xfs_ialloc.c 72 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658
  1. /*
  2. * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
  3. * All Rights Reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it would be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write the Free Software Foundation,
  16. * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  17. */
  18. #include "xfs.h"
  19. #include "xfs_fs.h"
  20. #include "xfs_shared.h"
  21. #include "xfs_format.h"
  22. #include "xfs_log_format.h"
  23. #include "xfs_trans_resv.h"
  24. #include "xfs_bit.h"
  25. #include "xfs_sb.h"
  26. #include "xfs_mount.h"
  27. #include "xfs_inode.h"
  28. #include "xfs_btree.h"
  29. #include "xfs_ialloc.h"
  30. #include "xfs_ialloc_btree.h"
  31. #include "xfs_alloc.h"
  32. #include "xfs_rtalloc.h"
  33. #include "xfs_error.h"
  34. #include "xfs_bmap.h"
  35. #include "xfs_cksum.h"
  36. #include "xfs_trans.h"
  37. #include "xfs_buf_item.h"
  38. #include "xfs_icreate_item.h"
  39. #include "xfs_icache.h"
  40. #include "xfs_trace.h"
  41. #include "xfs_log.h"
  42. /*
  43. * Allocation group level functions.
  44. */
  45. static inline int
  46. xfs_ialloc_cluster_alignment(
  47. struct xfs_mount *mp)
  48. {
  49. if (xfs_sb_version_hasalign(&mp->m_sb) &&
  50. mp->m_sb.sb_inoalignmt >=
  51. XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
  52. return mp->m_sb.sb_inoalignmt;
  53. return 1;
  54. }
  55. /*
  56. * Lookup a record by ino in the btree given by cur.
  57. */
  58. int /* error */
  59. xfs_inobt_lookup(
  60. struct xfs_btree_cur *cur, /* btree cursor */
  61. xfs_agino_t ino, /* starting inode of chunk */
  62. xfs_lookup_t dir, /* <=, >=, == */
  63. int *stat) /* success/failure */
  64. {
  65. cur->bc_rec.i.ir_startino = ino;
  66. cur->bc_rec.i.ir_holemask = 0;
  67. cur->bc_rec.i.ir_count = 0;
  68. cur->bc_rec.i.ir_freecount = 0;
  69. cur->bc_rec.i.ir_free = 0;
  70. return xfs_btree_lookup(cur, dir, stat);
  71. }
  72. /*
  73. * Update the record referred to by cur to the value given.
  74. * This either works (return 0) or gets an EFSCORRUPTED error.
  75. */
  76. STATIC int /* error */
  77. xfs_inobt_update(
  78. struct xfs_btree_cur *cur, /* btree cursor */
  79. xfs_inobt_rec_incore_t *irec) /* btree record */
  80. {
  81. union xfs_btree_rec rec;
  82. rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino);
  83. if (xfs_sb_version_hassparseinodes(&cur->bc_mp->m_sb)) {
  84. rec.inobt.ir_u.sp.ir_holemask = cpu_to_be16(irec->ir_holemask);
  85. rec.inobt.ir_u.sp.ir_count = irec->ir_count;
  86. rec.inobt.ir_u.sp.ir_freecount = irec->ir_freecount;
  87. } else {
  88. /* ir_holemask/ir_count not supported on-disk */
  89. rec.inobt.ir_u.f.ir_freecount = cpu_to_be32(irec->ir_freecount);
  90. }
  91. rec.inobt.ir_free = cpu_to_be64(irec->ir_free);
  92. return xfs_btree_update(cur, &rec);
  93. }
  94. /*
  95. * Get the data from the pointed-to record.
  96. */
  97. int /* error */
  98. xfs_inobt_get_rec(
  99. struct xfs_btree_cur *cur, /* btree cursor */
  100. xfs_inobt_rec_incore_t *irec, /* btree record */
  101. int *stat) /* output: success/failure */
  102. {
  103. union xfs_btree_rec *rec;
  104. int error;
  105. error = xfs_btree_get_rec(cur, &rec, stat);
  106. if (error || *stat == 0)
  107. return error;
  108. irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino);
  109. if (xfs_sb_version_hassparseinodes(&cur->bc_mp->m_sb)) {
  110. irec->ir_holemask = be16_to_cpu(rec->inobt.ir_u.sp.ir_holemask);
  111. irec->ir_count = rec->inobt.ir_u.sp.ir_count;
  112. irec->ir_freecount = rec->inobt.ir_u.sp.ir_freecount;
  113. } else {
  114. /*
  115. * ir_holemask/ir_count not supported on-disk. Fill in hardcoded
  116. * values for full inode chunks.
  117. */
  118. irec->ir_holemask = XFS_INOBT_HOLEMASK_FULL;
  119. irec->ir_count = XFS_INODES_PER_CHUNK;
  120. irec->ir_freecount =
  121. be32_to_cpu(rec->inobt.ir_u.f.ir_freecount);
  122. }
  123. irec->ir_free = be64_to_cpu(rec->inobt.ir_free);
  124. return 0;
  125. }
  126. /*
  127. * Insert a single inobt record. Cursor must already point to desired location.
  128. */
  129. STATIC int
  130. xfs_inobt_insert_rec(
  131. struct xfs_btree_cur *cur,
  132. __uint16_t holemask,
  133. __uint8_t count,
  134. __int32_t freecount,
  135. xfs_inofree_t free,
  136. int *stat)
  137. {
  138. cur->bc_rec.i.ir_holemask = holemask;
  139. cur->bc_rec.i.ir_count = count;
  140. cur->bc_rec.i.ir_freecount = freecount;
  141. cur->bc_rec.i.ir_free = free;
  142. return xfs_btree_insert(cur, stat);
  143. }
  144. /*
  145. * Insert records describing a newly allocated inode chunk into the inobt.
  146. */
  147. STATIC int
  148. xfs_inobt_insert(
  149. struct xfs_mount *mp,
  150. struct xfs_trans *tp,
  151. struct xfs_buf *agbp,
  152. xfs_agino_t newino,
  153. xfs_agino_t newlen,
  154. xfs_btnum_t btnum)
  155. {
  156. struct xfs_btree_cur *cur;
  157. struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
  158. xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
  159. xfs_agino_t thisino;
  160. int i;
  161. int error;
  162. cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum);
  163. for (thisino = newino;
  164. thisino < newino + newlen;
  165. thisino += XFS_INODES_PER_CHUNK) {
  166. error = xfs_inobt_lookup(cur, thisino, XFS_LOOKUP_EQ, &i);
  167. if (error) {
  168. xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
  169. return error;
  170. }
  171. ASSERT(i == 0);
  172. error = xfs_inobt_insert_rec(cur, XFS_INOBT_HOLEMASK_FULL,
  173. XFS_INODES_PER_CHUNK,
  174. XFS_INODES_PER_CHUNK,
  175. XFS_INOBT_ALL_FREE, &i);
  176. if (error) {
  177. xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
  178. return error;
  179. }
  180. ASSERT(i == 1);
  181. }
  182. xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
  183. return 0;
  184. }
  185. /*
  186. * Verify that the number of free inodes in the AGI is correct.
  187. */
  188. #ifdef DEBUG
  189. STATIC int
  190. xfs_check_agi_freecount(
  191. struct xfs_btree_cur *cur,
  192. struct xfs_agi *agi)
  193. {
  194. if (cur->bc_nlevels == 1) {
  195. xfs_inobt_rec_incore_t rec;
  196. int freecount = 0;
  197. int error;
  198. int i;
  199. error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
  200. if (error)
  201. return error;
  202. do {
  203. error = xfs_inobt_get_rec(cur, &rec, &i);
  204. if (error)
  205. return error;
  206. if (i) {
  207. freecount += rec.ir_freecount;
  208. error = xfs_btree_increment(cur, 0, &i);
  209. if (error)
  210. return error;
  211. }
  212. } while (i == 1);
  213. if (!XFS_FORCED_SHUTDOWN(cur->bc_mp))
  214. ASSERT(freecount == be32_to_cpu(agi->agi_freecount));
  215. }
  216. return 0;
  217. }
  218. #else
  219. #define xfs_check_agi_freecount(cur, agi) 0
  220. #endif
  221. /*
  222. * Initialise a new set of inodes. When called without a transaction context
  223. * (e.g. from recovery) we initiate a delayed write of the inode buffers rather
  224. * than logging them (which in a transaction context puts them into the AIL
  225. * for writeback rather than the xfsbufd queue).
  226. */
  227. int
  228. xfs_ialloc_inode_init(
  229. struct xfs_mount *mp,
  230. struct xfs_trans *tp,
  231. struct list_head *buffer_list,
  232. int icount,
  233. xfs_agnumber_t agno,
  234. xfs_agblock_t agbno,
  235. xfs_agblock_t length,
  236. unsigned int gen)
  237. {
  238. struct xfs_buf *fbuf;
  239. struct xfs_dinode *free;
  240. int nbufs, blks_per_cluster, inodes_per_cluster;
  241. int version;
  242. int i, j;
  243. xfs_daddr_t d;
  244. xfs_ino_t ino = 0;
  245. /*
  246. * Loop over the new block(s), filling in the inodes. For small block
  247. * sizes, manipulate the inodes in buffers which are multiples of the
  248. * blocks size.
  249. */
  250. blks_per_cluster = xfs_icluster_size_fsb(mp);
  251. inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog;
  252. nbufs = length / blks_per_cluster;
  253. /*
  254. * Figure out what version number to use in the inodes we create. If
  255. * the superblock version has caught up to the one that supports the new
  256. * inode format, then use the new inode version. Otherwise use the old
  257. * version so that old kernels will continue to be able to use the file
  258. * system.
  259. *
  260. * For v3 inodes, we also need to write the inode number into the inode,
  261. * so calculate the first inode number of the chunk here as
  262. * XFS_OFFBNO_TO_AGINO() only works within a filesystem block, not
  263. * across multiple filesystem blocks (such as a cluster) and so cannot
  264. * be used in the cluster buffer loop below.
  265. *
  266. * Further, because we are writing the inode directly into the buffer
  267. * and calculating a CRC on the entire inode, we have ot log the entire
  268. * inode so that the entire range the CRC covers is present in the log.
  269. * That means for v3 inode we log the entire buffer rather than just the
  270. * inode cores.
  271. */
  272. if (xfs_sb_version_hascrc(&mp->m_sb)) {
  273. version = 3;
  274. ino = XFS_AGINO_TO_INO(mp, agno,
  275. XFS_OFFBNO_TO_AGINO(mp, agbno, 0));
  276. /*
  277. * log the initialisation that is about to take place as an
  278. * logical operation. This means the transaction does not
  279. * need to log the physical changes to the inode buffers as log
  280. * recovery will know what initialisation is actually needed.
  281. * Hence we only need to log the buffers as "ordered" buffers so
  282. * they track in the AIL as if they were physically logged.
  283. */
  284. if (tp)
  285. xfs_icreate_log(tp, agno, agbno, icount,
  286. mp->m_sb.sb_inodesize, length, gen);
  287. } else
  288. version = 2;
  289. for (j = 0; j < nbufs; j++) {
  290. /*
  291. * Get the block.
  292. */
  293. d = XFS_AGB_TO_DADDR(mp, agno, agbno + (j * blks_per_cluster));
  294. fbuf = xfs_trans_get_buf(tp, mp->m_ddev_targp, d,
  295. mp->m_bsize * blks_per_cluster,
  296. XBF_UNMAPPED);
  297. if (!fbuf)
  298. return -ENOMEM;
  299. /* Initialize the inode buffers and log them appropriately. */
  300. fbuf->b_ops = &xfs_inode_buf_ops;
  301. xfs_buf_zero(fbuf, 0, BBTOB(fbuf->b_length));
  302. for (i = 0; i < inodes_per_cluster; i++) {
  303. int ioffset = i << mp->m_sb.sb_inodelog;
  304. uint isize = xfs_dinode_size(version);
  305. free = xfs_make_iptr(mp, fbuf, i);
  306. free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC);
  307. free->di_version = version;
  308. free->di_gen = cpu_to_be32(gen);
  309. free->di_next_unlinked = cpu_to_be32(NULLAGINO);
  310. if (version == 3) {
  311. free->di_ino = cpu_to_be64(ino);
  312. ino++;
  313. uuid_copy(&free->di_uuid,
  314. &mp->m_sb.sb_meta_uuid);
  315. xfs_dinode_calc_crc(mp, free);
  316. } else if (tp) {
  317. /* just log the inode core */
  318. xfs_trans_log_buf(tp, fbuf, ioffset,
  319. ioffset + isize - 1);
  320. }
  321. }
  322. if (tp) {
  323. /*
  324. * Mark the buffer as an inode allocation buffer so it
  325. * sticks in AIL at the point of this allocation
  326. * transaction. This ensures the they are on disk before
  327. * the tail of the log can be moved past this
  328. * transaction (i.e. by preventing relogging from moving
  329. * it forward in the log).
  330. */
  331. xfs_trans_inode_alloc_buf(tp, fbuf);
  332. if (version == 3) {
  333. /*
  334. * Mark the buffer as ordered so that they are
  335. * not physically logged in the transaction but
  336. * still tracked in the AIL as part of the
  337. * transaction and pin the log appropriately.
  338. */
  339. xfs_trans_ordered_buf(tp, fbuf);
  340. xfs_trans_log_buf(tp, fbuf, 0,
  341. BBTOB(fbuf->b_length) - 1);
  342. }
  343. } else {
  344. fbuf->b_flags |= XBF_DONE;
  345. xfs_buf_delwri_queue(fbuf, buffer_list);
  346. xfs_buf_relse(fbuf);
  347. }
  348. }
  349. return 0;
  350. }
  351. /*
  352. * Align startino and allocmask for a recently allocated sparse chunk such that
  353. * they are fit for insertion (or merge) into the on-disk inode btrees.
  354. *
  355. * Background:
  356. *
  357. * When enabled, sparse inode support increases the inode alignment from cluster
  358. * size to inode chunk size. This means that the minimum range between two
  359. * non-adjacent inode records in the inobt is large enough for a full inode
  360. * record. This allows for cluster sized, cluster aligned block allocation
  361. * without need to worry about whether the resulting inode record overlaps with
  362. * another record in the tree. Without this basic rule, we would have to deal
  363. * with the consequences of overlap by potentially undoing recent allocations in
  364. * the inode allocation codepath.
  365. *
  366. * Because of this alignment rule (which is enforced on mount), there are two
  367. * inobt possibilities for newly allocated sparse chunks. One is that the
  368. * aligned inode record for the chunk covers a range of inodes not already
  369. * covered in the inobt (i.e., it is safe to insert a new sparse record). The
  370. * other is that a record already exists at the aligned startino that considers
  371. * the newly allocated range as sparse. In the latter case, record content is
  372. * merged in hope that sparse inode chunks fill to full chunks over time.
  373. */
  374. STATIC void
  375. xfs_align_sparse_ino(
  376. struct xfs_mount *mp,
  377. xfs_agino_t *startino,
  378. uint16_t *allocmask)
  379. {
  380. xfs_agblock_t agbno;
  381. xfs_agblock_t mod;
  382. int offset;
  383. agbno = XFS_AGINO_TO_AGBNO(mp, *startino);
  384. mod = agbno % mp->m_sb.sb_inoalignmt;
  385. if (!mod)
  386. return;
  387. /* calculate the inode offset and align startino */
  388. offset = mod << mp->m_sb.sb_inopblog;
  389. *startino -= offset;
  390. /*
  391. * Since startino has been aligned down, left shift allocmask such that
  392. * it continues to represent the same physical inodes relative to the
  393. * new startino.
  394. */
  395. *allocmask <<= offset / XFS_INODES_PER_HOLEMASK_BIT;
  396. }
  397. /*
  398. * Determine whether the source inode record can merge into the target. Both
  399. * records must be sparse, the inode ranges must match and there must be no
  400. * allocation overlap between the records.
  401. */
  402. STATIC bool
  403. __xfs_inobt_can_merge(
  404. struct xfs_inobt_rec_incore *trec, /* tgt record */
  405. struct xfs_inobt_rec_incore *srec) /* src record */
  406. {
  407. uint64_t talloc;
  408. uint64_t salloc;
  409. /* records must cover the same inode range */
  410. if (trec->ir_startino != srec->ir_startino)
  411. return false;
  412. /* both records must be sparse */
  413. if (!xfs_inobt_issparse(trec->ir_holemask) ||
  414. !xfs_inobt_issparse(srec->ir_holemask))
  415. return false;
  416. /* both records must track some inodes */
  417. if (!trec->ir_count || !srec->ir_count)
  418. return false;
  419. /* can't exceed capacity of a full record */
  420. if (trec->ir_count + srec->ir_count > XFS_INODES_PER_CHUNK)
  421. return false;
  422. /* verify there is no allocation overlap */
  423. talloc = xfs_inobt_irec_to_allocmask(trec);
  424. salloc = xfs_inobt_irec_to_allocmask(srec);
  425. if (talloc & salloc)
  426. return false;
  427. return true;
  428. }
  429. /*
  430. * Merge the source inode record into the target. The caller must call
  431. * __xfs_inobt_can_merge() to ensure the merge is valid.
  432. */
  433. STATIC void
  434. __xfs_inobt_rec_merge(
  435. struct xfs_inobt_rec_incore *trec, /* target */
  436. struct xfs_inobt_rec_incore *srec) /* src */
  437. {
  438. ASSERT(trec->ir_startino == srec->ir_startino);
  439. /* combine the counts */
  440. trec->ir_count += srec->ir_count;
  441. trec->ir_freecount += srec->ir_freecount;
  442. /*
  443. * Merge the holemask and free mask. For both fields, 0 bits refer to
  444. * allocated inodes. We combine the allocated ranges with bitwise AND.
  445. */
  446. trec->ir_holemask &= srec->ir_holemask;
  447. trec->ir_free &= srec->ir_free;
  448. }
  449. /*
  450. * Insert a new sparse inode chunk into the associated inode btree. The inode
  451. * record for the sparse chunk is pre-aligned to a startino that should match
  452. * any pre-existing sparse inode record in the tree. This allows sparse chunks
  453. * to fill over time.
  454. *
  455. * This function supports two modes of handling preexisting records depending on
  456. * the merge flag. If merge is true, the provided record is merged with the
  457. * existing record and updated in place. The merged record is returned in nrec.
  458. * If merge is false, an existing record is replaced with the provided record.
  459. * If no preexisting record exists, the provided record is always inserted.
  460. *
  461. * It is considered corruption if a merge is requested and not possible. Given
  462. * the sparse inode alignment constraints, this should never happen.
  463. */
  464. STATIC int
  465. xfs_inobt_insert_sprec(
  466. struct xfs_mount *mp,
  467. struct xfs_trans *tp,
  468. struct xfs_buf *agbp,
  469. int btnum,
  470. struct xfs_inobt_rec_incore *nrec, /* in/out: new/merged rec. */
  471. bool merge) /* merge or replace */
  472. {
  473. struct xfs_btree_cur *cur;
  474. struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
  475. xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
  476. int error;
  477. int i;
  478. struct xfs_inobt_rec_incore rec;
  479. cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum);
  480. /* the new record is pre-aligned so we know where to look */
  481. error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i);
  482. if (error)
  483. goto error;
  484. /* if nothing there, insert a new record and return */
  485. if (i == 0) {
  486. error = xfs_inobt_insert_rec(cur, nrec->ir_holemask,
  487. nrec->ir_count, nrec->ir_freecount,
  488. nrec->ir_free, &i);
  489. if (error)
  490. goto error;
  491. XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
  492. goto out;
  493. }
  494. /*
  495. * A record exists at this startino. Merge or replace the record
  496. * depending on what we've been asked to do.
  497. */
  498. if (merge) {
  499. error = xfs_inobt_get_rec(cur, &rec, &i);
  500. if (error)
  501. goto error;
  502. XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
  503. XFS_WANT_CORRUPTED_GOTO(mp,
  504. rec.ir_startino == nrec->ir_startino,
  505. error);
  506. /*
  507. * This should never fail. If we have coexisting records that
  508. * cannot merge, something is seriously wrong.
  509. */
  510. XFS_WANT_CORRUPTED_GOTO(mp, __xfs_inobt_can_merge(nrec, &rec),
  511. error);
  512. trace_xfs_irec_merge_pre(mp, agno, rec.ir_startino,
  513. rec.ir_holemask, nrec->ir_startino,
  514. nrec->ir_holemask);
  515. /* merge to nrec to output the updated record */
  516. __xfs_inobt_rec_merge(nrec, &rec);
  517. trace_xfs_irec_merge_post(mp, agno, nrec->ir_startino,
  518. nrec->ir_holemask);
  519. error = xfs_inobt_rec_check_count(mp, nrec);
  520. if (error)
  521. goto error;
  522. }
  523. error = xfs_inobt_update(cur, nrec);
  524. if (error)
  525. goto error;
  526. out:
  527. xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
  528. return 0;
  529. error:
  530. xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
  531. return error;
  532. }
  533. /*
  534. * Allocate new inodes in the allocation group specified by agbp.
  535. * Return 0 for success, else error code.
  536. */
  537. STATIC int /* error code or 0 */
  538. xfs_ialloc_ag_alloc(
  539. xfs_trans_t *tp, /* transaction pointer */
  540. xfs_buf_t *agbp, /* alloc group buffer */
  541. int *alloc)
  542. {
  543. xfs_agi_t *agi; /* allocation group header */
  544. xfs_alloc_arg_t args; /* allocation argument structure */
  545. xfs_agnumber_t agno;
  546. int error;
  547. xfs_agino_t newino; /* new first inode's number */
  548. xfs_agino_t newlen; /* new number of inodes */
  549. int isaligned = 0; /* inode allocation at stripe unit */
  550. /* boundary */
  551. uint16_t allocmask = (uint16_t) -1; /* init. to full chunk */
  552. struct xfs_inobt_rec_incore rec;
  553. struct xfs_perag *pag;
  554. int do_sparse = 0;
  555. memset(&args, 0, sizeof(args));
  556. args.tp = tp;
  557. args.mp = tp->t_mountp;
  558. args.fsbno = NULLFSBLOCK;
  559. #ifdef DEBUG
  560. /* randomly do sparse inode allocations */
  561. if (xfs_sb_version_hassparseinodes(&tp->t_mountp->m_sb) &&
  562. args.mp->m_ialloc_min_blks < args.mp->m_ialloc_blks)
  563. do_sparse = prandom_u32() & 1;
  564. #endif
  565. /*
  566. * Locking will ensure that we don't have two callers in here
  567. * at one time.
  568. */
  569. newlen = args.mp->m_ialloc_inos;
  570. if (args.mp->m_maxicount &&
  571. percpu_counter_read_positive(&args.mp->m_icount) + newlen >
  572. args.mp->m_maxicount)
  573. return -ENOSPC;
  574. args.minlen = args.maxlen = args.mp->m_ialloc_blks;
  575. /*
  576. * First try to allocate inodes contiguous with the last-allocated
  577. * chunk of inodes. If the filesystem is striped, this will fill
  578. * an entire stripe unit with inodes.
  579. */
  580. agi = XFS_BUF_TO_AGI(agbp);
  581. newino = be32_to_cpu(agi->agi_newino);
  582. agno = be32_to_cpu(agi->agi_seqno);
  583. args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) +
  584. args.mp->m_ialloc_blks;
  585. if (do_sparse)
  586. goto sparse_alloc;
  587. if (likely(newino != NULLAGINO &&
  588. (args.agbno < be32_to_cpu(agi->agi_length)))) {
  589. args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
  590. args.type = XFS_ALLOCTYPE_THIS_BNO;
  591. args.prod = 1;
  592. /*
  593. * We need to take into account alignment here to ensure that
  594. * we don't modify the free list if we fail to have an exact
  595. * block. If we don't have an exact match, and every oher
  596. * attempt allocation attempt fails, we'll end up cancelling
  597. * a dirty transaction and shutting down.
  598. *
  599. * For an exact allocation, alignment must be 1,
  600. * however we need to take cluster alignment into account when
  601. * fixing up the freelist. Use the minalignslop field to
  602. * indicate that extra blocks might be required for alignment,
  603. * but not to use them in the actual exact allocation.
  604. */
  605. args.alignment = 1;
  606. args.minalignslop = xfs_ialloc_cluster_alignment(args.mp) - 1;
  607. /* Allow space for the inode btree to split. */
  608. args.minleft = args.mp->m_in_maxlevels - 1;
  609. if ((error = xfs_alloc_vextent(&args)))
  610. return error;
  611. /*
  612. * This request might have dirtied the transaction if the AG can
  613. * satisfy the request, but the exact block was not available.
  614. * If the allocation did fail, subsequent requests will relax
  615. * the exact agbno requirement and increase the alignment
  616. * instead. It is critical that the total size of the request
  617. * (len + alignment + slop) does not increase from this point
  618. * on, so reset minalignslop to ensure it is not included in
  619. * subsequent requests.
  620. */
  621. args.minalignslop = 0;
  622. }
  623. if (unlikely(args.fsbno == NULLFSBLOCK)) {
  624. /*
  625. * Set the alignment for the allocation.
  626. * If stripe alignment is turned on then align at stripe unit
  627. * boundary.
  628. * If the cluster size is smaller than a filesystem block
  629. * then we're doing I/O for inodes in filesystem block size
  630. * pieces, so don't need alignment anyway.
  631. */
  632. isaligned = 0;
  633. if (args.mp->m_sinoalign) {
  634. ASSERT(!(args.mp->m_flags & XFS_MOUNT_NOALIGN));
  635. args.alignment = args.mp->m_dalign;
  636. isaligned = 1;
  637. } else
  638. args.alignment = xfs_ialloc_cluster_alignment(args.mp);
  639. /*
  640. * Need to figure out where to allocate the inode blocks.
  641. * Ideally they should be spaced out through the a.g.
  642. * For now, just allocate blocks up front.
  643. */
  644. args.agbno = be32_to_cpu(agi->agi_root);
  645. args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
  646. /*
  647. * Allocate a fixed-size extent of inodes.
  648. */
  649. args.type = XFS_ALLOCTYPE_NEAR_BNO;
  650. args.prod = 1;
  651. /*
  652. * Allow space for the inode btree to split.
  653. */
  654. args.minleft = args.mp->m_in_maxlevels - 1;
  655. if ((error = xfs_alloc_vextent(&args)))
  656. return error;
  657. }
  658. /*
  659. * If stripe alignment is turned on, then try again with cluster
  660. * alignment.
  661. */
  662. if (isaligned && args.fsbno == NULLFSBLOCK) {
  663. args.type = XFS_ALLOCTYPE_NEAR_BNO;
  664. args.agbno = be32_to_cpu(agi->agi_root);
  665. args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
  666. args.alignment = xfs_ialloc_cluster_alignment(args.mp);
  667. if ((error = xfs_alloc_vextent(&args)))
  668. return error;
  669. }
  670. /*
  671. * Finally, try a sparse allocation if the filesystem supports it and
  672. * the sparse allocation length is smaller than a full chunk.
  673. */
  674. if (xfs_sb_version_hassparseinodes(&args.mp->m_sb) &&
  675. args.mp->m_ialloc_min_blks < args.mp->m_ialloc_blks &&
  676. args.fsbno == NULLFSBLOCK) {
  677. sparse_alloc:
  678. args.type = XFS_ALLOCTYPE_NEAR_BNO;
  679. args.agbno = be32_to_cpu(agi->agi_root);
  680. args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
  681. args.alignment = args.mp->m_sb.sb_spino_align;
  682. args.prod = 1;
  683. args.minlen = args.mp->m_ialloc_min_blks;
  684. args.maxlen = args.minlen;
  685. /*
  686. * The inode record will be aligned to full chunk size. We must
  687. * prevent sparse allocation from AG boundaries that result in
  688. * invalid inode records, such as records that start at agbno 0
  689. * or extend beyond the AG.
  690. *
  691. * Set min agbno to the first aligned, non-zero agbno and max to
  692. * the last aligned agbno that is at least one full chunk from
  693. * the end of the AG.
  694. */
  695. args.min_agbno = args.mp->m_sb.sb_inoalignmt;
  696. args.max_agbno = round_down(args.mp->m_sb.sb_agblocks,
  697. args.mp->m_sb.sb_inoalignmt) -
  698. args.mp->m_ialloc_blks;
  699. error = xfs_alloc_vextent(&args);
  700. if (error)
  701. return error;
  702. newlen = args.len << args.mp->m_sb.sb_inopblog;
  703. ASSERT(newlen <= XFS_INODES_PER_CHUNK);
  704. allocmask = (1 << (newlen / XFS_INODES_PER_HOLEMASK_BIT)) - 1;
  705. }
  706. if (args.fsbno == NULLFSBLOCK) {
  707. *alloc = 0;
  708. return 0;
  709. }
  710. ASSERT(args.len == args.minlen);
  711. /*
  712. * Stamp and write the inode buffers.
  713. *
  714. * Seed the new inode cluster with a random generation number. This
  715. * prevents short-term reuse of generation numbers if a chunk is
  716. * freed and then immediately reallocated. We use random numbers
  717. * rather than a linear progression to prevent the next generation
  718. * number from being easily guessable.
  719. */
  720. error = xfs_ialloc_inode_init(args.mp, tp, NULL, newlen, agno,
  721. args.agbno, args.len, prandom_u32());
  722. if (error)
  723. return error;
  724. /*
  725. * Convert the results.
  726. */
  727. newino = XFS_OFFBNO_TO_AGINO(args.mp, args.agbno, 0);
  728. if (xfs_inobt_issparse(~allocmask)) {
  729. /*
  730. * We've allocated a sparse chunk. Align the startino and mask.
  731. */
  732. xfs_align_sparse_ino(args.mp, &newino, &allocmask);
  733. rec.ir_startino = newino;
  734. rec.ir_holemask = ~allocmask;
  735. rec.ir_count = newlen;
  736. rec.ir_freecount = newlen;
  737. rec.ir_free = XFS_INOBT_ALL_FREE;
  738. /*
  739. * Insert the sparse record into the inobt and allow for a merge
  740. * if necessary. If a merge does occur, rec is updated to the
  741. * merged record.
  742. */
  743. error = xfs_inobt_insert_sprec(args.mp, tp, agbp, XFS_BTNUM_INO,
  744. &rec, true);
  745. if (error == -EFSCORRUPTED) {
  746. xfs_alert(args.mp,
  747. "invalid sparse inode record: ino 0x%llx holemask 0x%x count %u",
  748. XFS_AGINO_TO_INO(args.mp, agno,
  749. rec.ir_startino),
  750. rec.ir_holemask, rec.ir_count);
  751. xfs_force_shutdown(args.mp, SHUTDOWN_CORRUPT_INCORE);
  752. }
  753. if (error)
  754. return error;
  755. /*
  756. * We can't merge the part we've just allocated as for the inobt
  757. * due to finobt semantics. The original record may or may not
  758. * exist independent of whether physical inodes exist in this
  759. * sparse chunk.
  760. *
  761. * We must update the finobt record based on the inobt record.
  762. * rec contains the fully merged and up to date inobt record
  763. * from the previous call. Set merge false to replace any
  764. * existing record with this one.
  765. */
  766. if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) {
  767. error = xfs_inobt_insert_sprec(args.mp, tp, agbp,
  768. XFS_BTNUM_FINO, &rec,
  769. false);
  770. if (error)
  771. return error;
  772. }
  773. } else {
  774. /* full chunk - insert new records to both btrees */
  775. error = xfs_inobt_insert(args.mp, tp, agbp, newino, newlen,
  776. XFS_BTNUM_INO);
  777. if (error)
  778. return error;
  779. if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) {
  780. error = xfs_inobt_insert(args.mp, tp, agbp, newino,
  781. newlen, XFS_BTNUM_FINO);
  782. if (error)
  783. return error;
  784. }
  785. }
  786. /*
  787. * Update AGI counts and newino.
  788. */
  789. be32_add_cpu(&agi->agi_count, newlen);
  790. be32_add_cpu(&agi->agi_freecount, newlen);
  791. pag = xfs_perag_get(args.mp, agno);
  792. pag->pagi_freecount += newlen;
  793. xfs_perag_put(pag);
  794. agi->agi_newino = cpu_to_be32(newino);
  795. /*
  796. * Log allocation group header fields
  797. */
  798. xfs_ialloc_log_agi(tp, agbp,
  799. XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO);
  800. /*
  801. * Modify/log superblock values for inode count and inode free count.
  802. */
  803. xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen);
  804. xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen);
  805. *alloc = 1;
  806. return 0;
  807. }
  808. STATIC xfs_agnumber_t
  809. xfs_ialloc_next_ag(
  810. xfs_mount_t *mp)
  811. {
  812. xfs_agnumber_t agno;
  813. spin_lock(&mp->m_agirotor_lock);
  814. agno = mp->m_agirotor;
  815. if (++mp->m_agirotor >= mp->m_maxagi)
  816. mp->m_agirotor = 0;
  817. spin_unlock(&mp->m_agirotor_lock);
  818. return agno;
  819. }
  820. /*
  821. * Select an allocation group to look for a free inode in, based on the parent
  822. * inode and the mode. Return the allocation group buffer.
  823. */
  824. STATIC xfs_agnumber_t
  825. xfs_ialloc_ag_select(
  826. xfs_trans_t *tp, /* transaction pointer */
  827. xfs_ino_t parent, /* parent directory inode number */
  828. umode_t mode, /* bits set to indicate file type */
  829. int okalloc) /* ok to allocate more space */
  830. {
  831. xfs_agnumber_t agcount; /* number of ag's in the filesystem */
  832. xfs_agnumber_t agno; /* current ag number */
  833. int flags; /* alloc buffer locking flags */
  834. xfs_extlen_t ineed; /* blocks needed for inode allocation */
  835. xfs_extlen_t longest = 0; /* longest extent available */
  836. xfs_mount_t *mp; /* mount point structure */
  837. int needspace; /* file mode implies space allocated */
  838. xfs_perag_t *pag; /* per allocation group data */
  839. xfs_agnumber_t pagno; /* parent (starting) ag number */
  840. int error;
  841. /*
  842. * Files of these types need at least one block if length > 0
  843. * (and they won't fit in the inode, but that's hard to figure out).
  844. */
  845. needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode);
  846. mp = tp->t_mountp;
  847. agcount = mp->m_maxagi;
  848. if (S_ISDIR(mode))
  849. pagno = xfs_ialloc_next_ag(mp);
  850. else {
  851. pagno = XFS_INO_TO_AGNO(mp, parent);
  852. if (pagno >= agcount)
  853. pagno = 0;
  854. }
  855. ASSERT(pagno < agcount);
  856. /*
  857. * Loop through allocation groups, looking for one with a little
  858. * free space in it. Note we don't look for free inodes, exactly.
  859. * Instead, we include whether there is a need to allocate inodes
  860. * to mean that blocks must be allocated for them,
  861. * if none are currently free.
  862. */
  863. agno = pagno;
  864. flags = XFS_ALLOC_FLAG_TRYLOCK;
  865. for (;;) {
  866. pag = xfs_perag_get(mp, agno);
  867. if (!pag->pagi_inodeok) {
  868. xfs_ialloc_next_ag(mp);
  869. goto nextag;
  870. }
  871. if (!pag->pagi_init) {
  872. error = xfs_ialloc_pagi_init(mp, tp, agno);
  873. if (error)
  874. goto nextag;
  875. }
  876. if (pag->pagi_freecount) {
  877. xfs_perag_put(pag);
  878. return agno;
  879. }
  880. if (!okalloc)
  881. goto nextag;
  882. if (!pag->pagf_init) {
  883. error = xfs_alloc_pagf_init(mp, tp, agno, flags);
  884. if (error)
  885. goto nextag;
  886. }
  887. /*
  888. * Check that there is enough free space for the file plus a
  889. * chunk of inodes if we need to allocate some. If this is the
  890. * first pass across the AGs, take into account the potential
  891. * space needed for alignment of inode chunks when checking the
  892. * longest contiguous free space in the AG - this prevents us
  893. * from getting ENOSPC because we have free space larger than
  894. * m_ialloc_blks but alignment constraints prevent us from using
  895. * it.
  896. *
  897. * If we can't find an AG with space for full alignment slack to
  898. * be taken into account, we must be near ENOSPC in all AGs.
  899. * Hence we don't include alignment for the second pass and so
  900. * if we fail allocation due to alignment issues then it is most
  901. * likely a real ENOSPC condition.
  902. */
  903. ineed = mp->m_ialloc_min_blks;
  904. if (flags && ineed > 1)
  905. ineed += xfs_ialloc_cluster_alignment(mp);
  906. longest = pag->pagf_longest;
  907. if (!longest)
  908. longest = pag->pagf_flcount > 0;
  909. if (pag->pagf_freeblks >= needspace + ineed &&
  910. longest >= ineed) {
  911. xfs_perag_put(pag);
  912. return agno;
  913. }
  914. nextag:
  915. xfs_perag_put(pag);
  916. /*
  917. * No point in iterating over the rest, if we're shutting
  918. * down.
  919. */
  920. if (XFS_FORCED_SHUTDOWN(mp))
  921. return NULLAGNUMBER;
  922. agno++;
  923. if (agno >= agcount)
  924. agno = 0;
  925. if (agno == pagno) {
  926. if (flags == 0)
  927. return NULLAGNUMBER;
  928. flags = 0;
  929. }
  930. }
  931. }
  932. /*
  933. * Try to retrieve the next record to the left/right from the current one.
  934. */
  935. STATIC int
  936. xfs_ialloc_next_rec(
  937. struct xfs_btree_cur *cur,
  938. xfs_inobt_rec_incore_t *rec,
  939. int *done,
  940. int left)
  941. {
  942. int error;
  943. int i;
  944. if (left)
  945. error = xfs_btree_decrement(cur, 0, &i);
  946. else
  947. error = xfs_btree_increment(cur, 0, &i);
  948. if (error)
  949. return error;
  950. *done = !i;
  951. if (i) {
  952. error = xfs_inobt_get_rec(cur, rec, &i);
  953. if (error)
  954. return error;
  955. XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
  956. }
  957. return 0;
  958. }
  959. STATIC int
  960. xfs_ialloc_get_rec(
  961. struct xfs_btree_cur *cur,
  962. xfs_agino_t agino,
  963. xfs_inobt_rec_incore_t *rec,
  964. int *done)
  965. {
  966. int error;
  967. int i;
  968. error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i);
  969. if (error)
  970. return error;
  971. *done = !i;
  972. if (i) {
  973. error = xfs_inobt_get_rec(cur, rec, &i);
  974. if (error)
  975. return error;
  976. XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
  977. }
  978. return 0;
  979. }
  980. /*
  981. * Return the offset of the first free inode in the record. If the inode chunk
  982. * is sparsely allocated, we convert the record holemask to inode granularity
  983. * and mask off the unallocated regions from the inode free mask.
  984. */
  985. STATIC int
  986. xfs_inobt_first_free_inode(
  987. struct xfs_inobt_rec_incore *rec)
  988. {
  989. xfs_inofree_t realfree;
  990. /* if there are no holes, return the first available offset */
  991. if (!xfs_inobt_issparse(rec->ir_holemask))
  992. return xfs_lowbit64(rec->ir_free);
  993. realfree = xfs_inobt_irec_to_allocmask(rec);
  994. realfree &= rec->ir_free;
  995. return xfs_lowbit64(realfree);
  996. }
  997. /*
  998. * Allocate an inode using the inobt-only algorithm.
  999. */
  1000. STATIC int
  1001. xfs_dialloc_ag_inobt(
  1002. struct xfs_trans *tp,
  1003. struct xfs_buf *agbp,
  1004. xfs_ino_t parent,
  1005. xfs_ino_t *inop)
  1006. {
  1007. struct xfs_mount *mp = tp->t_mountp;
  1008. struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
  1009. xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
  1010. xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent);
  1011. xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent);
  1012. struct xfs_perag *pag;
  1013. struct xfs_btree_cur *cur, *tcur;
  1014. struct xfs_inobt_rec_incore rec, trec;
  1015. xfs_ino_t ino;
  1016. int error;
  1017. int offset;
  1018. int i, j;
  1019. pag = xfs_perag_get(mp, agno);
  1020. ASSERT(pag->pagi_init);
  1021. ASSERT(pag->pagi_inodeok);
  1022. ASSERT(pag->pagi_freecount > 0);
  1023. restart_pagno:
  1024. cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
  1025. /*
  1026. * If pagino is 0 (this is the root inode allocation) use newino.
  1027. * This must work because we've just allocated some.
  1028. */
  1029. if (!pagino)
  1030. pagino = be32_to_cpu(agi->agi_newino);
  1031. error = xfs_check_agi_freecount(cur, agi);
  1032. if (error)
  1033. goto error0;
  1034. /*
  1035. * If in the same AG as the parent, try to get near the parent.
  1036. */
  1037. if (pagno == agno) {
  1038. int doneleft; /* done, to the left */
  1039. int doneright; /* done, to the right */
  1040. int searchdistance = 10;
  1041. error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i);
  1042. if (error)
  1043. goto error0;
  1044. XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
  1045. error = xfs_inobt_get_rec(cur, &rec, &j);
  1046. if (error)
  1047. goto error0;
  1048. XFS_WANT_CORRUPTED_GOTO(mp, j == 1, error0);
  1049. if (rec.ir_freecount > 0) {
  1050. /*
  1051. * Found a free inode in the same chunk
  1052. * as the parent, done.
  1053. */
  1054. goto alloc_inode;
  1055. }
  1056. /*
  1057. * In the same AG as parent, but parent's chunk is full.
  1058. */
  1059. /* duplicate the cursor, search left & right simultaneously */
  1060. error = xfs_btree_dup_cursor(cur, &tcur);
  1061. if (error)
  1062. goto error0;
  1063. /*
  1064. * Skip to last blocks looked up if same parent inode.
  1065. */
  1066. if (pagino != NULLAGINO &&
  1067. pag->pagl_pagino == pagino &&
  1068. pag->pagl_leftrec != NULLAGINO &&
  1069. pag->pagl_rightrec != NULLAGINO) {
  1070. error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec,
  1071. &trec, &doneleft);
  1072. if (error)
  1073. goto error1;
  1074. error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec,
  1075. &rec, &doneright);
  1076. if (error)
  1077. goto error1;
  1078. } else {
  1079. /* search left with tcur, back up 1 record */
  1080. error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1);
  1081. if (error)
  1082. goto error1;
  1083. /* search right with cur, go forward 1 record. */
  1084. error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0);
  1085. if (error)
  1086. goto error1;
  1087. }
  1088. /*
  1089. * Loop until we find an inode chunk with a free inode.
  1090. */
  1091. while (!doneleft || !doneright) {
  1092. int useleft; /* using left inode chunk this time */
  1093. if (!--searchdistance) {
  1094. /*
  1095. * Not in range - save last search
  1096. * location and allocate a new inode
  1097. */
  1098. xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
  1099. pag->pagl_leftrec = trec.ir_startino;
  1100. pag->pagl_rightrec = rec.ir_startino;
  1101. pag->pagl_pagino = pagino;
  1102. goto newino;
  1103. }
  1104. /* figure out the closer block if both are valid. */
  1105. if (!doneleft && !doneright) {
  1106. useleft = pagino -
  1107. (trec.ir_startino + XFS_INODES_PER_CHUNK - 1) <
  1108. rec.ir_startino - pagino;
  1109. } else {
  1110. useleft = !doneleft;
  1111. }
  1112. /* free inodes to the left? */
  1113. if (useleft && trec.ir_freecount) {
  1114. rec = trec;
  1115. xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
  1116. cur = tcur;
  1117. pag->pagl_leftrec = trec.ir_startino;
  1118. pag->pagl_rightrec = rec.ir_startino;
  1119. pag->pagl_pagino = pagino;
  1120. goto alloc_inode;
  1121. }
  1122. /* free inodes to the right? */
  1123. if (!useleft && rec.ir_freecount) {
  1124. xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
  1125. pag->pagl_leftrec = trec.ir_startino;
  1126. pag->pagl_rightrec = rec.ir_startino;
  1127. pag->pagl_pagino = pagino;
  1128. goto alloc_inode;
  1129. }
  1130. /* get next record to check */
  1131. if (useleft) {
  1132. error = xfs_ialloc_next_rec(tcur, &trec,
  1133. &doneleft, 1);
  1134. } else {
  1135. error = xfs_ialloc_next_rec(cur, &rec,
  1136. &doneright, 0);
  1137. }
  1138. if (error)
  1139. goto error1;
  1140. }
  1141. /*
  1142. * We've reached the end of the btree. because
  1143. * we are only searching a small chunk of the
  1144. * btree each search, there is obviously free
  1145. * inodes closer to the parent inode than we
  1146. * are now. restart the search again.
  1147. */
  1148. pag->pagl_pagino = NULLAGINO;
  1149. pag->pagl_leftrec = NULLAGINO;
  1150. pag->pagl_rightrec = NULLAGINO;
  1151. xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
  1152. xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
  1153. goto restart_pagno;
  1154. }
  1155. /*
  1156. * In a different AG from the parent.
  1157. * See if the most recently allocated block has any free.
  1158. */
  1159. newino:
  1160. if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
  1161. error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
  1162. XFS_LOOKUP_EQ, &i);
  1163. if (error)
  1164. goto error0;
  1165. if (i == 1) {
  1166. error = xfs_inobt_get_rec(cur, &rec, &j);
  1167. if (error)
  1168. goto error0;
  1169. if (j == 1 && rec.ir_freecount > 0) {
  1170. /*
  1171. * The last chunk allocated in the group
  1172. * still has a free inode.
  1173. */
  1174. goto alloc_inode;
  1175. }
  1176. }
  1177. }
  1178. /*
  1179. * None left in the last group, search the whole AG
  1180. */
  1181. error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
  1182. if (error)
  1183. goto error0;
  1184. XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
  1185. for (;;) {
  1186. error = xfs_inobt_get_rec(cur, &rec, &i);
  1187. if (error)
  1188. goto error0;
  1189. XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
  1190. if (rec.ir_freecount > 0)
  1191. break;
  1192. error = xfs_btree_increment(cur, 0, &i);
  1193. if (error)
  1194. goto error0;
  1195. XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
  1196. }
  1197. alloc_inode:
  1198. offset = xfs_inobt_first_free_inode(&rec);
  1199. ASSERT(offset >= 0);
  1200. ASSERT(offset < XFS_INODES_PER_CHUNK);
  1201. ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
  1202. XFS_INODES_PER_CHUNK) == 0);
  1203. ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset);
  1204. rec.ir_free &= ~XFS_INOBT_MASK(offset);
  1205. rec.ir_freecount--;
  1206. error = xfs_inobt_update(cur, &rec);
  1207. if (error)
  1208. goto error0;
  1209. be32_add_cpu(&agi->agi_freecount, -1);
  1210. xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
  1211. pag->pagi_freecount--;
  1212. error = xfs_check_agi_freecount(cur, agi);
  1213. if (error)
  1214. goto error0;
  1215. xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
  1216. xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
  1217. xfs_perag_put(pag);
  1218. *inop = ino;
  1219. return 0;
  1220. error1:
  1221. xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
  1222. error0:
  1223. xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
  1224. xfs_perag_put(pag);
  1225. return error;
  1226. }
  1227. /*
  1228. * Use the free inode btree to allocate an inode based on distance from the
  1229. * parent. Note that the provided cursor may be deleted and replaced.
  1230. */
  1231. STATIC int
  1232. xfs_dialloc_ag_finobt_near(
  1233. xfs_agino_t pagino,
  1234. struct xfs_btree_cur **ocur,
  1235. struct xfs_inobt_rec_incore *rec)
  1236. {
  1237. struct xfs_btree_cur *lcur = *ocur; /* left search cursor */
  1238. struct xfs_btree_cur *rcur; /* right search cursor */
  1239. struct xfs_inobt_rec_incore rrec;
  1240. int error;
  1241. int i, j;
  1242. error = xfs_inobt_lookup(lcur, pagino, XFS_LOOKUP_LE, &i);
  1243. if (error)
  1244. return error;
  1245. if (i == 1) {
  1246. error = xfs_inobt_get_rec(lcur, rec, &i);
  1247. if (error)
  1248. return error;
  1249. XFS_WANT_CORRUPTED_RETURN(lcur->bc_mp, i == 1);
  1250. /*
  1251. * See if we've landed in the parent inode record. The finobt
  1252. * only tracks chunks with at least one free inode, so record
  1253. * existence is enough.
  1254. */
  1255. if (pagino >= rec->ir_startino &&
  1256. pagino < (rec->ir_startino + XFS_INODES_PER_CHUNK))
  1257. return 0;
  1258. }
  1259. error = xfs_btree_dup_cursor(lcur, &rcur);
  1260. if (error)
  1261. return error;
  1262. error = xfs_inobt_lookup(rcur, pagino, XFS_LOOKUP_GE, &j);
  1263. if (error)
  1264. goto error_rcur;
  1265. if (j == 1) {
  1266. error = xfs_inobt_get_rec(rcur, &rrec, &j);
  1267. if (error)
  1268. goto error_rcur;
  1269. XFS_WANT_CORRUPTED_GOTO(lcur->bc_mp, j == 1, error_rcur);
  1270. }
  1271. XFS_WANT_CORRUPTED_GOTO(lcur->bc_mp, i == 1 || j == 1, error_rcur);
  1272. if (i == 1 && j == 1) {
  1273. /*
  1274. * Both the left and right records are valid. Choose the closer
  1275. * inode chunk to the target.
  1276. */
  1277. if ((pagino - rec->ir_startino + XFS_INODES_PER_CHUNK - 1) >
  1278. (rrec.ir_startino - pagino)) {
  1279. *rec = rrec;
  1280. xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
  1281. *ocur = rcur;
  1282. } else {
  1283. xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
  1284. }
  1285. } else if (j == 1) {
  1286. /* only the right record is valid */
  1287. *rec = rrec;
  1288. xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
  1289. *ocur = rcur;
  1290. } else if (i == 1) {
  1291. /* only the left record is valid */
  1292. xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
  1293. }
  1294. return 0;
  1295. error_rcur:
  1296. xfs_btree_del_cursor(rcur, XFS_BTREE_ERROR);
  1297. return error;
  1298. }
  1299. /*
  1300. * Use the free inode btree to find a free inode based on a newino hint. If
  1301. * the hint is NULL, find the first free inode in the AG.
  1302. */
  1303. STATIC int
  1304. xfs_dialloc_ag_finobt_newino(
  1305. struct xfs_agi *agi,
  1306. struct xfs_btree_cur *cur,
  1307. struct xfs_inobt_rec_incore *rec)
  1308. {
  1309. int error;
  1310. int i;
  1311. if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
  1312. error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
  1313. XFS_LOOKUP_EQ, &i);
  1314. if (error)
  1315. return error;
  1316. if (i == 1) {
  1317. error = xfs_inobt_get_rec(cur, rec, &i);
  1318. if (error)
  1319. return error;
  1320. XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
  1321. return 0;
  1322. }
  1323. }
  1324. /*
  1325. * Find the first inode available in the AG.
  1326. */
  1327. error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
  1328. if (error)
  1329. return error;
  1330. XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
  1331. error = xfs_inobt_get_rec(cur, rec, &i);
  1332. if (error)
  1333. return error;
  1334. XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
  1335. return 0;
  1336. }
  1337. /*
  1338. * Update the inobt based on a modification made to the finobt. Also ensure that
  1339. * the records from both trees are equivalent post-modification.
  1340. */
  1341. STATIC int
  1342. xfs_dialloc_ag_update_inobt(
  1343. struct xfs_btree_cur *cur, /* inobt cursor */
  1344. struct xfs_inobt_rec_incore *frec, /* finobt record */
  1345. int offset) /* inode offset */
  1346. {
  1347. struct xfs_inobt_rec_incore rec;
  1348. int error;
  1349. int i;
  1350. error = xfs_inobt_lookup(cur, frec->ir_startino, XFS_LOOKUP_EQ, &i);
  1351. if (error)
  1352. return error;
  1353. XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
  1354. error = xfs_inobt_get_rec(cur, &rec, &i);
  1355. if (error)
  1356. return error;
  1357. XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
  1358. ASSERT((XFS_AGINO_TO_OFFSET(cur->bc_mp, rec.ir_startino) %
  1359. XFS_INODES_PER_CHUNK) == 0);
  1360. rec.ir_free &= ~XFS_INOBT_MASK(offset);
  1361. rec.ir_freecount--;
  1362. XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, (rec.ir_free == frec->ir_free) &&
  1363. (rec.ir_freecount == frec->ir_freecount));
  1364. return xfs_inobt_update(cur, &rec);
  1365. }
  1366. /*
  1367. * Allocate an inode using the free inode btree, if available. Otherwise, fall
  1368. * back to the inobt search algorithm.
  1369. *
  1370. * The caller selected an AG for us, and made sure that free inodes are
  1371. * available.
  1372. */
  1373. STATIC int
  1374. xfs_dialloc_ag(
  1375. struct xfs_trans *tp,
  1376. struct xfs_buf *agbp,
  1377. xfs_ino_t parent,
  1378. xfs_ino_t *inop)
  1379. {
  1380. struct xfs_mount *mp = tp->t_mountp;
  1381. struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
  1382. xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
  1383. xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent);
  1384. xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent);
  1385. struct xfs_perag *pag;
  1386. struct xfs_btree_cur *cur; /* finobt cursor */
  1387. struct xfs_btree_cur *icur; /* inobt cursor */
  1388. struct xfs_inobt_rec_incore rec;
  1389. xfs_ino_t ino;
  1390. int error;
  1391. int offset;
  1392. int i;
  1393. if (!xfs_sb_version_hasfinobt(&mp->m_sb))
  1394. return xfs_dialloc_ag_inobt(tp, agbp, parent, inop);
  1395. pag = xfs_perag_get(mp, agno);
  1396. /*
  1397. * If pagino is 0 (this is the root inode allocation) use newino.
  1398. * This must work because we've just allocated some.
  1399. */
  1400. if (!pagino)
  1401. pagino = be32_to_cpu(agi->agi_newino);
  1402. cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO);
  1403. error = xfs_check_agi_freecount(cur, agi);
  1404. if (error)
  1405. goto error_cur;
  1406. /*
  1407. * The search algorithm depends on whether we're in the same AG as the
  1408. * parent. If so, find the closest available inode to the parent. If
  1409. * not, consider the agi hint or find the first free inode in the AG.
  1410. */
  1411. if (agno == pagno)
  1412. error = xfs_dialloc_ag_finobt_near(pagino, &cur, &rec);
  1413. else
  1414. error = xfs_dialloc_ag_finobt_newino(agi, cur, &rec);
  1415. if (error)
  1416. goto error_cur;
  1417. offset = xfs_inobt_first_free_inode(&rec);
  1418. ASSERT(offset >= 0);
  1419. ASSERT(offset < XFS_INODES_PER_CHUNK);
  1420. ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
  1421. XFS_INODES_PER_CHUNK) == 0);
  1422. ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset);
  1423. /*
  1424. * Modify or remove the finobt record.
  1425. */
  1426. rec.ir_free &= ~XFS_INOBT_MASK(offset);
  1427. rec.ir_freecount--;
  1428. if (rec.ir_freecount)
  1429. error = xfs_inobt_update(cur, &rec);
  1430. else
  1431. error = xfs_btree_delete(cur, &i);
  1432. if (error)
  1433. goto error_cur;
  1434. /*
  1435. * The finobt has now been updated appropriately. We haven't updated the
  1436. * agi and superblock yet, so we can create an inobt cursor and validate
  1437. * the original freecount. If all is well, make the equivalent update to
  1438. * the inobt using the finobt record and offset information.
  1439. */
  1440. icur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
  1441. error = xfs_check_agi_freecount(icur, agi);
  1442. if (error)
  1443. goto error_icur;
  1444. error = xfs_dialloc_ag_update_inobt(icur, &rec, offset);
  1445. if (error)
  1446. goto error_icur;
  1447. /*
  1448. * Both trees have now been updated. We must update the perag and
  1449. * superblock before we can check the freecount for each btree.
  1450. */
  1451. be32_add_cpu(&agi->agi_freecount, -1);
  1452. xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
  1453. pag->pagi_freecount--;
  1454. xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
  1455. error = xfs_check_agi_freecount(icur, agi);
  1456. if (error)
  1457. goto error_icur;
  1458. error = xfs_check_agi_freecount(cur, agi);
  1459. if (error)
  1460. goto error_icur;
  1461. xfs_btree_del_cursor(icur, XFS_BTREE_NOERROR);
  1462. xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
  1463. xfs_perag_put(pag);
  1464. *inop = ino;
  1465. return 0;
  1466. error_icur:
  1467. xfs_btree_del_cursor(icur, XFS_BTREE_ERROR);
  1468. error_cur:
  1469. xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
  1470. xfs_perag_put(pag);
  1471. return error;
  1472. }
  1473. /*
  1474. * Allocate an inode on disk.
  1475. *
  1476. * Mode is used to tell whether the new inode will need space, and whether it
  1477. * is a directory.
  1478. *
  1479. * This function is designed to be called twice if it has to do an allocation
  1480. * to make more free inodes. On the first call, *IO_agbp should be set to NULL.
  1481. * If an inode is available without having to performn an allocation, an inode
  1482. * number is returned. In this case, *IO_agbp is set to NULL. If an allocation
  1483. * needs to be done, xfs_dialloc returns the current AGI buffer in *IO_agbp.
  1484. * The caller should then commit the current transaction, allocate a
  1485. * new transaction, and call xfs_dialloc() again, passing in the previous value
  1486. * of *IO_agbp. IO_agbp should be held across the transactions. Since the AGI
  1487. * buffer is locked across the two calls, the second call is guaranteed to have
  1488. * a free inode available.
  1489. *
  1490. * Once we successfully pick an inode its number is returned and the on-disk
  1491. * data structures are updated. The inode itself is not read in, since doing so
  1492. * would break ordering constraints with xfs_reclaim.
  1493. */
  1494. int
  1495. xfs_dialloc(
  1496. struct xfs_trans *tp,
  1497. xfs_ino_t parent,
  1498. umode_t mode,
  1499. int okalloc,
  1500. struct xfs_buf **IO_agbp,
  1501. xfs_ino_t *inop)
  1502. {
  1503. struct xfs_mount *mp = tp->t_mountp;
  1504. struct xfs_buf *agbp;
  1505. xfs_agnumber_t agno;
  1506. int error;
  1507. int ialloced;
  1508. int noroom = 0;
  1509. xfs_agnumber_t start_agno;
  1510. struct xfs_perag *pag;
  1511. if (*IO_agbp) {
  1512. /*
  1513. * If the caller passes in a pointer to the AGI buffer,
  1514. * continue where we left off before. In this case, we
  1515. * know that the allocation group has free inodes.
  1516. */
  1517. agbp = *IO_agbp;
  1518. goto out_alloc;
  1519. }
  1520. /*
  1521. * We do not have an agbp, so select an initial allocation
  1522. * group for inode allocation.
  1523. */
  1524. start_agno = xfs_ialloc_ag_select(tp, parent, mode, okalloc);
  1525. if (start_agno == NULLAGNUMBER) {
  1526. *inop = NULLFSINO;
  1527. return 0;
  1528. }
  1529. /*
  1530. * If we have already hit the ceiling of inode blocks then clear
  1531. * okalloc so we scan all available agi structures for a free
  1532. * inode.
  1533. *
  1534. * Read rough value of mp->m_icount by percpu_counter_read_positive,
  1535. * which will sacrifice the preciseness but improve the performance.
  1536. */
  1537. if (mp->m_maxicount &&
  1538. percpu_counter_read_positive(&mp->m_icount) + mp->m_ialloc_inos
  1539. > mp->m_maxicount) {
  1540. noroom = 1;
  1541. okalloc = 0;
  1542. }
  1543. /*
  1544. * Loop until we find an allocation group that either has free inodes
  1545. * or in which we can allocate some inodes. Iterate through the
  1546. * allocation groups upward, wrapping at the end.
  1547. */
  1548. agno = start_agno;
  1549. for (;;) {
  1550. pag = xfs_perag_get(mp, agno);
  1551. if (!pag->pagi_inodeok) {
  1552. xfs_ialloc_next_ag(mp);
  1553. goto nextag;
  1554. }
  1555. if (!pag->pagi_init) {
  1556. error = xfs_ialloc_pagi_init(mp, tp, agno);
  1557. if (error)
  1558. goto out_error;
  1559. }
  1560. /*
  1561. * Do a first racy fast path check if this AG is usable.
  1562. */
  1563. if (!pag->pagi_freecount && !okalloc)
  1564. goto nextag;
  1565. /*
  1566. * Then read in the AGI buffer and recheck with the AGI buffer
  1567. * lock held.
  1568. */
  1569. error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
  1570. if (error)
  1571. goto out_error;
  1572. if (pag->pagi_freecount) {
  1573. xfs_perag_put(pag);
  1574. goto out_alloc;
  1575. }
  1576. if (!okalloc)
  1577. goto nextag_relse_buffer;
  1578. error = xfs_ialloc_ag_alloc(tp, agbp, &ialloced);
  1579. if (error) {
  1580. xfs_trans_brelse(tp, agbp);
  1581. if (error != -ENOSPC)
  1582. goto out_error;
  1583. xfs_perag_put(pag);
  1584. *inop = NULLFSINO;
  1585. return 0;
  1586. }
  1587. if (ialloced) {
  1588. /*
  1589. * We successfully allocated some inodes, return
  1590. * the current context to the caller so that it
  1591. * can commit the current transaction and call
  1592. * us again where we left off.
  1593. */
  1594. ASSERT(pag->pagi_freecount > 0);
  1595. xfs_perag_put(pag);
  1596. *IO_agbp = agbp;
  1597. *inop = NULLFSINO;
  1598. return 0;
  1599. }
  1600. nextag_relse_buffer:
  1601. xfs_trans_brelse(tp, agbp);
  1602. nextag:
  1603. xfs_perag_put(pag);
  1604. if (++agno == mp->m_sb.sb_agcount)
  1605. agno = 0;
  1606. if (agno == start_agno) {
  1607. *inop = NULLFSINO;
  1608. return noroom ? -ENOSPC : 0;
  1609. }
  1610. }
  1611. out_alloc:
  1612. *IO_agbp = NULL;
  1613. return xfs_dialloc_ag(tp, agbp, parent, inop);
  1614. out_error:
  1615. xfs_perag_put(pag);
  1616. return error;
  1617. }
  1618. /*
  1619. * Free the blocks of an inode chunk. We must consider that the inode chunk
  1620. * might be sparse and only free the regions that are allocated as part of the
  1621. * chunk.
  1622. */
  1623. STATIC void
  1624. xfs_difree_inode_chunk(
  1625. struct xfs_mount *mp,
  1626. xfs_agnumber_t agno,
  1627. struct xfs_inobt_rec_incore *rec,
  1628. struct xfs_bmap_free *flist)
  1629. {
  1630. xfs_agblock_t sagbno = XFS_AGINO_TO_AGBNO(mp, rec->ir_startino);
  1631. int startidx, endidx;
  1632. int nextbit;
  1633. xfs_agblock_t agbno;
  1634. int contigblk;
  1635. DECLARE_BITMAP(holemask, XFS_INOBT_HOLEMASK_BITS);
  1636. if (!xfs_inobt_issparse(rec->ir_holemask)) {
  1637. /* not sparse, calculate extent info directly */
  1638. xfs_bmap_add_free(XFS_AGB_TO_FSB(mp, agno,
  1639. XFS_AGINO_TO_AGBNO(mp, rec->ir_startino)),
  1640. mp->m_ialloc_blks, flist, mp);
  1641. return;
  1642. }
  1643. /* holemask is only 16-bits (fits in an unsigned long) */
  1644. ASSERT(sizeof(rec->ir_holemask) <= sizeof(holemask[0]));
  1645. holemask[0] = rec->ir_holemask;
  1646. /*
  1647. * Find contiguous ranges of zeroes (i.e., allocated regions) in the
  1648. * holemask and convert the start/end index of each range to an extent.
  1649. * We start with the start and end index both pointing at the first 0 in
  1650. * the mask.
  1651. */
  1652. startidx = endidx = find_first_zero_bit(holemask,
  1653. XFS_INOBT_HOLEMASK_BITS);
  1654. nextbit = startidx + 1;
  1655. while (startidx < XFS_INOBT_HOLEMASK_BITS) {
  1656. nextbit = find_next_zero_bit(holemask, XFS_INOBT_HOLEMASK_BITS,
  1657. nextbit);
  1658. /*
  1659. * If the next zero bit is contiguous, update the end index of
  1660. * the current range and continue.
  1661. */
  1662. if (nextbit != XFS_INOBT_HOLEMASK_BITS &&
  1663. nextbit == endidx + 1) {
  1664. endidx = nextbit;
  1665. goto next;
  1666. }
  1667. /*
  1668. * nextbit is not contiguous with the current end index. Convert
  1669. * the current start/end to an extent and add it to the free
  1670. * list.
  1671. */
  1672. agbno = sagbno + (startidx * XFS_INODES_PER_HOLEMASK_BIT) /
  1673. mp->m_sb.sb_inopblock;
  1674. contigblk = ((endidx - startidx + 1) *
  1675. XFS_INODES_PER_HOLEMASK_BIT) /
  1676. mp->m_sb.sb_inopblock;
  1677. ASSERT(agbno % mp->m_sb.sb_spino_align == 0);
  1678. ASSERT(contigblk % mp->m_sb.sb_spino_align == 0);
  1679. xfs_bmap_add_free(XFS_AGB_TO_FSB(mp, agno, agbno), contigblk,
  1680. flist, mp);
  1681. /* reset range to current bit and carry on... */
  1682. startidx = endidx = nextbit;
  1683. next:
  1684. nextbit++;
  1685. }
  1686. }
  1687. STATIC int
  1688. xfs_difree_inobt(
  1689. struct xfs_mount *mp,
  1690. struct xfs_trans *tp,
  1691. struct xfs_buf *agbp,
  1692. xfs_agino_t agino,
  1693. struct xfs_bmap_free *flist,
  1694. struct xfs_icluster *xic,
  1695. struct xfs_inobt_rec_incore *orec)
  1696. {
  1697. struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
  1698. xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
  1699. struct xfs_perag *pag;
  1700. struct xfs_btree_cur *cur;
  1701. struct xfs_inobt_rec_incore rec;
  1702. int ilen;
  1703. int error;
  1704. int i;
  1705. int off;
  1706. ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
  1707. ASSERT(XFS_AGINO_TO_AGBNO(mp, agino) < be32_to_cpu(agi->agi_length));
  1708. /*
  1709. * Initialize the cursor.
  1710. */
  1711. cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
  1712. error = xfs_check_agi_freecount(cur, agi);
  1713. if (error)
  1714. goto error0;
  1715. /*
  1716. * Look for the entry describing this inode.
  1717. */
  1718. if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) {
  1719. xfs_warn(mp, "%s: xfs_inobt_lookup() returned error %d.",
  1720. __func__, error);
  1721. goto error0;
  1722. }
  1723. XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
  1724. error = xfs_inobt_get_rec(cur, &rec, &i);
  1725. if (error) {
  1726. xfs_warn(mp, "%s: xfs_inobt_get_rec() returned error %d.",
  1727. __func__, error);
  1728. goto error0;
  1729. }
  1730. XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
  1731. /*
  1732. * Get the offset in the inode chunk.
  1733. */
  1734. off = agino - rec.ir_startino;
  1735. ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK);
  1736. ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off)));
  1737. /*
  1738. * Mark the inode free & increment the count.
  1739. */
  1740. rec.ir_free |= XFS_INOBT_MASK(off);
  1741. rec.ir_freecount++;
  1742. /*
  1743. * When an inode chunk is free, it becomes eligible for removal. Don't
  1744. * remove the chunk if the block size is large enough for multiple inode
  1745. * chunks (that might not be free).
  1746. */
  1747. if (!(mp->m_flags & XFS_MOUNT_IKEEP) &&
  1748. rec.ir_free == XFS_INOBT_ALL_FREE &&
  1749. mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) {
  1750. xic->deleted = 1;
  1751. xic->first_ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino);
  1752. xic->alloc = xfs_inobt_irec_to_allocmask(&rec);
  1753. /*
  1754. * Remove the inode cluster from the AGI B+Tree, adjust the
  1755. * AGI and Superblock inode counts, and mark the disk space
  1756. * to be freed when the transaction is committed.
  1757. */
  1758. ilen = rec.ir_freecount;
  1759. be32_add_cpu(&agi->agi_count, -ilen);
  1760. be32_add_cpu(&agi->agi_freecount, -(ilen - 1));
  1761. xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT);
  1762. pag = xfs_perag_get(mp, agno);
  1763. pag->pagi_freecount -= ilen - 1;
  1764. xfs_perag_put(pag);
  1765. xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen);
  1766. xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1));
  1767. if ((error = xfs_btree_delete(cur, &i))) {
  1768. xfs_warn(mp, "%s: xfs_btree_delete returned error %d.",
  1769. __func__, error);
  1770. goto error0;
  1771. }
  1772. xfs_difree_inode_chunk(mp, agno, &rec, flist);
  1773. } else {
  1774. xic->deleted = 0;
  1775. error = xfs_inobt_update(cur, &rec);
  1776. if (error) {
  1777. xfs_warn(mp, "%s: xfs_inobt_update returned error %d.",
  1778. __func__, error);
  1779. goto error0;
  1780. }
  1781. /*
  1782. * Change the inode free counts and log the ag/sb changes.
  1783. */
  1784. be32_add_cpu(&agi->agi_freecount, 1);
  1785. xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
  1786. pag = xfs_perag_get(mp, agno);
  1787. pag->pagi_freecount++;
  1788. xfs_perag_put(pag);
  1789. xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1);
  1790. }
  1791. error = xfs_check_agi_freecount(cur, agi);
  1792. if (error)
  1793. goto error0;
  1794. *orec = rec;
  1795. xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
  1796. return 0;
  1797. error0:
  1798. xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
  1799. return error;
  1800. }
  1801. /*
  1802. * Free an inode in the free inode btree.
  1803. */
  1804. STATIC int
  1805. xfs_difree_finobt(
  1806. struct xfs_mount *mp,
  1807. struct xfs_trans *tp,
  1808. struct xfs_buf *agbp,
  1809. xfs_agino_t agino,
  1810. struct xfs_inobt_rec_incore *ibtrec) /* inobt record */
  1811. {
  1812. struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
  1813. xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
  1814. struct xfs_btree_cur *cur;
  1815. struct xfs_inobt_rec_incore rec;
  1816. int offset = agino - ibtrec->ir_startino;
  1817. int error;
  1818. int i;
  1819. cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO);
  1820. error = xfs_inobt_lookup(cur, ibtrec->ir_startino, XFS_LOOKUP_EQ, &i);
  1821. if (error)
  1822. goto error;
  1823. if (i == 0) {
  1824. /*
  1825. * If the record does not exist in the finobt, we must have just
  1826. * freed an inode in a previously fully allocated chunk. If not,
  1827. * something is out of sync.
  1828. */
  1829. XFS_WANT_CORRUPTED_GOTO(mp, ibtrec->ir_freecount == 1, error);
  1830. error = xfs_inobt_insert_rec(cur, ibtrec->ir_holemask,
  1831. ibtrec->ir_count,
  1832. ibtrec->ir_freecount,
  1833. ibtrec->ir_free, &i);
  1834. if (error)
  1835. goto error;
  1836. ASSERT(i == 1);
  1837. goto out;
  1838. }
  1839. /*
  1840. * Read and update the existing record. We could just copy the ibtrec
  1841. * across here, but that would defeat the purpose of having redundant
  1842. * metadata. By making the modifications independently, we can catch
  1843. * corruptions that we wouldn't see if we just copied from one record
  1844. * to another.
  1845. */
  1846. error = xfs_inobt_get_rec(cur, &rec, &i);
  1847. if (error)
  1848. goto error;
  1849. XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
  1850. rec.ir_free |= XFS_INOBT_MASK(offset);
  1851. rec.ir_freecount++;
  1852. XFS_WANT_CORRUPTED_GOTO(mp, (rec.ir_free == ibtrec->ir_free) &&
  1853. (rec.ir_freecount == ibtrec->ir_freecount),
  1854. error);
  1855. /*
  1856. * The content of inobt records should always match between the inobt
  1857. * and finobt. The lifecycle of records in the finobt is different from
  1858. * the inobt in that the finobt only tracks records with at least one
  1859. * free inode. Hence, if all of the inodes are free and we aren't
  1860. * keeping inode chunks permanently on disk, remove the record.
  1861. * Otherwise, update the record with the new information.
  1862. *
  1863. * Note that we currently can't free chunks when the block size is large
  1864. * enough for multiple chunks. Leave the finobt record to remain in sync
  1865. * with the inobt.
  1866. */
  1867. if (rec.ir_free == XFS_INOBT_ALL_FREE &&
  1868. mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK &&
  1869. !(mp->m_flags & XFS_MOUNT_IKEEP)) {
  1870. error = xfs_btree_delete(cur, &i);
  1871. if (error)
  1872. goto error;
  1873. ASSERT(i == 1);
  1874. } else {
  1875. error = xfs_inobt_update(cur, &rec);
  1876. if (error)
  1877. goto error;
  1878. }
  1879. out:
  1880. error = xfs_check_agi_freecount(cur, agi);
  1881. if (error)
  1882. goto error;
  1883. xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
  1884. return 0;
  1885. error:
  1886. xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
  1887. return error;
  1888. }
  1889. /*
  1890. * Free disk inode. Carefully avoids touching the incore inode, all
  1891. * manipulations incore are the caller's responsibility.
  1892. * The on-disk inode is not changed by this operation, only the
  1893. * btree (free inode mask) is changed.
  1894. */
  1895. int
  1896. xfs_difree(
  1897. struct xfs_trans *tp, /* transaction pointer */
  1898. xfs_ino_t inode, /* inode to be freed */
  1899. struct xfs_bmap_free *flist, /* extents to free */
  1900. struct xfs_icluster *xic) /* cluster info if deleted */
  1901. {
  1902. /* REFERENCED */
  1903. xfs_agblock_t agbno; /* block number containing inode */
  1904. struct xfs_buf *agbp; /* buffer for allocation group header */
  1905. xfs_agino_t agino; /* allocation group inode number */
  1906. xfs_agnumber_t agno; /* allocation group number */
  1907. int error; /* error return value */
  1908. struct xfs_mount *mp; /* mount structure for filesystem */
  1909. struct xfs_inobt_rec_incore rec;/* btree record */
  1910. mp = tp->t_mountp;
  1911. /*
  1912. * Break up inode number into its components.
  1913. */
  1914. agno = XFS_INO_TO_AGNO(mp, inode);
  1915. if (agno >= mp->m_sb.sb_agcount) {
  1916. xfs_warn(mp, "%s: agno >= mp->m_sb.sb_agcount (%d >= %d).",
  1917. __func__, agno, mp->m_sb.sb_agcount);
  1918. ASSERT(0);
  1919. return -EINVAL;
  1920. }
  1921. agino = XFS_INO_TO_AGINO(mp, inode);
  1922. if (inode != XFS_AGINO_TO_INO(mp, agno, agino)) {
  1923. xfs_warn(mp, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).",
  1924. __func__, (unsigned long long)inode,
  1925. (unsigned long long)XFS_AGINO_TO_INO(mp, agno, agino));
  1926. ASSERT(0);
  1927. return -EINVAL;
  1928. }
  1929. agbno = XFS_AGINO_TO_AGBNO(mp, agino);
  1930. if (agbno >= mp->m_sb.sb_agblocks) {
  1931. xfs_warn(mp, "%s: agbno >= mp->m_sb.sb_agblocks (%d >= %d).",
  1932. __func__, agbno, mp->m_sb.sb_agblocks);
  1933. ASSERT(0);
  1934. return -EINVAL;
  1935. }
  1936. /*
  1937. * Get the allocation group header.
  1938. */
  1939. error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
  1940. if (error) {
  1941. xfs_warn(mp, "%s: xfs_ialloc_read_agi() returned error %d.",
  1942. __func__, error);
  1943. return error;
  1944. }
  1945. /*
  1946. * Fix up the inode allocation btree.
  1947. */
  1948. error = xfs_difree_inobt(mp, tp, agbp, agino, flist, xic, &rec);
  1949. if (error)
  1950. goto error0;
  1951. /*
  1952. * Fix up the free inode btree.
  1953. */
  1954. if (xfs_sb_version_hasfinobt(&mp->m_sb)) {
  1955. error = xfs_difree_finobt(mp, tp, agbp, agino, &rec);
  1956. if (error)
  1957. goto error0;
  1958. }
  1959. return 0;
  1960. error0:
  1961. return error;
  1962. }
  1963. STATIC int
  1964. xfs_imap_lookup(
  1965. struct xfs_mount *mp,
  1966. struct xfs_trans *tp,
  1967. xfs_agnumber_t agno,
  1968. xfs_agino_t agino,
  1969. xfs_agblock_t agbno,
  1970. xfs_agblock_t *chunk_agbno,
  1971. xfs_agblock_t *offset_agbno,
  1972. int flags)
  1973. {
  1974. struct xfs_inobt_rec_incore rec;
  1975. struct xfs_btree_cur *cur;
  1976. struct xfs_buf *agbp;
  1977. int error;
  1978. int i;
  1979. error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
  1980. if (error) {
  1981. xfs_alert(mp,
  1982. "%s: xfs_ialloc_read_agi() returned error %d, agno %d",
  1983. __func__, error, agno);
  1984. return error;
  1985. }
  1986. /*
  1987. * Lookup the inode record for the given agino. If the record cannot be
  1988. * found, then it's an invalid inode number and we should abort. Once
  1989. * we have a record, we need to ensure it contains the inode number
  1990. * we are looking up.
  1991. */
  1992. cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
  1993. error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i);
  1994. if (!error) {
  1995. if (i)
  1996. error = xfs_inobt_get_rec(cur, &rec, &i);
  1997. if (!error && i == 0)
  1998. error = -EINVAL;
  1999. }
  2000. xfs_trans_brelse(tp, agbp);
  2001. xfs_btree_del_cursor(cur, error ? XFS_BTREE_ERROR : XFS_BTREE_NOERROR);
  2002. if (error)
  2003. return error;
  2004. /* check that the returned record contains the required inode */
  2005. if (rec.ir_startino > agino ||
  2006. rec.ir_startino + mp->m_ialloc_inos <= agino)
  2007. return -EINVAL;
  2008. /* for untrusted inodes check it is allocated first */
  2009. if ((flags & XFS_IGET_UNTRUSTED) &&
  2010. (rec.ir_free & XFS_INOBT_MASK(agino - rec.ir_startino)))
  2011. return -EINVAL;
  2012. *chunk_agbno = XFS_AGINO_TO_AGBNO(mp, rec.ir_startino);
  2013. *offset_agbno = agbno - *chunk_agbno;
  2014. return 0;
  2015. }
  2016. /*
  2017. * Return the location of the inode in imap, for mapping it into a buffer.
  2018. */
  2019. int
  2020. xfs_imap(
  2021. xfs_mount_t *mp, /* file system mount structure */
  2022. xfs_trans_t *tp, /* transaction pointer */
  2023. xfs_ino_t ino, /* inode to locate */
  2024. struct xfs_imap *imap, /* location map structure */
  2025. uint flags) /* flags for inode btree lookup */
  2026. {
  2027. xfs_agblock_t agbno; /* block number of inode in the alloc group */
  2028. xfs_agino_t agino; /* inode number within alloc group */
  2029. xfs_agnumber_t agno; /* allocation group number */
  2030. int blks_per_cluster; /* num blocks per inode cluster */
  2031. xfs_agblock_t chunk_agbno; /* first block in inode chunk */
  2032. xfs_agblock_t cluster_agbno; /* first block in inode cluster */
  2033. int error; /* error code */
  2034. int offset; /* index of inode in its buffer */
  2035. xfs_agblock_t offset_agbno; /* blks from chunk start to inode */
  2036. ASSERT(ino != NULLFSINO);
  2037. /*
  2038. * Split up the inode number into its parts.
  2039. */
  2040. agno = XFS_INO_TO_AGNO(mp, ino);
  2041. agino = XFS_INO_TO_AGINO(mp, ino);
  2042. agbno = XFS_AGINO_TO_AGBNO(mp, agino);
  2043. if (agno >= mp->m_sb.sb_agcount || agbno >= mp->m_sb.sb_agblocks ||
  2044. ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
  2045. #ifdef DEBUG
  2046. /*
  2047. * Don't output diagnostic information for untrusted inodes
  2048. * as they can be invalid without implying corruption.
  2049. */
  2050. if (flags & XFS_IGET_UNTRUSTED)
  2051. return -EINVAL;
  2052. if (agno >= mp->m_sb.sb_agcount) {
  2053. xfs_alert(mp,
  2054. "%s: agno (%d) >= mp->m_sb.sb_agcount (%d)",
  2055. __func__, agno, mp->m_sb.sb_agcount);
  2056. }
  2057. if (agbno >= mp->m_sb.sb_agblocks) {
  2058. xfs_alert(mp,
  2059. "%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)",
  2060. __func__, (unsigned long long)agbno,
  2061. (unsigned long)mp->m_sb.sb_agblocks);
  2062. }
  2063. if (ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
  2064. xfs_alert(mp,
  2065. "%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)",
  2066. __func__, ino,
  2067. XFS_AGINO_TO_INO(mp, agno, agino));
  2068. }
  2069. xfs_stack_trace();
  2070. #endif /* DEBUG */
  2071. return -EINVAL;
  2072. }
  2073. blks_per_cluster = xfs_icluster_size_fsb(mp);
  2074. /*
  2075. * For bulkstat and handle lookups, we have an untrusted inode number
  2076. * that we have to verify is valid. We cannot do this just by reading
  2077. * the inode buffer as it may have been unlinked and removed leaving
  2078. * inodes in stale state on disk. Hence we have to do a btree lookup
  2079. * in all cases where an untrusted inode number is passed.
  2080. */
  2081. if (flags & XFS_IGET_UNTRUSTED) {
  2082. error = xfs_imap_lookup(mp, tp, agno, agino, agbno,
  2083. &chunk_agbno, &offset_agbno, flags);
  2084. if (error)
  2085. return error;
  2086. goto out_map;
  2087. }
  2088. /*
  2089. * If the inode cluster size is the same as the blocksize or
  2090. * smaller we get to the buffer by simple arithmetics.
  2091. */
  2092. if (blks_per_cluster == 1) {
  2093. offset = XFS_INO_TO_OFFSET(mp, ino);
  2094. ASSERT(offset < mp->m_sb.sb_inopblock);
  2095. imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, agbno);
  2096. imap->im_len = XFS_FSB_TO_BB(mp, 1);
  2097. imap->im_boffset = (ushort)(offset << mp->m_sb.sb_inodelog);
  2098. return 0;
  2099. }
  2100. /*
  2101. * If the inode chunks are aligned then use simple maths to
  2102. * find the location. Otherwise we have to do a btree
  2103. * lookup to find the location.
  2104. */
  2105. if (mp->m_inoalign_mask) {
  2106. offset_agbno = agbno & mp->m_inoalign_mask;
  2107. chunk_agbno = agbno - offset_agbno;
  2108. } else {
  2109. error = xfs_imap_lookup(mp, tp, agno, agino, agbno,
  2110. &chunk_agbno, &offset_agbno, flags);
  2111. if (error)
  2112. return error;
  2113. }
  2114. out_map:
  2115. ASSERT(agbno >= chunk_agbno);
  2116. cluster_agbno = chunk_agbno +
  2117. ((offset_agbno / blks_per_cluster) * blks_per_cluster);
  2118. offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) +
  2119. XFS_INO_TO_OFFSET(mp, ino);
  2120. imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, cluster_agbno);
  2121. imap->im_len = XFS_FSB_TO_BB(mp, blks_per_cluster);
  2122. imap->im_boffset = (ushort)(offset << mp->m_sb.sb_inodelog);
  2123. /*
  2124. * If the inode number maps to a block outside the bounds
  2125. * of the file system then return NULL rather than calling
  2126. * read_buf and panicing when we get an error from the
  2127. * driver.
  2128. */
  2129. if ((imap->im_blkno + imap->im_len) >
  2130. XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
  2131. xfs_alert(mp,
  2132. "%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)",
  2133. __func__, (unsigned long long) imap->im_blkno,
  2134. (unsigned long long) imap->im_len,
  2135. XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
  2136. return -EINVAL;
  2137. }
  2138. return 0;
  2139. }
  2140. /*
  2141. * Compute and fill in value of m_in_maxlevels.
  2142. */
  2143. void
  2144. xfs_ialloc_compute_maxlevels(
  2145. xfs_mount_t *mp) /* file system mount structure */
  2146. {
  2147. int level;
  2148. uint maxblocks;
  2149. uint maxleafents;
  2150. int minleafrecs;
  2151. int minnoderecs;
  2152. maxleafents = (1LL << XFS_INO_AGINO_BITS(mp)) >>
  2153. XFS_INODES_PER_CHUNK_LOG;
  2154. minleafrecs = mp->m_alloc_mnr[0];
  2155. minnoderecs = mp->m_alloc_mnr[1];
  2156. maxblocks = (maxleafents + minleafrecs - 1) / minleafrecs;
  2157. for (level = 1; maxblocks > 1; level++)
  2158. maxblocks = (maxblocks + minnoderecs - 1) / minnoderecs;
  2159. mp->m_in_maxlevels = level;
  2160. }
  2161. /*
  2162. * Log specified fields for the ag hdr (inode section). The growth of the agi
  2163. * structure over time requires that we interpret the buffer as two logical
  2164. * regions delineated by the end of the unlinked list. This is due to the size
  2165. * of the hash table and its location in the middle of the agi.
  2166. *
  2167. * For example, a request to log a field before agi_unlinked and a field after
  2168. * agi_unlinked could cause us to log the entire hash table and use an excessive
  2169. * amount of log space. To avoid this behavior, log the region up through
  2170. * agi_unlinked in one call and the region after agi_unlinked through the end of
  2171. * the structure in another.
  2172. */
  2173. void
  2174. xfs_ialloc_log_agi(
  2175. xfs_trans_t *tp, /* transaction pointer */
  2176. xfs_buf_t *bp, /* allocation group header buffer */
  2177. int fields) /* bitmask of fields to log */
  2178. {
  2179. int first; /* first byte number */
  2180. int last; /* last byte number */
  2181. static const short offsets[] = { /* field starting offsets */
  2182. /* keep in sync with bit definitions */
  2183. offsetof(xfs_agi_t, agi_magicnum),
  2184. offsetof(xfs_agi_t, agi_versionnum),
  2185. offsetof(xfs_agi_t, agi_seqno),
  2186. offsetof(xfs_agi_t, agi_length),
  2187. offsetof(xfs_agi_t, agi_count),
  2188. offsetof(xfs_agi_t, agi_root),
  2189. offsetof(xfs_agi_t, agi_level),
  2190. offsetof(xfs_agi_t, agi_freecount),
  2191. offsetof(xfs_agi_t, agi_newino),
  2192. offsetof(xfs_agi_t, agi_dirino),
  2193. offsetof(xfs_agi_t, agi_unlinked),
  2194. offsetof(xfs_agi_t, agi_free_root),
  2195. offsetof(xfs_agi_t, agi_free_level),
  2196. sizeof(xfs_agi_t)
  2197. };
  2198. #ifdef DEBUG
  2199. xfs_agi_t *agi; /* allocation group header */
  2200. agi = XFS_BUF_TO_AGI(bp);
  2201. ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
  2202. #endif
  2203. xfs_trans_buf_set_type(tp, bp, XFS_BLFT_AGI_BUF);
  2204. /*
  2205. * Compute byte offsets for the first and last fields in the first
  2206. * region and log the agi buffer. This only logs up through
  2207. * agi_unlinked.
  2208. */
  2209. if (fields & XFS_AGI_ALL_BITS_R1) {
  2210. xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R1,
  2211. &first, &last);
  2212. xfs_trans_log_buf(tp, bp, first, last);
  2213. }
  2214. /*
  2215. * Mask off the bits in the first region and calculate the first and
  2216. * last field offsets for any bits in the second region.
  2217. */
  2218. fields &= ~XFS_AGI_ALL_BITS_R1;
  2219. if (fields) {
  2220. xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R2,
  2221. &first, &last);
  2222. xfs_trans_log_buf(tp, bp, first, last);
  2223. }
  2224. }
  2225. #ifdef DEBUG
  2226. STATIC void
  2227. xfs_check_agi_unlinked(
  2228. struct xfs_agi *agi)
  2229. {
  2230. int i;
  2231. for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++)
  2232. ASSERT(agi->agi_unlinked[i]);
  2233. }
  2234. #else
  2235. #define xfs_check_agi_unlinked(agi)
  2236. #endif
  2237. static bool
  2238. xfs_agi_verify(
  2239. struct xfs_buf *bp)
  2240. {
  2241. struct xfs_mount *mp = bp->b_target->bt_mount;
  2242. struct xfs_agi *agi = XFS_BUF_TO_AGI(bp);
  2243. if (xfs_sb_version_hascrc(&mp->m_sb)) {
  2244. if (!uuid_equal(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid))
  2245. return false;
  2246. if (!xfs_log_check_lsn(mp,
  2247. be64_to_cpu(XFS_BUF_TO_AGI(bp)->agi_lsn)))
  2248. return false;
  2249. }
  2250. /*
  2251. * Validate the magic number of the agi block.
  2252. */
  2253. if (agi->agi_magicnum != cpu_to_be32(XFS_AGI_MAGIC))
  2254. return false;
  2255. if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum)))
  2256. return false;
  2257. if (be32_to_cpu(agi->agi_level) > XFS_BTREE_MAXLEVELS)
  2258. return false;
  2259. /*
  2260. * during growfs operations, the perag is not fully initialised,
  2261. * so we can't use it for any useful checking. growfs ensures we can't
  2262. * use it by using uncached buffers that don't have the perag attached
  2263. * so we can detect and avoid this problem.
  2264. */
  2265. if (bp->b_pag && be32_to_cpu(agi->agi_seqno) != bp->b_pag->pag_agno)
  2266. return false;
  2267. xfs_check_agi_unlinked(agi);
  2268. return true;
  2269. }
  2270. static void
  2271. xfs_agi_read_verify(
  2272. struct xfs_buf *bp)
  2273. {
  2274. struct xfs_mount *mp = bp->b_target->bt_mount;
  2275. if (xfs_sb_version_hascrc(&mp->m_sb) &&
  2276. !xfs_buf_verify_cksum(bp, XFS_AGI_CRC_OFF))
  2277. xfs_buf_ioerror(bp, -EFSBADCRC);
  2278. else if (XFS_TEST_ERROR(!xfs_agi_verify(bp), mp,
  2279. XFS_ERRTAG_IALLOC_READ_AGI,
  2280. XFS_RANDOM_IALLOC_READ_AGI))
  2281. xfs_buf_ioerror(bp, -EFSCORRUPTED);
  2282. if (bp->b_error)
  2283. xfs_verifier_error(bp);
  2284. }
  2285. static void
  2286. xfs_agi_write_verify(
  2287. struct xfs_buf *bp)
  2288. {
  2289. struct xfs_mount *mp = bp->b_target->bt_mount;
  2290. struct xfs_buf_log_item *bip = bp->b_fspriv;
  2291. if (!xfs_agi_verify(bp)) {
  2292. xfs_buf_ioerror(bp, -EFSCORRUPTED);
  2293. xfs_verifier_error(bp);
  2294. return;
  2295. }
  2296. if (!xfs_sb_version_hascrc(&mp->m_sb))
  2297. return;
  2298. if (bip)
  2299. XFS_BUF_TO_AGI(bp)->agi_lsn = cpu_to_be64(bip->bli_item.li_lsn);
  2300. xfs_buf_update_cksum(bp, XFS_AGI_CRC_OFF);
  2301. }
  2302. const struct xfs_buf_ops xfs_agi_buf_ops = {
  2303. .name = "xfs_agi",
  2304. .verify_read = xfs_agi_read_verify,
  2305. .verify_write = xfs_agi_write_verify,
  2306. };
  2307. /*
  2308. * Read in the allocation group header (inode allocation section)
  2309. */
  2310. int
  2311. xfs_read_agi(
  2312. struct xfs_mount *mp, /* file system mount structure */
  2313. struct xfs_trans *tp, /* transaction pointer */
  2314. xfs_agnumber_t agno, /* allocation group number */
  2315. struct xfs_buf **bpp) /* allocation group hdr buf */
  2316. {
  2317. int error;
  2318. trace_xfs_read_agi(mp, agno);
  2319. ASSERT(agno != NULLAGNUMBER);
  2320. error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
  2321. XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
  2322. XFS_FSS_TO_BB(mp, 1), 0, bpp, &xfs_agi_buf_ops);
  2323. if (error)
  2324. return error;
  2325. xfs_buf_set_ref(*bpp, XFS_AGI_REF);
  2326. return 0;
  2327. }
  2328. int
  2329. xfs_ialloc_read_agi(
  2330. struct xfs_mount *mp, /* file system mount structure */
  2331. struct xfs_trans *tp, /* transaction pointer */
  2332. xfs_agnumber_t agno, /* allocation group number */
  2333. struct xfs_buf **bpp) /* allocation group hdr buf */
  2334. {
  2335. struct xfs_agi *agi; /* allocation group header */
  2336. struct xfs_perag *pag; /* per allocation group data */
  2337. int error;
  2338. trace_xfs_ialloc_read_agi(mp, agno);
  2339. error = xfs_read_agi(mp, tp, agno, bpp);
  2340. if (error)
  2341. return error;
  2342. agi = XFS_BUF_TO_AGI(*bpp);
  2343. pag = xfs_perag_get(mp, agno);
  2344. if (!pag->pagi_init) {
  2345. pag->pagi_freecount = be32_to_cpu(agi->agi_freecount);
  2346. pag->pagi_count = be32_to_cpu(agi->agi_count);
  2347. pag->pagi_init = 1;
  2348. }
  2349. /*
  2350. * It's possible for these to be out of sync if
  2351. * we are in the middle of a forced shutdown.
  2352. */
  2353. ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) ||
  2354. XFS_FORCED_SHUTDOWN(mp));
  2355. xfs_perag_put(pag);
  2356. return 0;
  2357. }
  2358. /*
  2359. * Read in the agi to initialise the per-ag data in the mount structure
  2360. */
  2361. int
  2362. xfs_ialloc_pagi_init(
  2363. xfs_mount_t *mp, /* file system mount structure */
  2364. xfs_trans_t *tp, /* transaction pointer */
  2365. xfs_agnumber_t agno) /* allocation group number */
  2366. {
  2367. xfs_buf_t *bp = NULL;
  2368. int error;
  2369. error = xfs_ialloc_read_agi(mp, tp, agno, &bp);
  2370. if (error)
  2371. return error;
  2372. if (bp)
  2373. xfs_trans_brelse(tp, bp);
  2374. return 0;
  2375. }