123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306 |
- /*
- * include/linux/ktime.h
- *
- * ktime_t - nanosecond-resolution time format.
- *
- * Copyright(C) 2005, Thomas Gleixner <tglx@linutronix.de>
- * Copyright(C) 2005, Red Hat, Inc., Ingo Molnar
- *
- * data type definitions, declarations, prototypes and macros.
- *
- * Started by: Thomas Gleixner and Ingo Molnar
- *
- * Credits:
- *
- * Roman Zippel provided the ideas and primary code snippets of
- * the ktime_t union and further simplifications of the original
- * code.
- *
- * For licencing details see kernel-base/COPYING
- */
- #ifndef _LINUX_KTIME_H
- #define _LINUX_KTIME_H
- #include <linux/time.h>
- #include <linux/jiffies.h>
- /*
- * ktime_t:
- *
- * A single 64-bit variable is used to store the hrtimers
- * internal representation of time values in scalar nanoseconds. The
- * design plays out best on 64-bit CPUs, where most conversions are
- * NOPs and most arithmetic ktime_t operations are plain arithmetic
- * operations.
- *
- */
- union ktime {
- s64 tv64;
- };
- typedef union ktime ktime_t; /* Kill this */
- /**
- * ktime_set - Set a ktime_t variable from a seconds/nanoseconds value
- * @secs: seconds to set
- * @nsecs: nanoseconds to set
- *
- * Return: The ktime_t representation of the value.
- */
- static inline ktime_t ktime_set(const s64 secs, const unsigned long nsecs)
- {
- if (unlikely(secs >= KTIME_SEC_MAX))
- return (ktime_t){ .tv64 = KTIME_MAX };
- return (ktime_t) { .tv64 = secs * NSEC_PER_SEC + (s64)nsecs };
- }
- /* Subtract two ktime_t variables. rem = lhs -rhs: */
- #define ktime_sub(lhs, rhs) \
- ({ (ktime_t){ .tv64 = (lhs).tv64 - (rhs).tv64 }; })
- /* Add two ktime_t variables. res = lhs + rhs: */
- #define ktime_add(lhs, rhs) \
- ({ (ktime_t){ .tv64 = (lhs).tv64 + (rhs).tv64 }; })
- /*
- * Same as ktime_add(), but avoids undefined behaviour on overflow; however,
- * this means that you must check the result for overflow yourself.
- */
- #define ktime_add_unsafe(lhs, rhs) \
- ({ (ktime_t){ .tv64 = (u64) (lhs).tv64 + (rhs).tv64 }; })
- /*
- * Add a ktime_t variable and a scalar nanosecond value.
- * res = kt + nsval:
- */
- #define ktime_add_ns(kt, nsval) \
- ({ (ktime_t){ .tv64 = (kt).tv64 + (nsval) }; })
- /*
- * Subtract a scalar nanosecod from a ktime_t variable
- * res = kt - nsval:
- */
- #define ktime_sub_ns(kt, nsval) \
- ({ (ktime_t){ .tv64 = (kt).tv64 - (nsval) }; })
- /* convert a timespec to ktime_t format: */
- static inline ktime_t timespec_to_ktime(struct timespec ts)
- {
- return ktime_set(ts.tv_sec, ts.tv_nsec);
- }
- /* convert a timespec64 to ktime_t format: */
- static inline ktime_t timespec64_to_ktime(struct timespec64 ts)
- {
- return ktime_set(ts.tv_sec, ts.tv_nsec);
- }
- /* convert a timeval to ktime_t format: */
- static inline ktime_t timeval_to_ktime(struct timeval tv)
- {
- return ktime_set(tv.tv_sec, tv.tv_usec * NSEC_PER_USEC);
- }
- /* Map the ktime_t to timespec conversion to ns_to_timespec function */
- #define ktime_to_timespec(kt) ns_to_timespec((kt).tv64)
- /* Map the ktime_t to timespec conversion to ns_to_timespec function */
- #define ktime_to_timespec64(kt) ns_to_timespec64((kt).tv64)
- /* Map the ktime_t to timeval conversion to ns_to_timeval function */
- #define ktime_to_timeval(kt) ns_to_timeval((kt).tv64)
- /* Convert ktime_t to nanoseconds - NOP in the scalar storage format: */
- #define ktime_to_ns(kt) ((kt).tv64)
- /**
- * ktime_equal - Compares two ktime_t variables to see if they are equal
- * @cmp1: comparable1
- * @cmp2: comparable2
- *
- * Compare two ktime_t variables.
- *
- * Return: 1 if equal.
- */
- static inline int ktime_equal(const ktime_t cmp1, const ktime_t cmp2)
- {
- return cmp1.tv64 == cmp2.tv64;
- }
- /**
- * ktime_compare - Compares two ktime_t variables for less, greater or equal
- * @cmp1: comparable1
- * @cmp2: comparable2
- *
- * Return: ...
- * cmp1 < cmp2: return <0
- * cmp1 == cmp2: return 0
- * cmp1 > cmp2: return >0
- */
- static inline int ktime_compare(const ktime_t cmp1, const ktime_t cmp2)
- {
- if (cmp1.tv64 < cmp2.tv64)
- return -1;
- if (cmp1.tv64 > cmp2.tv64)
- return 1;
- return 0;
- }
- /**
- * ktime_after - Compare if a ktime_t value is bigger than another one.
- * @cmp1: comparable1
- * @cmp2: comparable2
- *
- * Return: true if cmp1 happened after cmp2.
- */
- static inline bool ktime_after(const ktime_t cmp1, const ktime_t cmp2)
- {
- return ktime_compare(cmp1, cmp2) > 0;
- }
- /**
- * ktime_before - Compare if a ktime_t value is smaller than another one.
- * @cmp1: comparable1
- * @cmp2: comparable2
- *
- * Return: true if cmp1 happened before cmp2.
- */
- static inline bool ktime_before(const ktime_t cmp1, const ktime_t cmp2)
- {
- return ktime_compare(cmp1, cmp2) < 0;
- }
- #if BITS_PER_LONG < 64
- extern s64 __ktime_divns(const ktime_t kt, s64 div);
- static inline s64 ktime_divns(const ktime_t kt, s64 div)
- {
- /*
- * Negative divisors could cause an inf loop,
- * so bug out here.
- */
- BUG_ON(div < 0);
- if (__builtin_constant_p(div) && !(div >> 32)) {
- s64 ns = kt.tv64;
- u64 tmp = ns < 0 ? -ns : ns;
- do_div(tmp, div);
- return ns < 0 ? -tmp : tmp;
- } else {
- return __ktime_divns(kt, div);
- }
- }
- #else /* BITS_PER_LONG < 64 */
- static inline s64 ktime_divns(const ktime_t kt, s64 div)
- {
- /*
- * 32-bit implementation cannot handle negative divisors,
- * so catch them on 64bit as well.
- */
- WARN_ON(div < 0);
- return kt.tv64 / div;
- }
- #endif
- static inline s64 ktime_to_us(const ktime_t kt)
- {
- return ktime_divns(kt, NSEC_PER_USEC);
- }
- static inline s64 ktime_to_ms(const ktime_t kt)
- {
- return ktime_divns(kt, NSEC_PER_MSEC);
- }
- static inline s64 ktime_us_delta(const ktime_t later, const ktime_t earlier)
- {
- return ktime_to_us(ktime_sub(later, earlier));
- }
- static inline s64 ktime_ms_delta(const ktime_t later, const ktime_t earlier)
- {
- return ktime_to_ms(ktime_sub(later, earlier));
- }
- static inline ktime_t ktime_add_us(const ktime_t kt, const u64 usec)
- {
- return ktime_add_ns(kt, usec * NSEC_PER_USEC);
- }
- static inline ktime_t ktime_add_ms(const ktime_t kt, const u64 msec)
- {
- return ktime_add_ns(kt, msec * NSEC_PER_MSEC);
- }
- static inline ktime_t ktime_sub_us(const ktime_t kt, const u64 usec)
- {
- return ktime_sub_ns(kt, usec * NSEC_PER_USEC);
- }
- extern ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs);
- /**
- * ktime_to_timespec_cond - convert a ktime_t variable to timespec
- * format only if the variable contains data
- * @kt: the ktime_t variable to convert
- * @ts: the timespec variable to store the result in
- *
- * Return: %true if there was a successful conversion, %false if kt was 0.
- */
- static inline __must_check bool ktime_to_timespec_cond(const ktime_t kt,
- struct timespec *ts)
- {
- if (kt.tv64) {
- *ts = ktime_to_timespec(kt);
- return true;
- } else {
- return false;
- }
- }
- /**
- * ktime_to_timespec64_cond - convert a ktime_t variable to timespec64
- * format only if the variable contains data
- * @kt: the ktime_t variable to convert
- * @ts: the timespec variable to store the result in
- *
- * Return: %true if there was a successful conversion, %false if kt was 0.
- */
- static inline __must_check bool ktime_to_timespec64_cond(const ktime_t kt,
- struct timespec64 *ts)
- {
- if (kt.tv64) {
- *ts = ktime_to_timespec64(kt);
- return true;
- } else {
- return false;
- }
- }
- /*
- * The resolution of the clocks. The resolution value is returned in
- * the clock_getres() system call to give application programmers an
- * idea of the (in)accuracy of timers. Timer values are rounded up to
- * this resolution values.
- */
- #define LOW_RES_NSEC TICK_NSEC
- #define KTIME_LOW_RES (ktime_t){ .tv64 = LOW_RES_NSEC }
- static inline ktime_t ns_to_ktime(u64 ns)
- {
- static const ktime_t ktime_zero = { .tv64 = 0 };
- return ktime_add_ns(ktime_zero, ns);
- }
- static inline ktime_t ms_to_ktime(u64 ms)
- {
- static const ktime_t ktime_zero = { .tv64 = 0 };
- return ktime_add_ms(ktime_zero, ms);
- }
- # include <linux/timekeeping.h>
- #endif
|