release:
  535. nfs_direct_req_release(dreq);
  536. out_unlock:
  537. mutex_unlock(&inode->i_mutex);
  538. out:
  539. return result;
  540. }
  541. static void
  542. nfs_direct_write_scan_commit_list(struct inode *inode,
  543. struct list_head *list,
  544. struct nfs_commit_info *cinfo)
  545. {
  546. spin_lock(cinfo->lock);
  547. #ifdef CONFIG_NFS_V4_1
  548. if (cinfo->ds != NULL && cinfo->ds->nwritten != 0)
  549. NFS_SERVER(inode)->pnfs_curr_ld->recover_commit_reqs(list, cinfo);
  550. #endif
  551. nfs_scan_commit_list(&cinfo->mds->list, list, cinfo, 0);
  552. spin_unlock(cinfo->lock);
  553. }
  554. static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq)
  555. {
  556. struct nfs_pageio_descriptor desc;
  557. struct nfs_page *req, *tmp;
  558. LIST_HEAD(reqs);
  559. struct nfs_commit_info cinfo;
  560. LIST_HEAD(failed);
  561. int i;
  562. nfs_init_cinfo_from_dreq(&cinfo, dreq);
  563. nfs_direct_write_scan_commit_list(dreq->inode, &reqs, &cinfo);
  564. dreq->count = 0;
  565. for (i = 0; i < dreq->mirror_count; i++)
  566. dreq->mirrors[i].count = 0;
  567. get_dreq(dreq);
  568. nfs_pageio_init_write(&desc, dreq->inode, FLUSH_STABLE, false,
  569. &nfs_direct_write_completion_ops);
  570. desc.pg_dreq = dreq;
  571. req = nfs_list_entry(reqs.next);
  572. nfs_direct_setup_mirroring(dreq, &desc, req);
  573. if (desc.pg_error < 0) {
  574. list_splice_init(&reqs, &failed);
  575. goto out_failed;
  576. }
  577. list_for_each_entry_safe(req, tmp, &reqs, wb_list) {
  578. if (!nfs_pageio_add_request(&desc, req)) {
  579. nfs_list_remove_request(req);
  580. nfs_list_add_request(req, &failed);
  581. spin_lock(cinfo.lock);
  582. dreq->flags = 0;
  583. if (desc.pg_error < 0)
  584. dreq->error = desc.pg_error;
  585. else
  586. dreq->error = -EIO;
  587. spin_unlock(cinfo.lock);
  588. }
  589. nfs_release_request(req);
  590. }
  591. nfs_pageio_complete(&desc);
  592. out_failed:
  593. while (!list_empty(&failed)) {
  594. req = nfs_list_entry(failed.next);
  595. nfs_list_remove_request(req);
  596. nfs_unlock_and_release_request(req);
  597. }
  598. if (put_dreq(dreq))
  599. nfs_direct_write_complete(dreq, dreq->inode);
  600. }
  601. static void nfs_direct_commit_complete(struct nfs_commit_data *data)
  602. {
  603. struct nfs_direct_req *dreq = data->dreq;
  604. struct nfs_commit_info cinfo;
  605. struct nfs_page *req;
  606. int status = data->task.tk_status;
  607. nfs_init_cinfo_from_dreq(&cinfo, dreq);
  608. if (status < 0) {
  609. dprintk("NFS: %5u commit failed with error %d.\n",
  610. data->task.tk_pid, status);
  611. dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
  612. } else if (nfs_direct_cmp_commit_data_verf(dreq, data)) {
  613. dprintk("NFS: %5u commit verify failed\n", data->task.tk_pid);
  614. dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
  615. }
  616. dprintk("NFS: %5u commit returned %d\n", data->task.tk_pid, status);
  617. while (!list_empty(&data->pages)) {
  618. req = nfs_list_entry(data->pages.next);
  619. nfs_list_remove_request(req);
  620. if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES) {
  621. /* Note the rewrite will go through mds */
  622. nfs_mark_request_commit(req, NULL, &cinfo, 0);
  623. } else
  624. nfs_release_request(req);
  625. nfs_unlock_and_release_request(req);
  626. }
  627. if (atomic_dec_and_test(&cinfo.mds->rpcs_out))
  628. nfs_direct_write_complete(dreq, data->inode);
  629. }
  630. static void nfs_direct_error_cleanup(struct nfs_inode *nfsi)
  631. {
  632. /* There is no lock to clear */
  633. }
  634. static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops = {
  635. .completion = nfs_direct_commit_complete,
  636. .error_cleanup = nfs_direct_error_cleanup,
  637. };
  638. static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq)
  639. {
  640. int res;
  641. struct nfs_commit_info cinfo;
  642. LIST_HEAD(mds_list);
  643. nfs_init_cinfo_from_dreq(&cinfo, dreq);
  644. nfs_scan_commit(dreq->inode, &mds_list, &cinfo);
  645. res = nfs_generic_commit_list(dreq->inode, &mds_list, 0, &cinfo);
  646. if (res < 0) /* res == -ENOMEM */
  647. nfs_direct_write_reschedule(dreq);
  648. }
  649. static void nfs_direct_write_schedule_work(struct work_struct *work)
  650. {
  651. struct nfs_direct_req *dreq = container_of(work, struct nfs_direct_req, work);
  652. int flags = dreq->flags;
  653. dreq->flags = 0;
  654. switch (flags) {
  655. case NFS_ODIRECT_DO_COMMIT:
  656. nfs_direct_commit_schedule(dreq);
  657. break;
  658. case NFS_ODIRECT_RESCHED_WRITES:
  659. nfs_direct_write_reschedule(dreq);
  660. break;
  661. default:
  662. nfs_direct_complete(dreq, true);
  663. }
  664. }
  665. static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
  666. {
  667. schedule_work(&dreq->work); /* Calls nfs_direct_write_schedule_work */
  668. }
  669. static void nfs_direct_write_completion(struct nfs_pgio_header *hdr)
  670. {
  671. struct nfs_direct_req *dreq = hdr->dreq;
  672. struct nfs_commit_info cinfo;
  673. bool request_commit = false;
  674. struct nfs_page *req = nfs_list_entry(hdr->pages.next);
  675. if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
  676. goto out_put;
  677. nfs_init_cinfo_from_dreq(&cinfo, dreq);
  678. spin_lock(&dreq->lock);
  679. if (test_bit(NFS_IOHDR_ERROR, &hdr->flags))
  680. dreq->error = hdr->error;
  681. if (dreq->error == 0) {
  682. nfs_direct_good_bytes(dreq, hdr);
  683. if (nfs_write_need_commit(hdr)) {
  684. if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES)
  685. request_commit = true;
  686. else if (dreq->flags == 0) {
  687. nfs_direct_set_hdr_verf(dreq, hdr);
  688. request_commit = true;
  689. dreq->flags = NFS_ODIRECT_DO_COMMIT;
  690. } else if (dreq->flags == NFS_ODIRECT_DO_COMMIT) {
  691. request_commit = true;
  692. if (nfs_direct_set_or_cmp_hdr_verf(dreq, hdr))
  693. dreq->flags =
  694. NFS_ODIRECT_RESCHED_WRITES;
  695. }
  696. }
  697. }
  698. spin_unlock(&dreq->lock);
  699. while (!list_empty(&hdr->pages)) {
  700. req = nfs_list_entry(hdr->pages.next);
  701. nfs_list_remove_request(req);
  702. if (request_commit) {
  703. kref_get(&req->wb_kref);
  704. nfs_mark_request_commit(req, hdr->lseg, &cinfo,
  705. hdr->ds_commit_idx);
  706. }
  707. nfs_unlock_and_release_request(req);
  708. }
  709. out_put:
  710. if (put_dreq(dreq))
  711. nfs_direct_write_complete(dreq, hdr->inode);
  712. hdr->release(hdr);
  713. }
  714. static void nfs_write_sync_pgio_error(struct list_head *head)
  715. {
  716. struct nfs_page *req;
  717. while (!list_empty(head)) {
  718. req = nfs_list_entry(head->next);
  719. nfs_list_remove_request(req);
  720. nfs_unlock_and_release_request(req);
  721. }
  722. }
  723. static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops = {
  724. .error_cleanup = nfs_write_sync_pgio_error,
  725. .init_hdr = nfs_direct_pgio_init,
  726. .completion = nfs_direct_write_completion,
  727. };
  728. /*
  729. * NB: Return the value of the first error return code. Subsequent
  730. * errors after the first one are ignored.
  731. */
  732. /*
  733. * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE
  734. * operation. If nfs_writedata_alloc() or get_user_pages() fails,
  735. * bail and stop sending more writes. Write length accounting is
  736. * handled automatically by nfs_direct_write_result(). Otherwise, if
  737. * no requests have been sent, just return an error.
  738. */
  739. static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq,
  740. struct iov_iter *iter,
  741. loff_t pos)
  742. {
  743. struct nfs_pageio_descriptor desc;
  744. struct inode *inode = dreq->inode;
  745. ssize_t result = 0;
  746. size_t requested_bytes = 0;
  747. size_t wsize = max_t(size_t, NFS_SERVER(inode)->wsize, PAGE_SIZE);
  748. nfs_pageio_init_write(&desc, inode, FLUSH_COND_STABLE, false,
  749. &nfs_direct_write_completion_ops);
  750. desc.pg_dreq = dreq;
  751. get_dreq(dreq);
  752. inode_dio_begin(inode);
  753. NFS_I(inode)->write_io += iov_iter_count(iter);
  754. while (iov_iter_count(iter)) {
  755. struct page **pagevec;
  756. size_t bytes;
  757. size_t pgbase;
  758. unsigned npages, i;
  759. result = iov_iter_get_pages_alloc(iter, &pagevec,
  760. wsize, &pgbase);
  761. if (result < 0)
  762. break;
  763. bytes = result;
  764. iov_iter_advance(iter, bytes);
  765. npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE;
  766. for (i = 0; i < npages; i++) {
  767. struct nfs_page *req;
  768. unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
  769. req = nfs_create_request(dreq->ctx, pagevec[i], NULL,
  770. pgbase, req_len);
  771. if (IS_ERR(req)) {
  772. result = PTR_ERR(req);
  773. break;
  774. }
  775. nfs_direct_setup_mirroring(dreq, &desc, req);
  776. if (desc.pg_error < 0) {
  777. nfs_free_request(req);
  778. result = desc.pg_error;
  779. break;
  780. }
  781. nfs_lock_request(req);
  782. req->wb_index = pos >> PAGE_SHIFT;
  783. req->wb_offset = pos & ~PAGE_MASK;
  784. if (!nfs_pageio_add_request(&desc, req)) {
  785. result = desc.pg_error;
  786. nfs_unlock_and_release_request(req);
  787. break;
  788. }
  789. pgbase = 0;
  790. bytes -= req_len;
  791. requested_bytes += req_len;
  792. pos += req_len;
  793. dreq->bytes_left -= req_len;
  794. }
  795. nfs_direct_release_pages(pagevec, npages);
  796. kvfree(pagevec);
  797. if (result < 0)
  798. break;
  799. }
  800. nfs_pageio_complete(&desc);
  801. /*
  802. * If no bytes were started, return the error, and let the
  803. * generic layer handle the completion.
  804. */
  805. if (requested_bytes == 0) {
  806. inode_dio_end(inode);
  807. nfs_direct_req_release(dreq);
  808. return result < 0 ? result : -EIO;
  809. }
  810. if (put_dreq(dreq))
  811. nfs_direct_write_complete(dreq, dreq->inode);
  812. return 0;
  813. }
  814. /**
  815. * nfs_file_direct_write - file direct write operation for NFS files
  816. * @iocb: target I/O control block
  817. * @iter: vector of user buffers from which to write data
  818. * @pos: byte offset in file where writing starts
  819. *
  820. * We use this function for direct writes instead of calling
  821. * generic_file_aio_write() in order to avoid taking the inode
  822. * semaphore and updating the i_size. The NFS server will set
  823. * the new i_size and this client must read the updated size
  824. * back into its cache. We let the server do generic write
  825. * parameter checking and report problems.
  826. *
  827. * We eliminate local atime updates, see direct read above.
  828. *
  829. * We avoid unnecessary page cache invalidations for normal cached
  830. * readers of this file.
  831. *
  832. * Note that O_APPEND is not supported for NFS direct writes, as there
  833. * is no atomic O_APPEND write facility in the NFS protocol.
  834. */
  835. ssize_t nfs_file_direct_write(struct kiocb *iocb, struct iov_iter *iter)
  836. {
  837. ssize_t result = -EINVAL;
  838. struct file *file = iocb->ki_filp;
  839. struct address_space *mapping = file->f_mapping;
  840. struct inode *inode = mapping->host;
  841. struct nfs_direct_req *dreq;
  842. struct nfs_lock_context *l_ctx;
  843. loff_t pos, end;
  844. dfprintk(FILE, "NFS: direct write(%pD2, %zd@%Ld)\n",
  845. file, iov_iter_count(iter), (long long) iocb->ki_pos);
  846. nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES,
  847. iov_iter_count(iter));
  848. pos = iocb->ki_pos;
  849. end = (pos + iov_iter_count(iter) - 1) >> PAGE_CACHE_SHIFT;
  850. mutex_lock(&inode->i_mutex);
  851. result = nfs_sync_mapping(mapping);
  852. if (result)
  853. goto out_unlock;
  854. if (mapping->nrpages) {
  855. result = invalidate_inode_pages2_range(mapping,
  856. pos >> PAGE_CACHE_SHIFT, end);
  857. if (result)
  858. goto out_unlock;
  859. }
  860. task_io_account_write(iov_iter_count(iter));
  861. result = -ENOMEM;
  862. dreq = nfs_direct_req_alloc();
  863. if (!dreq)
  864. goto out_unlock;
  865. dreq->inode = inode;
  866. dreq->bytes_left = iov_iter_count(iter);
  867. dreq->io_start = pos;
  868. dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
  869. l_ctx = nfs_get_lock_context(dreq->ctx);
  870. if (IS_ERR(l_ctx)) {
  871. result = PTR_ERR(l_ctx);
  872. goto out_release;
  873. }
  874. dreq->l_ctx = l_ctx;
  875. if (!is_sync_kiocb(iocb))
  876. dreq->iocb = iocb;
  877. result = nfs_direct_write_schedule_iovec(dreq, iter, pos);
  878. if (mapping->nrpages) {
  879. invalidate_inode_pages2_range(mapping,
  880. pos >> PAGE_CACHE_SHIFT, end);
  881. }
  882. mutex_unlock(&inode->i_mutex);
  883. if (!result) {
  884. result = nfs_direct_wait(dreq);
  885. if (result > 0) {
  886. struct inode *inode = mapping->host;
  887. iocb->ki_pos = pos + result;
  888. spin_lock(&inode->i_lock);
  889. if (i_size_read(inode) < iocb->ki_pos)
  890. i_size_write(inode, iocb->ki_pos);
  891. spin_unlock(&inode->i_lock);
  892. generic_write_sync(file, pos, result);
  893. }
  894. }
  895. nfs_direct_req_release(dreq);
  896. return result;
  897. out_release:
  898. nfs_direct_req_release(dreq);
  899. out_unlock:
  900. mutex_unlock(&inode->i_mutex);
  901. return result;
  902. }
  903. /**
  904. * nfs_init_directcache - create a slab cache for nfs_direct_req structures
  905. *
  906. */
  907. int __init nfs_init_directcache(void)
  908. {
  909. nfs_direct_cachep = kmem_cache_create("nfs_direct_cache",
  910. sizeof(struct nfs_direct_req),
  911. 0, (SLAB_RECLAIM_ACCOUNT|
  912. SLAB_MEM_SPREAD),
  913. NULL);
  914. if (nfs_direct_cachep == NULL)
  915. return -ENOMEM;
  916. return 0;
  917. }
  918. /**
  919. * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures
  920. *
  921. */
  922. void nfs_destroy_directcache(void)
  923. {
  924. kmem_cache_destroy(nfs_direct_cachep);
  925. }